148,913 research outputs found

    Theory and Applications of Robust Optimization

    Full text link
    In this paper we survey the primary research, both theoretical and applied, in the area of Robust Optimization (RO). Our focus is on the computational attractiveness of RO approaches, as well as the modeling power and broad applicability of the methodology. In addition to surveying prominent theoretical results of RO, we also present some recent results linking RO to adaptable models for multi-stage decision-making problems. Finally, we highlight applications of RO across a wide spectrum of domains, including finance, statistics, learning, and various areas of engineering.Comment: 50 page

    A decomposition strategy for decision problems with endogenous uncertainty using mixed-integer programming

    Full text link
    Despite methodological advances for modeling decision problems under uncertainty, faithfully representing endogenous uncertainty still proves challenging, both in terms of modeling capabilities and computational requirements. A novel framework called Decision Programming provides an approach for solving such decision problems using off-the-shelf mathematical optimization solvers. This is made possible by using influence diagrams to represent a given decision problem, which is then formulated as a mixed-integer linear programming problem. In this paper, we focus on the type of endogenous uncertainty that received less attention in the introduction of Decision Programming: conditionally observed information. Multi-stage stochastic programming (MSSP) models use conditional non-anticipativity constraints (C-NACs) to represent such uncertainties, and we show how such constraints can be incorporated into Decision Programming models. This allows us to consider the two main types of endogenous uncertainty simultaneously, namely decision-dependent information structure and decision-dependent probability distribution. Additionally, we present a decomposition approach that provides significant computational savings and also enables considering continuous decision variables in certain parts of the problem, whereas the original formulation was restricted to discrete variables only. The extended framework is illustrated with two example problems. The first considers an illustrative multiperiod game and the second is a large-scale cost-benefit problem regarding climate change mitigation. Neither of these example problems could be solved with existing frameworks.Comment: 26 pages, 10 figure

    Multi-stage stochastic optimization and reinforcement learning for forestry epidemic and covid-19 control planning

    Get PDF
    This dissertation focuses on developing new modeling and solution approaches based on multi-stage stochastic programming and reinforcement learning for tackling biological invasions in forests and human populations. Emerald Ash Borer (EAB) is the nemesis of ash trees. This research introduces a multi-stage stochastic mixed-integer programming model to assist forest agencies in managing emerald ash borer insects throughout the U.S. and maximize the public benets of preserving healthy ash trees. This work is then extended to present the first risk-averse multi-stage stochastic mixed-integer program in the invasive species management literature to account for extreme events. Significant computational achievements are obtained using a scenario dominance decomposition and cutting plane algorithm.The results of this work provide crucial insights and decision strategies for optimal resource allocation among surveillance, treatment, and removal of ash trees, leading to a better and healthier environment for future generations. This dissertation also addresses the computational difficulty of solving one of the most difficult classes of combinatorial optimization problems, the Multi-Dimensional Knapsack Problem (MKP). A novel 2-Dimensional (2D) deep reinforcement learning (DRL) framework is developed to represent and solve combinatorial optimization problems focusing on MKP. The DRL framework trains different agents for making sequential decisions and finding the optimal solution while still satisfying the resource constraints of the problem. To our knowledge, this is the first DRL model of its kind where a 2D environment is formulated, and an element of the DRL solution matrix represents an item of the MKP. Our DRL framework shows that it can solve medium-sized and large-sized instances at least 45 and 10 times faster in CPU solution time, respectively, with a maximum solution gap of 0.28% compared to the solution performance of CPLEX. Applying this methodology, yet another recent epidemic problem is tackled, that of COVID-19. This research investigates a reinforcement learning approach tailored with an agent-based simulation model to simulate the disease growth and optimize decision-making during an epidemic. This framework is validated using the COVID-19 data from the Center for Disease Control and Prevention (CDC). Research results provide important insights into government response to COVID-19 and vaccination strategies

    Optimal management of bio-based energy supply chains under parametric uncertainty through a data-driven decision-support framework

    Get PDF
    This paper addresses the optimal management of a multi-objective bio-based energy supply chain network subjected to multiple sources of uncertainty. The complexity to obtain an optimal solution using traditional uncertainty management methods dramatically increases with the number of uncertain factors considered. Such a complexity produces that, if tractable, the problem is solved after a large computational effort. Therefore, in this work a data-driven decision-making framework is proposed to address this issue. Such a framework exploits machine learning techniques to efficiently approximate the optimal management decisions considering a set of uncertain parameters that continuously influence the process behavior as an input. A design of computer experiments technique is used in order to combine these parameters and produce a matrix of representative information. These data are used to optimize the deterministic multi-objective bio-based energy network problem through conventional optimization methods, leading to a detailed (but elementary) map of the optimal management decisions based on the uncertain parameters. Afterwards, the detailed data-driven relations are described/identified using an Ordinary Kriging meta-model. The result exhibits a very high accuracy of the parametric meta-models for predicting the optimal decision variables in comparison with the traditional stochastic approach. Besides, and more importantly, a dramatic reduction of the computational effort required to obtain these optimal values in response to the change of the uncertain parameters is achieved. Thus the use of the proposed data-driven decision tool promotes a time-effective optimal decision making, which represents a step forward to use data-driven strategy in large-scale/complex industrial problems.Peer ReviewedPostprint (published version
    • …
    corecore