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Abstract 

It is well-known that causal forecasting methods that include appropriately chosen Exogenous Variables (EVs) 

very often present improved forecasting performances over univariate methods. However, in practice, EVs are 

usually difficult to obtain and in many cases are not available at all. In this paper, a new causal forecasting 

approach, called Wavelet Auto-Regressive Integrated Moving Average with eXogenous variables and 

Generalized Auto-Regressive Conditional Heteroscedasticity (WARIMAX-GARCH) method, is proposed to 

improve predictive performance and accuracy but also to address, at least in part, the problem of unavailable 

EVs. Basically, the WARIMAX-GARCH method obtains Wavelet “EVs” (WEVs) from Auto-Regressive 

Integrated Moving Average with eXogenous variables and Generalized Auto-Regressive Conditional 

Heteroscedasticity (ARIMAX-GARCH) models applied to Wavelet Components (WCs) that are initially 

determined from the underlying time series. The WEVs are, in fact, treated by the WARIMAX-GARCH method 

as if they were conventional EVs. Similarly to GARCH and ARIMA-GARCH models, the WARIMAX-GARCH 

method is suitable for time series exhibiting non-linear characteristics such as conditional variance that depends 

on past values of observed data. However, unlike those, it can explicitly model frequency domain patterns in the 

series to help improve predictive performance. An application to a daily time series of dam displacement in 

Brazil shows the WARIMAX-GARCH method to remarkably outperform the ARIMA-GARCH method, as well 

as the (multi-layer perceptron) Artificial Neural Network (ANN) and its wavelet version referred to as Wavelet 

Artificial Neural Network (WANN) as in [1], on statistical measures for both in-sample and out-of-sample 

forecasting. 
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List of adopted acronyms 

 ARIMA: Auto-Regressive Integrated Moving Average. 

 ARIMAX: Auto-Regressive Integrated Moving Average with eXogenous variables. 

 GARCH: Generalized Auto-Regressive Conditional Heteroscedasticity. 

 ARIMAX-GARCH: Auto-Regressive Integrated Moving Average with eXogenous 

variables and Generalized Auto-Regressive Conditional Heteroscedasticity. 

 EVs: Exogenous Variables. 

 WCs: Wavelet Components. 

 WEVs: Wavelet Exogenous Variables. 



 WARIMAX-GARCH: Wavelet Auto-Regressive Integrated Moving Average with 

eXogenous variables and Generalized Auto-Regressive Conditional 

Heteroscedasticity. 

 ANN: Artificial Neural Network. 

 WANN: Wavelet Artificial Neural Network. 

 

1. Introduction 

There is a vast body of literature on methods and techniques for the modeling and 

forecasting of time series (see e.g. [2]). One of the most well-known is the class of Auto-

Regressive Integrated Moving Average (ARIMA) models proposed by [3] for stationary time 

series exhibiting linear auto-dependence characteristics. An ARIMA model makes use of 

available historical data from the underlying time series, denoted by    (       ), to 

quantify any auto-regressive and moving-average patterns and produce forecasts. Many time 

series are often affected or influenced by certain external factors such as special events (e.g. 

legislative activities, policy changes, environmental regulations), as well as by uncertain or 

random events (referred to as stochastic events), that generate data that may be available to be 

used as Exogenous Variables (EVs). Some models can accommodate one or more such 

variables to help improving the forecasting process. Box and Jenkins themselves proposed an 

extension to an ARIMA model, the transfer function model (see e.g. [2]), which can account 

for EVs. The general exogenous model employed by the ARIMA model has been discussed 

by [4], where it is referred to as an Auto-Regressive Integrated Moving Average with 

eXogenous variables (ARIMAX) model. [5] refers to the ARIMAX model as dynamic 

regression model. Both [4] and [5] show increased forecasting accuracy gains are achieved 

when EVs are properly used in the modeling process. ARIMAX models, however, require 

adequate EVs are available and that the underlying time series is stationary (or transformed 

into a stationary one). 

In the conventional ARIMAX model, the conditional variance of its innovations is 

typically supposed to be constant (homoscedasticity). However, many time series often 

exhibit periods of unusual high volatility followed by periods of relative stability. In such 

situations, the constant conditional variance assumption may be considered inappropriate. In 

order to account for changes in conditional variance (heteroscedasticity), [6], [7], [8], amongst 

others, developed a class of conditional heteroscedastic models that allows the changing 

conditional variance (volatility) of a time series to be explicitly modelled. The Auto-

Regressive Conditional Heteroscedastic (ARCH) model of [6] allows for the conditional 

variance to depend on past values of the conditional variance itself; while the Generalized 

ARCH (GARCH) model of [7] enable the volatility to depend on past values of both the 

squared innovation and conditional variance itself. The WARIMAX-GARCH method 

proposed here employs a GARCH model as one of its components. Other extensions of a 

GARCH model are, for example, the GARCH-in-mean (GARCH-M) of Engle, [9] that 

includes a heteroscedasticity term into the mean model (represented by either the ARIMA or 

ARIMAX components); and the Exponential GARCH (EGARCH) model of  [10], which 

models the conditional variance in logarithmic form, that does not require non-negativity 

constraints and allows for asymmetric effect of information on the volatility. In effect, the 

GARCH term of the WARIMAX-GARCH method can be chosen to be any of such 

extensions of a GARCH model depending on the application. 



In many practical cases, appropriate EVs are just not available to be employed. For 

instance, [11] claim that, contrary to price-based management, regression methods are 

somewhat less common in quantity-based revenue forecasting applications (such as airline 

and hotel revenue management) because it is often difficult to obtain data on the explanatory 

EVs as an automated data feed. In such cases, the only explanatory variables that can be used 

must come from the historical underlying data. In this context, the approach adopted in this 

paper is to generate WEVs from WCs of the time series to be used as EVs by the 

WARIMAX-GARCH method as we shall see. This way, it is possible to obtain improved 

forecasting performance gains similarly to the ones obtained by [5] when using the 

conventional ARIMAX-GARCH model albeit in another application as we shall see. 

Note that, in practical terms, the Wavelet Exogenous Variables (WEVs) can be seen as 

representing the quantified frequency patterns present in the time series that the usual 

ARIMAX model does not account for. Now, mathematically, the WEVs consist of the 

wavelet components (the WCs), where a WC is defined by orthogonal projections of an 

original time series on orthogonal complete subspaces, called the “wavelet subspaces”, of the 

   space.  

Thus, the WARIMAX-GARCH method consists of a new causal forecasting method that, 

based on ARIMAX-GARCH models, generates and uses the WCs as exogenous variables (the 

WEVs). Figure 1 shows a flow diagram with seven levels depicting the steps, described 

below, of the WARIMAX-GARCH method. To apply the WARIMAX-GARCH method, the 

underlying time series is first split into a training (in-sample) and a testing (out-of-sample) 

sample. The training sample, denoted by    (       ), where T is a conveniently chosen 

time period, is decomposed via wavelet decomposition of level r as shown by the top two 

levels of the diagram in Figure 1. This decomposition produces (for each time          ) 

one WC of approximation at level   , denoted by  ̃     
, and r WCs of detail at levels   , 

    , …,    (   ), denoted by  ̃     
,  ̃       , …,  ̃    (   )  , respectively (as 

represented by the third level at the top of Figure 1). Each WC is then individually modeled 

by using an ARIMA-GARCH model, generating h-steps-ahead out-of-sample forecasts to its 

level. The     WCs of    (       ) with their out-of-sample forecasts are the completed 

WCs and are denoted by     ,     ,     , ...,        (                 ). Those are 

interpreted here as EVs (              in Figure 1) in an ARIMAX-GARCH model for 

forecasting the time series    (       ), both in-sample and out-of-sample, to its level 

(conditional mean) and conditional variance. Finally, under Gaussian assumption, the 

respective predictive intervals are trivially calculated. 
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Figure. 1. Flowchart of the WARIMAX-GARCH method. 

 

This paper is structured as follows. In Section 2, a more in depth review of the wavelet 

decomposition method and the ARIMAX-GARCH model, which are component parts of the 

proposed WARIMAX-GARCH method, are presented, as well as the ANN and WANN 

models used here as benchmark methods; Section 3 formally defines the WARIMAX-

GARCH method; while Section 4 shows the main numerical results of the application to a 

real time series of dam displacement at the Itaipu hydroelectric, in southern Brazil. Finally, 

Section 5 concludes the paper. 

 

2. Oriented review of the literature 

The purpose of this section is to present a brief review of the concepts and methods 

required to define the WARIMAX-GARCH method that is introduced in Section 3. It also 

reviews two neural network methods – a conventional Artificial Neural Network (ANN) and 

the Wavelet ANN (WANN) proposed by [1] – that are used as benchmark methods for 

comparing forecasting performances in the application described in Section 4. 

It starts in Subsection 2.1 by describing the wavelet decomposition of level r, which is the 

algorithm adopted in initial step of the WARIMAX-GARCH method. This is followed in 

Subsection 2.2 by the introduction of the ARIMAX-GARCH models that are posteriorly 

employed to generate out-of-sample forecasts associated with the wavelet components (WCs) 



that are used as exogenous variables. Finally, Subsections 2.3 and 2.4 describe the ANN and 

the WANN forecasting methods, respectively.  

 

2.1 Wavelet decomposition of level r  

Let    be the collection of all scalar-valued complex infinite sequences   (   ) in    

such that ∑ |  |
 

   < , where   and   denote, respectively, the sets of all complex and 

integer numbers; and assume that the function 〈  〉 of    into   is the usual inner product (as in 

[12]). An element  ( )     – with 〈  〉 – is a    – wavelet function, if the sequence 

    ( )   
 

  (  ( )   ), where (   )   x , forms an orthonormal basis for   ; and a 

member  ( )     – with 〈  〉 – consist of a   -scaling function, if the sequence  

    ( )   
 

  (  ( )   ), where (   )   x , holds: 〈      ( )     ( )〉   , whenever 

     and     ; and, if otherwise, 〈      ( )     ( )〉   , where             (see e.g. 

[13] and [14]). Based on [15], it can be seen that the subset {    ( )}{     
    

 {     
( )}

   
 

of   -wavelet and   -scaling functions, where    is a fixed integer value, is, in fact, an 

orthonormal basis for   . Accordingly, any sequence   (   ) in    can be orthogonally 

decomposed, in terms of an orthonormal basis {    ( )}{     
    

 {     
( )}

   
, as 

represented by 

 

         
 ∑      

  
    

 ,                                            (1) 

     

where       
  ∑            

( )    is the WC of approximation at level    of the state   , 

with       〈        
( )〉; and        ∑           ( )    is the WC of detail at level   

of   , with       〈       ( )〉. The orthogonal decomposition in (1) is usually called a 

wavelet decomposition. 

Tautologically, any finite (scalar-valued complex) time series    (       ) can be 

interpreted as an infinite sequence    (   )  in   , defined as      , if   {       }; and 

    , if     {      }. Therefore, any finite time series    (       ) can be 

orthogonally decomposed by the wavelet decomposition in (1). 

In practical terms, once it is impossible to model separately all WCs generated by the 

expansion (1), an adaptation is required to obtain a finite number of components. Thus, 

according to [16], a good alternative may occur thoroughly by means of the wavelet 

decomposition of level r of    (       ), where     and    , is given by 

 

              ̃     
 ∑  ̃    

   (   )
    

   , (2) 

 

where    is the level parameter (which is often assumed to be equal to r);     is the 

approximation error term, that is, the difference between the state    and its (wavelet) 

approximation  ̃     
 ∑  ̃    

   (   )
    

 (nevertheless, in practice, it is usually assumed that 

     is equals zero);  ̃     
 ∑            

( )
       
    and  ̃     ∑          ( )

 (    )  
   , 

which are, respectively, WCs of approximation at level    and of detail at level   and 

consist, respectively, of the approximations to       
 and      , in (1); and   is a parameter 

that takes an integer value such that      . If T is not an integer power of 2, the sequence 

   (       ) is usually completed with zeros such that its length T is increased up to the 



next integer power of 2. This procedure may be carried out because the zeros added up do not 

affect the calculation of the WCs  ̃     
 and  ̃     generate in (2) (see e.g. [17]), preserving 

the auto-correlation    and its components, in (2), for all t, where        . 

After obtaining the     WCs in (2), that is,  ̃     
 and  ̃    (    , ...,    (   )), 

they are individually modeled by an adequate ARIMA-GARCH model in order to produce 

their out-of-sample forecasts. Finally, the mentioned forecasts complete the WCs in (2), 

providing the WEVs to be used as exogenous variables by ARIMAX-GARCH models as 

described in the following section. 

Note that the WEVs were not modeled individually by ARIMA models as those models 

cannot map non-linear auto-dependence that is often present in the WCs. Further to that, the 

WCs of detail usually present conditional heteroscedasticity (as is the case of the time series 

modeled in this paper). Therefore, ARIMA-GARCH models have been chosen for mapping 

both linear and non-linear effects in the WCs and obtain more accurate in-sample and out-of-

sample forecasts of the WCs, in particular of the detail WCs. Consequently, the in-sample and 

out-of-sample forecasts that can be interpreted as aggregators of information from different 

sources (namely, the different     ARIMA-GARCH models used to model the WCs) to the 

original time series will contain both linear and non-linear information. 
 

2.2 The ARIMAX-GARCH model 

Let    (       ) be a stationary time series (or a non-stationary time series that can be 

transformed into a stationary one) that exhibits linear auto-dependence. Also, assume 

((    )   

 
   ( (   )  )   

 
) denotes a list of      vectors of realizations from     

stationary exogenous variables of    (       ). Based on [4] and [5], each realization    

can be represented by an ARIMAX (p, d, q) model, with the mathematical formulation: 

 

      
 
 ∑  

 
    

 
    ∑        

 
    ∑ ∑             

  
    

   
      ,    (3) 

 

where B is the backward operator defined by          , with k belonging to  ;  

   (   )  is the difference operator, with d representing its order; ( 
 
)
   

 
 and (  )   

 
 are 

the ordered lists of model complex parameters, with  
 
   and     , and (    )    

  
 is the 

ith ordered list of complex model parameters associated with the exogenous component (these 

three lists of parameters need to satisfy both the invertibility and the stationarity conditions - 

see e.g. [18] and [19]);    is an innovation consisting of a state of the random variable    from 

an uncorrelated stochastic process with zero mean; p and q are, respectively, the orders of the 

Auto-Regressive (AR) part ∑  
 
    

 
    (AR(p)) and of the Moving Average (MA) part 

∑       
 
    (MA(q)); and,    is the maximum lag order in the sum ∑          

  
     of the 

exogenous variable     , with       (   ). Particularly, if       , for all       (  

 ) and all   =0…,   , then the model in (3) above becomes a conventional ARIMA (p, d, q). 

Note that, a SARIMAX (p, d, q) x (     )  model - also known as a multiplicative 

ARIMAX (p, d, q) model – can be used for modeling a seasonal time series (as in [18]). It 

generically consists of an ARIMAX model with seasonal components (please, see Section 3 

for details). 

In equation (3) above, it is assumed that the innovation term    is a realization of an 

uncorrelated random variable   , with zero mean and constant conditional variance, that is, 

  
    , for all t. However, many time series do not satisfy this stationarity condition (called 



homoscedasticity). In some cases, the changing conditional variance (volatility) may depend 

on past squared innovations of the time series or past values of the variance itself such that an 

ARMA structure, as well as an extension of it, can be adopted for temporally projecting the 

volatility. This way, unconditionally, the variance is constant, but conditional on past values it 

is allowed to change in time. According to [20], the general GARCH ( ,  ) model for the 

conditional variance   
  of the innovation    is given by 

 

  
   

 
 ∑  

 
 
       

 +∑      
  

   , (4) 

 

where the following constraints must hold: ∑  
 

 
   +∑      

   ;  
 
  ;  

 
   (       ) 

and      (       ). Equation (4) is used by the WARIMAX-GARCH method to 

generate in-sample and out-of-sample forecasts of the conditional variance of the time series 

   (       ). In addition,   
  multiplied by a parameter   can be used in (3) to account for 

a non-linear effect to construct the forecasting of its level (conditional mean). Notice that the 

generating mechanism for a GARCH innovation process    (       ) is defined by  

       , where:    is a realization of a standardized, independent and identically distributed 

random variable   ; and   is the conditional standard deviation. 

A model compounded by (3) and (4), which accounts for the above mentioned constraints, 

is called an ARIMAX-GARCH model. In order to obtain the best possible ARIMAX-

GARCH model, three basic steps should be carried out: (i) test the plausible values for the 

parameters  

p, d, q and   , in (3), as well as the parameters   and   in (4) (which can be obtained through 

the profile analysis of the plots of simple and partial auto-correlation functions of the ordinary 

standard innovations    (       ) and the squared standard innovations   
  (       ), 

as described by [20] and [6]; (ii) define the method to be used to estimate the ARIMAX-

GARCH parameters - the most common is the Maximum Likelihood Estimation (MLE) 

method (as in [18]); and, (iii) make a diagnostic check to choose the most parsimonious and 

adequate model to be used for generating both the in-sample and the out-of-sample forecasts 

of    (       ) and their volatilities. 

It is worth pointing out that similarly to the way that the h-steps ahead out-of-sample 

forecasts of conditional means are produced (for instance, through an estimated ARIMAX 

model), the h-steps ahead forecasts of conditional variances (volatilities) are generated by 

means of an estimated GARCH model (or an extension of it). For more details, please see 

[18], wherein a GARCH-in-mean model produces out-of-sample forecasts of volatilities and 

employs them in the construction of the forecasts for the corresponding conditional means. In 

fact this approach aims to aggregate non-linear information (coming from the squared auto-

dependence exhibited by a given time series) from the forecasts of the conditional means in 

order to increase its predictive accuracy. Note that the WARIMAX-GARCH method 

proposed here can adopt any GARCH approach to forecast volatilities.  

 

 

2.3 Artificial Neural Networks 

Artificial Neural Networks (ANNs) are well known to be flexible computing frameworks 

for modeling and forecasting a broad range of stochastic time series exhibiting either linear or 

non-linear auto-dependence structures. Contrary to many linear statistical forecasting models, 

stationarity is not required by ANN methods (see e.g. [1]). Another important aspect of ANNs 

is that they are universal approximates of compact (i.e., closed and bounded) support 

functions, as showed in [21]. In effect, since observations from a time series    (       ) 
that exhibit dependency on past values may be seen as points of the domain of an unknown 



compact support function, it follows that the ANNs are capable of approximating them (for 

modeling or forecasting) with a high degree of accuracy. According to [22], the predictive 

power of ANNs comes from the parallel processing of the information exhibited by the data. 

In addition, AAN models are largely determined by the stochastic characteristics inherent in 

the time series.  

In this context, the feed-forward multi-layer perceptron ANNs (see e.g. [23]) are the most 

widely used neural prediction models for time series forecasting. Particularly, a single hidden 

layer ANN (henceforth, for simplicity, referred to as ANN) is characterized by an artificial 

network composed by three layers (namely, input, hidden an output layers) of simple 

processing units numerically connected by acyclic links. The relationship between the output 

   and the L-lagged inputs,      (       ), has the following mathematical representation 

 

      ∑     (    ∑         
 
   )    

 
    ,     (5) 

 

where    (         ) and     (                     ) are the ANN parameters, 

called connection weights;   is the number of input nodes;   is the number of hidden nodes; 

   is the approximation error at time t; and  ( ) is the transfer function, here, a logistic 

function - although it is possible to adopt other functions (see e.g [23]). The logistic function 

is widely employed as the hidden layer transfer function in neural network forecasting and is 

mathematically defined by 

 

 (  )  
 

      (   )
  ,         (6) 

 

where         ∑         
 
    and     ( ) is the exponential function with Euler’s basis (as 

in [23]). Due to  ( ) being a non-linear transfer function, the ANN model in (5), in fact 

performs a non-linear mapping of the past observations      (       ) to produce a 

forecast for   . In general, the model in (5) can be rewritten, as 

 

    (                  )      ,                             (7) 

 

where   denotes a vector of all ANN parameters and  (                  ) is the model 

determined by the network structure and the connection weights in (5). Note that the neural 

network as defined above is equivalent to a non-linear auto-regressive model.  

In practice,   is unknown and hence needs to be numerically determined. So, in order to 

find its estimated value,  ̂, that accounts for some criteria (an objective function), an 

optimization algorithm is applied to training data. Although there are several methodologies 

available in the literature, we adopt, in line with [23], the Levenberg-Marquardt’s algorithm. 

The minimization of the in-sample sum of squared errors (i.e.,      ∑   
  

   ) is the 

numerical criteria of this ANN. Once  ̂ is determined we have that  

 

    (                  ̂)   ̂                                                    (8) 

 

with  (                  ̂)   ̂  consisting of the optimized ANN outcome at time t, 

which is the forecast of the state   , and  ̂  being the forecasting error of  ̂ . 

 

2.4 Wavelet Artificial Neural Networks 

There is currently a number of distinct wavelet decomposition methods combined with 

ANNs (referred to as wavelet ANNs) that are used for time series forecasting and achieve 



remarkable accuracy gains. In fact, there are several studies showing the predictive accuracy 

gains achieved by wavelet ANN methods such as in [24], [25], [26] and [1] amongst others. 

Nevertheless, due to the remarkable results achieved in their experiments involving the 

forecast of the non-stationary solar radiation time series, the [1]’s wavelet ANN method 

(henceforth referred to as wavelet ANN method) was chosen to be used as a benchmark 

method in this paper. 

For a time series    (       ), the wavelet ANN method is carried out in two steps: 

  

Step 1: a wavelet decomposition of level   (as in Section 2.1) of    (       ) is 

performed, producing 1 WC of approximation at level   , denoted by  

       (       ), where     , and   WCs of detail at levels   ,     , …,  

   (   ), denoted by       (       ), respectively, where    ; and 

 

Step 2: The WCs from Step 1 are simultaneously modelled through the ANN 

described in Section 2.3 producing forecasts similarly to (8), as follows: 

    (           
           

      (   )
      ̂)   ̂                        (9) 

 

where           (           
      ) and         (               ), notice that 

    ,     , …,    (   ) are the input data. Similarly to the ANN in (8), 

the optimal solution  ̂ in (9) is obtained via Levenberg-Marquardt’s algorithm such 

that      ∑   
  

    is determined. The forecast of    is 

(           
           

      (   )
      ̂)   ̂ , and  ̂  is the forecasting error of  ̂  

(please, see [1], for more details). 

 

3. The WARIMAX-GARCH method 

 

The ARIMAX-GARCH model requires that EVs are available to be used. In cases, where 

EVs are not available, an ARIMA-GARCH model can be used but at the expense of a likely 

lower predictive accuracy. The WARIMAX-GARCH method defined below aims to, at least 

in part, address this problem. The general steps, mentioned at the end of Section 1, are 

described in more detail as the following five steps. 

 

Step 1: a wavelet decomposition of level r (described in Section 2.1) of the underlying 

time series    (       ) is performed, generating     WCs. That is, one WC of 

approximation at level   , denoted by  ̃   
  (       ), and r WCs of detail at 

levels from    to     (   ), denoted by  ̃    (       ) for m=m0, …, m0+(r-

1); 

 

Step 2: each WC obtained in Step 1 is individually modeled by using a distinct 

ARIMA-GARCH in order to generate their out-of-sample forecasts; 

 



Step 3: the WCs of the Step 1 are completed by their out-of-sample forecasts (of 

horizon h) of the Step 2, producing the Completed WCs (CWCs) consisting of the 

wavelet EVs (WEVs). Algebraically, they are given by the data sets below:  

 

  ̃    
     or      (                 ) consist of the CWC of 

approximation at level    of    (       ) and is such that:  ̃    
     

 ̃    
  , if        ; and  ̃    

      ̂    
  , if             - 

where  ̂    
   represents the out-of-sample forecast at instant t generated by 

an ARIMA-GARCH in Step 2; 

 

   ̃       or      (                 ), where i=2,…, r+1, consists of 

the CWCs of the detail at level  , where         (   ), of 

  (       ) and is such that:  ̃        ̃    , if        ; and 

 ̃        ̂    , if             - where  ̂     denotes the out-of-

sample forecast at time t produced by an ARIMA-GARCH in Step 2. 

 

Step 4: the     CWCs generated in Step 3 are treated as     wavelet exogenous 

variables by the following WARIMAX-GARCH (p, d, q) x (P, D, Q) model to 

generate in-sample and out-of-sample forecasts to the level and the conditional 

variance of    (       ), as well as their predictive intervals, under the assumption 

of Gaussian innovations out of sample. 

 A WARIMAX-GARCH (p, d, q) x (P, D, Q) model is mathematically defined by (10) 

and (11) below as 

 

 ( )  (  )      
         

  
   ( ̃    

    ) ∑      ̃      
   (   )
    

     
 

  

  ( )  (  )        
 ,                                       (10) 

 

where the components  ( ):=(   
 
     

 
  ),  ( )  (        

   
 ),    (   ) ,   

  (    ) ,  (  )  (     
       

  ) and 

 (  ):=(     
       

  ), are the polynomials associated with a 

conventional SARIMA(p, d, q) x (P, D, Q) model;   is the parameter linearly 

associated with the conditional variance   
 ;     

 and      
 are the parameters 

linearly associated with  ̃   
     and  ̃      , respectively. In turn,  ( ) is either the 

identity or a logarithmic function - which is very useful, in many cases, to turn the 

level of a time series constant (as in [18]) as well as to improve forecasting 

performance. Finally,   , for     and    , is the difference operator associated 

with the WEV  ̃    
      



(       ) that (as in [18]) can be used to generate a new time series with constant 

mean. It is worth pointing out that    and    can assume different orders when one is 

searching for the optimal model.  

Concerning the parameters of the WARIMAX part, they require assumptions similar 

to those required by the parameters of the conventional ARIMAX and are estimated 

here by Maximum Likelihood method. In order to obtain the model’s conditional 

variance for    (       ), the WARIMAX-GARCH model uses its GARCH (   ) 

component, which is, in the strict sense, given by 

  
     ∑       

  
   +∑       

  
   ,                                          (11) 

 

where        , with    being the realization of a standardized, independent and 

identically distributed random variable    and    the conditional standard deviation. 

 

Step 5: once the collection of in-sample and out-of-sample forecasts 

  ̂  (                 ) of the level of    (       ), as well as of their 

volatilities  ̂ 
 (                 ) are determined, the prediction intervals 

[ ̂       ̂     ] (                 ), with any 1-  level of confidence, 

under the assumption of Gaussian innovations, can be determined straightforwardly. 

The inferior limit  ̂      and the superior limit  ̂      of the prediction intervals at any 

time t are, respectively, defined by  ̂       ̂   ̂ 
   

 
 and  ̂       ̂   ̂ 

   

 
, 

where   

 
 represents a state of a random variable    associated with  .  

 

Note that although wavelet methods are applicable to non-stationary and/or non-linear time 

series (as in [14]), all WEVs of a WARIMAX-GARCH model should be stationary to satisfy 

this requirement of the ARIMAX modelling approach. However, non-stationary WEVs 

formatted by the WC of approximation  ̃    
     (       ) and its lagged versions, can be 

made stationary via differencing with the use of the back shift operator    and/or by 

transforming with the mapping  ( ) associated with the component, as is usually done in 

ARIMA modelling when the original series is non-stationary. 

Also note that, WEVs consisting of WCs of detail, as well as their stationary versions, are 

always stationary in level such that a difference operator     in (5) is applied just to help 

achieve improved forecasting performances and/or obtain a plausible model. In fact, 

according to [14], a wavelet function at level  ,     ( ), consists of a short duration curve 

which image values have zero mean. Furthermore, a Wavelet Component (WC) of detail at 

level  ,  ̃     (       ), is mathematically defined by a linear combination of wavelet 

functions at level   such that  ̃     ∑          ( )
 (    )  
   , for each time t, where 

       . Similarly to     ( ), a WC of detail  ̃     takes values around zero; from the 

statistical point of view, it means that  ̃     exhibits stationarity in the conditional mean 

(level). Now, based on [14], since   is a fixed parameter associated with the spectral 

frequency of  ̃    , it follows that its conditional variances (or volatilities) have stationary 

stochastic fluctuation. Therefore, a WC of detail at level   will always be stationary. 

 



4. Empirical results 

 

In this section, the main results of an application of the WARIMAX-GARCH method to a 

daily time series of the Itaipu dam displacement measures is described. For comparative 

purposes, ARIMA-GARCH models, as well as an ANN and a Wavelet ANN method (as in 

[1]) were also applied to the displacement series. In Section 4.1, the series is described and an 

initial statistical analysis conducted to justify the selected models. In Section 4.2, the 

ARIMA-GARCH models to be applied to the displacement series are identified. Section 4.3 

shows the five basic steps of the applied WARIMA-GARCH method together with the main 

statistical tests used for its validation. Section 4.4 concludes with a comparative analysis 

showing the effectiveness of the proposed method in terms of forecasting performances 

relative to the ARIMA-GARCH, ANN and Wavelet ANN models. 

 

 

4.1 The daily series of Itaipu dam displacement 
 

A time series of physical displacement of the dam that supplies the Itaipu hydroelectric 

plant in southern Brazil is modeled due to its relevance and statistical properties. The Itaipu 

dam is the world’s most powerful dam with a length of 170 Km and an average width of 7 

Km, reaching an area of 1350 Km
2
, and allowing electricity generation in excess of 90 billion 

KWh. It supplies 93% of the energy consumed by Paraguay and 20% of the Brazilian 

consumption. Please refer to http://www.aboutcivil.org/itaipu-dam-design-construction-

facts.html for more information about the Itaipu dam. Monitoring and forecasting the dam’s 

physical displacements allow engineers to take corrective actions to prevent structural damage 

and accidents that can lead not only to interruptions of electricity generation but also to 

failures of more serious consequences. The data in this application come from automatic 

measurements of displacement taken at daily intervals in the period from 28
th

 October 2005 to 

24
th

 October 2012. Figure 2 shows the time plot of the corresponding 2554 daily observations. 

The initial 2506 observations were used as in-sample training and the last 48 observations 

were used as out-of-sample for model testing. Note that there were no exogenous variables, 

such as dam levels and water pressure measurements, available for use in the application. In 

fact, there is no other data available (of enough quality) than the dam displacement time series 

that could be used in the modeling process. 

 
Figure. 2. The daily time series of dam displacement at the Itaipu electricity plant.  
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It can be seen from Figure 2 that there are both high and low frequency oscillations in the 

displacement data. Although a seasonal ARIMA model can capture the low-frequency 

variations, it would not be able to deal with the high-frequency ones at all. A WARIMAX-

GARCH model however can model the high-frequency oscillations in the underlying series 

time through the ARIMA-GARCH models integrated with the wavelet decomposition 

approach. 

An Augmented Dikey-Fuller (ADF) unit root test was conducted and did not reject, at 1% 

significance level, the hypothesis of non-stationarity of the displacement data. Nevertheless, 

the ADF strongly rejected non-stationarity, at 1% level, of the purely log-transformed version, 

as well as tautologically of the second difference of the log-transformed series. The second 

difference here was not used to get stationarity, but also for reaching improved accuracy 

gains. The simple and partial auto-correlation functions relative to this last one, as well as its 

squared version, showed significant values, at 1% level – what supports the choice of an 

ARIMA and GARCH modeling. Therefore, since there were no conventional exogenous 

variables available to be used by the ARIMAX-GARCH model in this application, it follows 

that an ARIMA-GARCH model was consider plausible for modeling process. 

The investigation conducted in this section generated multi-step in-sample and out-of-

sample (point and interval) forecasts from both an ARIMA-GARCH model (used as a 

benchmark model) and the WARIMAX-GARCH method. Residual diagnostics for statistical 

validation were conducted using augmented Dickey-Fuller unit root tests, Ljung-Box and 

Durbin-Watson tests for first order auto-correlation, as well as ACF and PACF plots, BDS 

tests to detect non-linear serial auto-correlations and ARCH tests for unconditionally constant 

residual variance (see e.g. [18]). The EViews 8 software was used to perform the tests above. 
 

4.2 The ARIMA-GARCH model  

An ARIMA (2, 1, 1) method integrated with the GARCH (2, 1) model (that is, an ARIMA-

GARCH (2, 1, 1) x (2, 1) model), with Generalized Error Distribution (GED) (see e.g. [27]), 

was identified to produce the best fit to the log-transformed double-differenced training 

sample of dam displacement,   
 
 (          ). The parameters of that model were 

estimated by MLE and were statistically significant at 1% level (as can be seen in Appendix 

A). 

Among all plausible models ARIMA-GARCH obtained from the training sample, the 

ARIMA-GARCH (3, 2, 4) x (2, 1) produce the more accurate forecasts to the level of the 

underlying time series, in terms of the in-sample MAPE and MAE. Note that the results of the 

Ljung-Box (Q-Stat) test applied to the standard residuals of ARIMA-GARCH (3, 2, 4) x (2, 

1), shown in Figures 3 and 4, suggest that there is no significant linear auto-dependence (at 

1% level) in both the ordinary and the squared standard residuals up to lag 36 (corresponding 

to three years). In addition, an ARCH test was also conducted and confirmed that there is no 

significant auto-correlations in the residual variance (at 1% level) from lags 1 to 36. 

Furthermore, the calculated Durbin-Watson statistic of 2.092367 suggests there is no 

significant auto-correlation of lag 1 in the ordinary standard residuals. Please see Appendix A 

for more detail of tests performed and to [18] for more information on the statistical 

techniques behind those tests. 

 



 
Figure. 3. ACF and PACF of ordinary standard residuals. 

 

 
Figure. 4. ACF and PACF of squared standard residuals. 

 
 

Table. 1. BDS test of in-sample ordinary residuals of the ARIMA-GARCH model. 

Dimensions BDS statistics p-values 

2 -3.22E-07 0.9840 

3 -9.65E-07 0.9785 

4 -1.93E-06 0.9743 

5 -3.22E-06 0.9707 

6 -4.83E-06 0.9675 
 

Table 1 shows the statistics and the corresponding p-values for dimensions 2 to 6 of a BDS 

test (which consists of a statistical test used to verify the existence of linear and non-linear 



auto-dependence existing in a data set (see e.g. [28])) applied to the in-sample residuals of the 

ARIMA-GARCH (3, 2, 4) x (2, 1) model. According to those p-values it is possible to 

conclude that there is no evidence at 1% level of significance, in all five dimensions, of both 

linear and non-linear auto-dependences in the in-sample forecasting errors. In particular, the 

linear and squared auto-dependences previously present in the forecasting residuals have been 

properly mapped by the ARIMA-GARCH models specified above. Therefore, the in-sample 

forecasting residuals can be considered as a white noise process with zero mean. 

It is worth mentioning that model selection among all identified plausible ARIMA-

GARCH models was determined by comparing the forecasting performances of each 

candidate model as measured by their Absolute Percentage Error (APE), Mean Absolute 

Percentage Error (MAPE), Mean Absolute Error (MAE) and   . The selected best model, the 

one with the smallest APE, MAPE and MAE and with the largest R
2
, is described in the 

following section. 

 

4.3 The WARIMAX-GARCH model 

The first step of the WARIMAX-GARCH method was implemented in MATLAB (version 

2013a). A wavelet decomposition of level 2 was obtained from the training sample of the dam 

displacement data. The plots of the WCs, with orthonormal basis db40 (as described in [29]), 

can be seen in Figure 5. 

 

 
(a) WC of approximation at level 2,  ̃     

(          ). 
 

 

 

(b) WC of detail at level 2,  ̃    
(          ). 

 

 

 

(c) WC of detail at level 3,  ̃    
(          ). 

 

Figure. 5. WCs from the training sample of the dam displacement data set. 
 

Recall from (2) that, for this application,     ̃      ̃     +  ̃       (          ), 

where   is a null error (that is,    ). In Step 2 of the WARIMAX-GARCH method, each 

one of the WCs  ̃    ,  ̃     and  ̃     (          ) were individually modeled by three 

different ARIMA-GARCH models (which details are shown in Appendix B), providing the 

sequence of the out-of-sample forecasts to their respective levels, namely  ̂    ,  ̂     and  



 ̂     (             ). The forecasting horizon was chosen as      (i.e., 48 days-

ahead). All estimated parameters of the three models were statistically significant, at 1%, and 

the residual diagnostics confirmed their plausibility (as shown in Appendix B). 

In Step 3, the three CWCs  ̃      ,  ̃       and  ̃       (or       and   , respectively) 

consist of the WEVs generated from the dam displacement series. As mentioned before, they 

are easily obtained by filling in the WCs with their out-of-sample forecasts produced in the 

Step 2. Algebraically, it means that 

I.       ̃       (( ̃    )   

    
 ( ̂    )      

    
); 

II.       ̃       (( ̃    )   

    
 ( ̂    )      

    
); and 

III.       ̃       (( ̃    )   

    
 ( ̂    )      

    
). 

In Step 4, using the WEVs      (       ) (          ), the WARIMAX-GARCH 

model was adjusted and then used to generate 48-steps-ahead forecasts to the level and the 

conditional variance of the underlying series. Algebraically, the forecasting formulation of the 

best WARIMAX model obtained is given in (12). 

 

(   
 
     

 
  )    (           

 )    ∑   ̃                  
 
    

  ̃                      ̃                        
 .                    (12) 

 

In Appendix B, the estimated WARIMAX model above together with its main statistics 

can be seen in more detail. Note that all three WEVs,     ,      and     , were required in the 

best WARIMAX model above. In addition, the volatility   
  provides a non-linear effect to 

represent the state   . Also, the best GARCH model was a GARCH (1, 1) with GED 

distribution, with the following algebraic formulation 

 

  
            

 +       
 . 

 

Its estimates and main statistics can also be seen in Appendix B. The MLE method was 

used to obtain all estimates of the best WARIMAX-GARCH model parameters. Appendix C 

shows that all estimates are statistically significant, at 1%.  

Figures 6 and 7 show, respectively, the ACF and the PACF (from lags 1 to 36) of both the 

ordinary and the squared standard residuals from the estimated WARIMAX-GARCH model. 

Note that all estimated ACF and PACF fall within the 99% confidence intervals suggesting 

those values were all non-significant. The Ljung-Box (Q-Stat) statistics on those figures also 

suggest there are no significant linear auto-dependences (at 1% level) in the in-sample 

ordinary and squared standard residuals of the WARIMAX-GARCH model. Also, note the 

ARCH test, (Prob) in Figure 7, confirmed there is no ARCH effect in the forecasting 

residuals. The Durbin-Watson statistic was 2.026328 confirming the lack of first-order auto-

correlation of those in-sample standard residuals (please see Appendix C for more details). 

 

 

 



 
 

Figure. 6. ACF and PACF of ordinary standard residuals.  

 

 
 

Figure. 7. ACF and PACF of squared standard residuals. 

 
 

Table. 2. BDS test of in-sample ordinary residuals of the WARIMAX-GARCH model. 

Dimensions BDS statistics p-values 

2 -3.22E-07 0.9840 

3 -9.65E-07 0.9785 

4 -1.93E-06 0.9743 

5 -3.22E-06 0.9707 

6 -4.83E-06 0.9675 

 

Based on the p-values in Table 2, it can be concluded that there is no strong evidence (at 

1% level) of both the linear or non-linear auto-dependence structure in the in-sample ordinary 



standard residuals in all dimensions. Particularly, the linear and squared auto-dependence 

previously structures existing in them have been properly mapped by the adopted 

WARIMAX-GARCH model above. Therefore, the in-sample forecasting residuals can be 

considered as a white noise process with mean of zero, validating the WARIMAX-GARCH 

model. 

 

4.4 ANN and WANN methods 

As for the ANN and WANN methods, an iterative computational algorithm was used to 

test values for the ANN and WANN parameters and to choose their optimum values. The 

tested ANN parameters were the number of window lengths (  ) (i.e.,          ), of 

neurons ( ) in hidden layer (i.e.,        ) and, in the case of Wavelet ANN method, of 

the null moments (  ) of the Daubechies wavelet functions (as in [14]) for each WC,  

(i.e.,          ). In order to avoid excessive processing time, the following parameters 

were kept as fixed: premnmx normalization (as in [23]); one hidden layer; hyperbolic tangent 

and linear activation functions at the hidden and output (endowed with one neuron) layers, 

respectively; Levenberg-Marquardt training algorithm (for details about the mentioned ANN 

parameters, please, see [23]); and, in the case of Wavelet ANN method,     (i.e., wavelet 

decomposition of level 2), following the [1]’s approach. So, Table 3 exhibits the obtained 

optimal parameters of both the ANN and WANN methods.  

 

Table. 3. Optimal ANN and WANN parameters.  

METHOD Parameters Optimal values Wavelet Component 

 

ANN 
   4 - 

  2 - 

    

Wavelet ANN 

   6 Approximation at 

level 2   3 

   1 

   2 Detail 

at level 2   2 

   1 

   2 Detail 

at level 3   3 

   1 

 

 

4.5 Comparative of forecasting performances 

Table 4 shows the MAPE and the MAE statistics for the in-sample and the out-of-sample 

forecasting performances of the three benchmark methods (namely, the ARIMA-GARCH, 

ANN and WANN approaches) and the WARIMAX-GARCH models. The optimal ARIMA-

GARCH model obtained in Section 4.3 is an ARIMA-GARCH (3, 2, 4) x (2, 1). 

It can be seen from the results in Table 4 that the WARIMAX-GARCH method had 

smaller MAPE and MAE values, and thus, better performances than the ARIMA-GARCH, 

ANN and WANN models both for the in-sample and out-of-sample periods. In particular, the 

WARIMAX-GARCH method produced greater improvements in out-of-sample forecasting 

performances, with 0.899% of MAPE and 0.1065 of MAE against 1.840% of MAPE and 

0.2216 of MAE for the best benchmark method - i.e., WANN model (an improvement in 

excess of about 52% in both counts). It appears from those results that the use of WCs implied 

in significant forecasting performance improvements both in-sample and (in particular) out-



of-sample. In other words, the WARIMAX-GARCH has better modeled the dynamics of the 

referred time series and produced better forecasts than the WANN method. 
 

Table. 4. The in-sample and out-of-sample forecasting performances.  
METHODS MAPE MAE 

In-sample Out-of-sample In-sample Out-of-sample 

WARIMAX-

GARCH 

0.300% 0.899% 0.0338 0.1065 

ARIMA-GARCH 

(benchmark I) 

0.398% 5.324% 0.0448 0.6368 

ANN 

(benchmark II) 

0.425% 

 

2.247% 

 

0.0474 

 

0.2710 

 

Wavelet ANN 

(benchmark III) 

0.438% 

 

1.840% 

 

0.0495 

 

0.2216 

 

 

Figure 8 shows the plot of the Absolute Percentage Errors (APEs) calculated for the out-of-

sample forecasts at each step-ahead by both models. Note that the WARIMA-GARCH model 

not only had lower APEs than the ARIMA-GARCH model for each step-ahead forecast from 

1 to 48, but also produced comparatively better forecasts for larger steps-ahead. In fact, while 

the forecasting errors of the ARIMA-GARCH model showed a positive trend (growing from 

just under 1% to about 9%) the WARIMAX-GARCH showed fluctuations along the 1% line 

with increases in the forecasting horizon. Appendix B shows other plots of the temporal 

evolution of out-of-sample observations and the respective forecasts from both methods to 

support the conclusion that, in fact, the WARIMAX-GARCH model has a better power of 

generalization. 

 

 

Figure. 8. Comparison of temporal evolution of APEs obtained from the WARIMAX-

GARCH and ARIMA-GARCH methods. 

 

Figure 9 also exhibits the plot of APEs calculated for the out-of-sample forecasts at each 

step-ahead by both methods. From step 20, it can be seen that the WARIMAX-GARCH 

method has obtained remarkably better forecasting accuracy than the Wavelet ANN (the 
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second best method), accounting for the best forecasting performance amongst all the 

benchmark methods in Table 4.  

Note that, similarly to the ARIMA-GARCH model, the WANN method have lost accuracy 

for larger forecasting horizons, while the WARIMAX-GARCH has retained its forecasting 

performance.  

 

 

Figure. 9. Comparison of temporal evolution of APEs obtained from the WARIMAX-

GARCH and WANN methods.  

 

Figures 10 (a) and (b) show the plots of the actual observed displacements together the 

point forecasts and associated 99% upper and lower forecasting limits by (a) the ARIMA-

GRACH model and (b) the WARIMAX-GARCH method. Notice that in Figure 10 (a) the 

forecasts by the ARIMA-GRACH model were all larger than the observed values at each 

time, however all within the 99% prediction intervals. 

On the other hand, in Figure 10 (b), the forecasts by the WARIMAX-GARCH method 

tracked the trend in displacement more closely and also were all within the 99% prediction 

intervals which limits were much smaller than those of the ARIMA-GARCH model. That is, 

the variance of the predictive density from WARIMAX-GARCH was lesser. This plot also 

shows the dynamics of the forecasts produced by the WARIMAX-GARCH method that tried 

to project the oscillations of the displacements into the ‘future’. 
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(a) ARIMAX-GARCH Method. 

 

(b) WARIMAX-GARCH method. 

Figure. 10. Forecasts (with prediction intervals) and observed displacements.  

 

In terms of the    coefficient, which is used to measure the amount of variation in the time 

series that is explained by the estimated method, the ARIMA-GARCH model had  
            and the WARIMAX-GARCH method had            . Those results 

show the WARIMAX-GARCH explained approximately 99.72% of the variations in the time 

series of Itaipu dam displacements, while the ARIMA-GARCH only explained 36.14%. 

 

5. Conclusions 

In this paper, a new causal forecasting method called the WARIMAX-GARCH method is 

proposed that incorporates wavelet variables (obtained from wavelet decomposition of the 

underlying series) treated as exogenous variables incurring in substantial improvements in 
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forecasting performances over traditional ARIMA-GARCH, ANN and Wavelet ANN models. 

The incorporated wavelet components have good statistical properties to be used as 

exogenous variables by the WARIMAX-GARCH method. For instance, the detail 

components are always a second-order stationary process (usually required from exogenous 

variables that integrate a linear statistical regression model) and also always exhibit 

conditional variance (volatility) – similarly to a number of the financial time series (see e.g. 

[6]) – that enables nonlinear effects to be accounted for in the final model. Also, the 

approximation wavelet component can always be modeled by an ARIMA-GARCH model 

whenever the original underlying time series can also be. Furthermore, it can be easily seen 

that WCs always show strong correlations with the response variable they are obtained from.  

The proposed method was applied to a daily time series of dam displacement in southern 

Brazil. Comparative results against the ARIMA-GARCH model showed the WARIMAX-

GARCH method not only to produce significantly improved point forecasting performances 

but also improved predictive accuracy as measured by the prediction intervals that are 

straightforwardly operationally obtained. In addition, the WARIMAX-GARCH model has 

achieved considerably better forecasting performance than both the ANN and Wavelet ANN 

methods in the Itaipu dam displacement application.   

This methodology has also been applied to other time series with similar results and will be 

subject of a future publication. 
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