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ABSTRACT

MULTI-STAGE STOCHASTIC OPTIMIZATION AND
REINFORCEMENT LEARNING FOR FORESTRY EPIDEMIC AND

COVID-19 CONTROL PLANNING

by
Sabah Bushaj

This dissertation focuses on developing new modeling and solution approaches

based on multi-stage stochastic programming and reinforcement learning for tackling

biological invasions in forests and human populations. Emerald Ash Borer (EAB)

is the nemesis of ash trees. This research introduces a multi-stage stochastic

mixed-integer programming model to assist forest agencies in managing emerald ash

borer insects throughout the U.S. and maximize the public benefits of preserving

healthy ash trees. This work is then extended to present the first risk-averse

multi-stage stochastic mixed-integer program in the invasive species management

literature to account for extreme events. Significant computational achievements

are obtained using a scenario dominance decomposition and cutting plane algorithm.

The results of this work provide crucial insights and decision strategies for optimal

resource allocation among surveillance, treatment, and removal of ash trees, leading

to a better and healthier environment for future generations.

This dissertation also addresses the computational difficulty of solving one

of the most difficult classes of combinatorial optimization problems, the Multi-

Dimensional Knapsack Problem (MKP). A novel Two-Dimensional (2D) deep

reinforcement learning (DRL) framework is developed to represent and solve combina-

torial optimization problems focusing on MKP. The DRL framework trains different

agents for making sequential decisions and finding the optimal solution while still

satisfying the resource constraints of the problem. This is the first DRL model

of its kind where a 2D environment is formulated, and an element of the DRL

solution matrix represents an item of the MKP. The DRL framework shows that



it can solve medium-sized and large-sized instances at least 45 and 10 times faster in

CPU solution time, respectively, with a maximum solution gap of 0.28% compared

to the solution performance of CPLEX. Applying this methodology, yet another

recent epidemic problem is tackled, that of COVID-19. This research investigates

a reinforcement learning approach tailored with an agent-based simulation model to

simulate the disease growth and optimize decision-making during an epidemic. This

framework is validated using the COVID-19 data from the Center for Disease Control

and Prevention (CDC). Research results provide important insights into government

response to COVID-19 and vaccination strategies.
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CHAPTER 1

INTRODUCTION

Epidemics and more widespread biological infections called pandemics are situations

catching even developed societies unprepared which was proven by the latest COVID-

19 outbreak. Over the last year, COVID-19 has caused 186,033,321 infections and

killed 4,020,869 people worldwide (as of July 8, 2021) [University, 2021], and has

paralyzed the world economy causing supply chain disruptions of different industries

and an increasing unemployment rate in every country. But it is not just humans;

epidemics hit trees as well. Over the past century, uncontrollable pests and fungi

have taken out the chestnut blight [Griffin, 2000], the hemlock [Morin and Liebhold,

2015], and now ash trees [Li et al., 2019]. Although the COVID-19 is an invasion

caused by the SARS-CoV-2, a coronavirus, it has some differences compared to the

other invasive species in the environment.

Invasive species are plant, animal, or pest species that are non-native to a

location and have the tendency to overspread and cause possible damage to the

environment, human health, and economy [Ehrenfeld, 2010]. Common and Stagl

[2005] estimate a total economic cost of invasive species to exceed $120 billion over

85 years only in the US. Even this high cost is actually an underestimate because

other losses due to the invasive pests (such as impact in human health, carriers or

causes of different diseases, loss of biodiversity) are impossible to be quantified in

monetary terms [Pejchar and Mooney, 2009]. These adverse effects of invasive species

on different ecosystems have been addressed extensively (see, e.g., Koenig et al. [2013],

Paini et al. [2016], Gallardo et al. [2016], DeSantis et al. [2013]).

Managing invasive species involves different tasks, from locating where these

species are to dealing with the treatment methodologies. Once an invader usurps a
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new ecosystem a decision-maker has to come up with a surveillance strategy to locate

the pest species. By increasing surveillance efforts, managers have a higher chance to

locate the invaded areas and apply early preventive measures to manage the outbreak.

The utmost purpose of the manager is to eradicate the invasive species. However,

surveillance is costly, and spending more to survey in many cases means less budget

to manage the already invaded and discovered locations [Mehta et al., 2007]. Due to

limited resources, a more realistic approach is to slow down the spread so that the

native species thrive.

Emerald Ash Borer (EAB) is among the most well-known invasive species in the

last decade, invading large areas in North America. The EAB is a wood-boring pest

native to Asia which was discovered in the U.S. in 2002. Effective management is a

critical issue as EAB kills 99% of the ash trees it infests, thus, causing homeowners

and governments billions of dollars. The majority of this economic damage from EAB

is done in cities and populated areas where ash trees are located in the streets or parks

having a high value to the environment [Poland and McCullough, 2006]. Kovacs et al.

[2010] estimate the total cost of EAB to the U.S. for the last decade to be $10.7 billion,

while McKenney et al. [2012b] estimate a cost of EAB to Canada to be $524 million

over a 30-year period. Since its discovery, entomologists have worked hard to develop

management strategies to keep ash trees healthy. A Herms and Mccullough [2013]

suggest a set of activities to manage the EAB infestation and reduce ash mortality.

They propose surveillance at the early stages of the infestation, removal of infested ash

trees to slow down the spread, and insecticide treatment to protect high-value trees.

Other studies also discuss bio-synthesis or insecticide treatment (see, e.g., Mercader

et al. [2015], Jennings et al. [2016], Mercader et al. [2016], Duan et al. [2017]).

While invasive species management differs from human epidemics in that they

are specific to a tree type, and no epidemic can hit every tree at once, one can think
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of the COVID-19 as an invasion caused by the SARS-CoV-2, a coronavirus. Hence,

we can build similarities that can be helpful to deal with both of these threats.

In this dissertation, we aim to develop new spatio-temporal modeling and

solution approaches using multi-stage stochastic mixed-integer programming and

reinforcement learning to represent complex biological invasions of different species

and ecosystems by considering a limited budget and considering multiple optimization

criteria. Difficulties of the aforementioned models include high computational

complexity, spatial and temporal dimensions, definite economic capacities, and

representation of different biological properties. Therefore, one main goal of this

dissertation is to involve the computing power of machine learning techniques to

tackle the computational complexity of these problem formulations.

Our objective is to study the transition mechanism of the biological invasions

and the possible management options to formulate strategies that serve the decision-

makers to optimally use the budget at hand and save as many healthy ash trees and

human lives as possible. Invasive species in general, including EAB, spread over space

and time. Thus, we consider large areas infested with EAB and handle the spatial

dimension by separating landscapes in proportional areas that we refer to as sites,

where we keep track of the tree population in each site, including the trees we know

to belong to a certain infestation level. In addition, the inner and outer movements

of infection from sites are also modeled on the dispersal mechanism based on the

biological properties of the pest.

Different than many plant or insect invasive species, the coronavirus itself does

not move, fly, or travel; instead is passed from person to person and moves wherever

infected individuals go. Due to this, to model the pest dynamics, we need to model

human behavior, which is way more complex than modeling other invasive species in

nature.
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Despite the power of the optimization-based models, aiming to address an

epidemic problem on a large population exhausts the model. Thus, it would be hard

to obtain results in a reasonable time. Hence, we investigate the power of machine

learning techniques, deep reinforcement learning in particular, on an NP-Hard

problem, such as multi-dimensional knapsack problem. To address the complexity

of such combinatorial optimization problem, we first formulate a one-dimensional,

then a two-dimensional learning environment where decision variables are mapped

into cells. A deep reinforcement learning agent is responsible for wandering around

in this two-dimensional environment and learning to select items for finding the best

solution to large instances of the multi-dimensional knapsack problem.

Due to its direct threat to human life, COVID-19 very fast became a pressing

matter for the governments. Prevention measures involved physical distancing,

wearing masks, hand hygiene, and quarantining when not feeling well. At first,

medical researchers needed time to investigate the transmission ways, the incubation

period for newly infected individuals, and other biological properties. Having this

information helps us model the spread and simulate invasions more accurately.

Observing the power of deep learning, we extend our deep reinforcement learning

approach to address decision-making over a large population. We extend an agent-

based simulation [Kerr et al., 2020] that models person-to-person contact for different

communities in large populations, to allow for real-time management interventions

from a governing party, a deep reinforcement learning agent. In addition, we extend

to a compartmental model flexible to one-shot and two-shot vaccination. Using such

a framework, we are able to mimic a government-population situation, where one

imposes restrictions, and the latter obeys them. Our results have shown that the

trained deep reinforcement learning agents can build knowledge regarding possible

optimal interventions when faced with different states of the epidemic.
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1.1 Background in Methodology

Researchers have utilized optimization-based methods to assist the cost-effective

resource allocation, also considering the benefits of taking action comparing costs

of damage from invasions against that of detecting the invaders and managing the

outbreak [Hof, 1998, Mehta et al., 2007, Büyüktahtakın et al., 2011, Epanchin-Niell

et al., 2012, Kovacs et al., 2014, Büyüktahtakın et al., 2015, Büyüktahtakın and

Haight, 2018, Quick et al., 2017, Büyüktahtakın et al., 2014a, Büyüktahtakin et al.,

2014]. Some other studies attempt to model pest surveillance and control under the

assumption of uncertain spread [Horie et al., 2013, Yemshanov et al., 2017]. These

models considered a time domain with only two periods. Onal et al. [2020] addressed

the optimal search path for locating and controlling the infestation of a biological

invader using a multi-period simulation-optimization framework. Kıbış et al. [2021]

addressed the problem of joint optimization of surveillance and control decisions with

a multi-stage stochastic mixed-integer programming (MSS-MIP) formulation that

extended the time horizon to five stages and applied that model to the management

of EAB in Burnsville, Minnesota, USA. We believe that to address an invasive species

problem, multi-stage stochastic programming is the right tool as it considers the

problem long-term and accounts for the uncertainty that comes with the biological

invader. MSS-MIP combines the complexity of stochastic programming with a

mixed-integer programming model and represents an NP-hard combinatorial problem.

Recent developments of multi-stage MIP solving techniques have been limited [Birge

and Louveaux, 2011]. Multi-stage stochastic programming has been widely used in

many fields, including but not limited to healthcare [Yin and Büyüktahtakın, 2020],

forestry [Kıbış et al., 2021], agriculture [Cobuloglu and Büyüktahtakın, 2017] and

finance [Abdelaziz et al., 2007]. Typically, multi-stage programs maximize (minimize)

an expectation criterion over all possible scenarios, each of which has a certain
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probability of occurrence. The expectation criterion is very useful in situations where

there is no indication that an extreme event can be observed.

Traditional two-stage and multi-stage stochastic programs consider only an

expectation criterion in the objective function of the optimization problem based on

the probability of each scenario, also known as a risk-neutral approach. In problems

containing outliers in the distribution of the scenarios, the risk-neutral approach may

perform poorly. Assuming that the manager wants to be careful of these extreme

scenarios, in the risk-neutral approach, these undesirable outcomes associated with

an adverse scenario cannot be prevented. The solution obtained from optimizing the

expected objective function will perform poorly when one of these outlier scenarios

happens. In such cases, risk-averse models become necessary. For example, in a

disaster management situation [Escudero et al., 2018a], non-repetitive decisions, such

as facility locations [Escudero et al., 2017], may result in a substantial operational

cost or even an inability to fulfill the demand for a specific realization of the random

parameters [Escudero et al., 2018b].

Decomposition algorithms are the mainstream methods to tackle two-stage

stochastic MIPs. The non-convex region formed in multi-stage MIP problems

cannot be tackled using direct decomposition. Most solution approaches are based

on stage-wise (resource-directive) or scenario-based (price-directive) decomposition.

Recent studies in the last decades integrated solution approaches of Stochastic

Programming (SP) and discrete optimization methods (IP). For example, Bender’s

decomposition is applicable to a class of two-stage stochastic problems where the

first-stage decisions are mixed-integer, and the recourse decisions are found by solving

the linear programming (LP) models [Sen, 2005]. Most studies of MSS-MIP problems

decomposed them into multiple scenarios and treated each scenario as a separate

problem. For example, the study of CarøE and Schultz [1999] treated the solution

of the Lagrangian dual as a lower bound of the original problem by relaxing the
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non-anticipative constraints. Heuristic algorithms were used to provide an upper

bound on the dual solution, and branch and bound was used to find a feasible

integer solution. Scenario-based decomposition approaches, such as Lagrangian and

Dantzig-Wolfe, have been shown to be effective in different multi-stage stochastic

integer problems [Nowak and Römisch, 2000, Lulli and Sen, 2004].

The majority of solution approaches presented for risk-averse multi-stage

stochastic optimization problems are extensions of the solution techniques proposed

for the risk-neutral equivalents Birge and Louveaux [2011]. For example, Shapiro et al.

[2013] and Philpott and De Matos [2012] have extended the stochastic dual dynamic

programming algorithm to risk-averse problems. Schultz and Tiedemann [2006]

develop a Lagrangian decomposition algorithm to solve the scenario-based formulation

of two-stage mixed-integer stochastic programming involving CVaR. Zhang et al.

[2016] use a nested L-shaped method and investigated multiple cuts to improve the

efficiency of a risk-averse multi-stage program. Guo and Ryan [2017] obtain lower

bounds using the progressive hedging algorithm to solve time-consistent risk-averse

multi-stage stochastic integer programs.

At first, we model a multi-stage stochastic programming model of EAB

surveillance and control decisions [Bushaj et al., 2021b, Kıbış et al., 2021] only

considering an expectation criterion in the objective function, the popular Risk

Neutral measure. However, due to the intrinsic biological characteristics of the

invader and some outside factors, such as careless transportation of infested wood,

an infestation could spread fast, and substantial losses of ash trees could happen in a

shorter time frame than expected. To alleviate the adverse impacts of experiencing

such events, we consider a risk measure in the objective function in addition to the

expectation criterion. The incorporation of the risk factors complicates the model,

thus requiring advanced computational methodologies to solve it. To tackle the

computational difficulty of the proposed complex risk-averse multi-stage stochastic
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mixed-integer program, we implement the scenario dominance cutting plane algorithm

introduced in Büyüktahtakın [2020] to solve the risk-averse multi-stage stochastic

mixed-integer programming (RA-MSS-MIP) model more efficiently. The effectiveness

of these cuts is studied under the risk-neutral and risk-averse models. We provide

insights on how risk-aversion affects decision-making, such as the budget allocated

to insecticide treatment and tree removal. We also analyze the benefits of ash trees

under risk compared to the original expectation criterion in the risk-neutral problem.

Mathematical programming models are powerful solution methods but mostly

suffer from the curse of dimensionality. As the size of the problem instances increases,

it becomes quite challenging to get a good solution in a considerable amount of time.

Hence, recent literature shows a synergy between operations research problems and

the usage of powerful machine learning algorithms [Oroojlooyjadid et al., 2020, 2017,

Nazari et al., 2018]. The Multi-Dimensional Knapsack Problem (MKP) is a knapsack

problem with multiple constraints. The MKP lies at the core of many combinatorial

optimization problems with applications varying from agriculture [Kantas et al., 2015,

Cobuloglu and Büyüktahtakın, 2014, 2015a], production planning [Büyüktahtakın

et al., 2018b, Büyüktahtakın and Liu, 2016, Hartman et al., 2010], and asset

management [des Bordes and Büyüktahtakın, 2017, Büyüktahtakın et al., 2014b,

Büyüktahtakın and Hartman, 2016]. MKP can also be considered as a special case of

integer programming, except it restricts the decision variables to 0 or 1. The difficulty

of MKP lies in the fact that optimal solutions cannot be reasonably obtained as the

instances grow. MKP can be easily treated as a sequential decision-making problem,

making solution methods important in a wide range of applications, such as business,

logistics, computer networks, and invasive species management.

Despite many research efforts worldwide and multiple solution approaches to

solve the MKP, there is still a large room for improvement, especially for large-scale

instances. Considering the recent empowerment of machine learning methods for
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tackling optimization problems presents a wide area to explore. In particular,

reinforcement learning is a promising candidate to outperform current approaches for

large MKP instances. Literature suggests that reinforcement and deep reinforcement

learning (DRL) approaches can learn solution strategies to solve combinatorial

optimization problems [Ma et al., 2019, Bello et al., 2016, Barrett et al., 2020].

Inspired by this, we investigate a reinforcement learning approach to help solve large

instances of a core MIP problem. We develop a framework that aims to generalize

solving MKP instances of different sizes and distributions.

1.2 Motivation and Contributions

Invasive species threaten the health of an environment the same way a pandemic

threatens the health of a human population. We believe similar solutions can

be designed to solve these problems. Hence, in this dissertation, we first expand

the state-of-the-art methodology with cutting plane methods and mathematical

solutions and develop a novel reinforcement learning framework to tackle the core

resource allocation problem. Then we extend these problem formulations and the

RL framework to agent-based simulation as an accurate process to mimic real-

world situations and optimize decision strategies developing machine learning-based

techniques.

First, we formulate a multi-stage stochastic mixed-integer programming (MSS-

MIP) problem that optimizes surveillance and management decisions for controlling

a pest outbreak in urban environments. To this formulation, we also contribute a

method to compute the time-dependent probabilities based on surveillance history.

In addition, a distance-dependent infection spread is used to model the movement

dynamics of EAB. With the interest of the experts and forest agencies, we extend

our MSS-MIP formulation to a risk-averse multi-stage stochastic mixed-integer

programming formulation (RA-MSS-MIP), which to our knowledge, is the first
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RA-MSS-MIP formulation for invasive species literature. To tackle the difficulty

of this high-dimensional problem, we adapt the scenario dominance cutting planes

introduced by Büyüktahtakın [2020] to the case of decision-dependent uncertainty,

resulting in a considerable improvement in solution time of those NP-Hard problem

instances. Based on our research, we recommended the following actions to resource

managers:

Our approach demonstrates that timely detection and early response are critical
factors for maximizing the number of healthy trees in urban areas affected by
pest outbreaks.

Treatment of the infested trees is most effective when done at the earliest stage
of infestation. Treating asymptomatic trees at the earliest stages of infestation
provides higher net benefits than tree removal or no-treatment options.

Our analysis suggests the use of branch sampling as a more accurate method
than the use of sticky traps to detect the infested asymptomatic trees, which
enables treating and removing more infested trees at the early stages of
infestation.

Our results also emphasize the importance of allocating a sufficient budget for
tree removal to manage EAB infestations in urban environments. Tree removal
becomes a less useful option in small-budget solutions where the optimal policy
is to spend most of the budget on treatments.

Our results suggest that, as the manager becomes more risk-averse, insecticide
treatment becomes less preferred compared with tree removal, especially for
scenarios that involve high infestation spread each year. This is an important
practical finding because forest managers often debate over two broad strategies
for EAB management: surveillance and insecticide treatment of ash trees versus
surveillance and staged removal of ash trees. Our results suggest that the former
strategy may provide a higher expected net benefit while the latter strategy may
provide a lower risk of outcomes with very low net benefits. The selection of the
appropriate strategy will depend on the risk preference of the decision-maker.

Based on our results, increasing risk-aversion by emphasizing the poorly
performing scenarios in the objective function might come at a price of reduced
expected net benefit. Despite this price, the manager may see this loss as a
worthy sacrifice towards the mitigation of possible disaster scenarios.

Our analysis of surveillance frequency suggests that as we survey less, the
expected risk increases due to higher uncertainty about infestation realizations.
Thus, a risk-averse manager would want to survey more often.
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The contributions of this dissertation extend to combinatorial optimization

problems as well. Developing a novel DRL framework, we tackle the computational

difficulty of the multi-dimensional knapsack problem. This framework can solve

instances of different sizes and distributions faster than the state-of-the-art, CPLEX

[Cplex, 2009], with only an additional gap of about 0.2%, which is a quite significant

achievement. Utilizing the power of deep learning, we then extend our DRL

framework to epidemic control planning. For that, we integrate an agent-based

simulation model with our DRL framework. For our simulation, we extend an

agent-based model presented in Kerr et al. [2020]. Kerr et al. [2020] provide a

realistic agent-based model involving interventions and different contact layers for

each individual in the population. We extend the health compartments to include

vaccination and also make the model fit to update decisions in a set frequency by

the decision-maker. As a central decision-maker, a state-of-the-art Deep Q-Network

(DQN) agent is used. The agent is trained on the compartmental data provided

by the agent-based simulation. We train DRL agents on different periods of

COVID-19 and draw conclusions on how the situation was handled by government

agencies and what could have been a better action. Our results also show that the

simulation-reinforcement learning framework can suggest meaningful actions provided

various states of the epidemic.

The research contributions of this dissertation are discussed in detail in each

chapter, respectively.

1.3 Summary of Research Objectives and Accomplishments

The goal of this dissertation is to provide new methodological contributions to solving

resource allocation problems by presenting new multi-stage stochastic programming

and deep reinforcement learning methods with an application to the control of invasive
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species and epidemic diseases. Below, we summarize the research objectives and

accomplishments achieved under each chapter of this dissertation.

Chapter 2 provides an introduction to the invasive species management problem

and methodologies used. Emerald Ash Borer (EAB), a wood-boring insect native to

Asia, was discovered near Detroit in 2002 and has spread and killed millions of ash

trees throughout the eastern United States and Canada. EAB causes severe damage

in urban areas where it kills high-value ash trees that shade streets, homes, and

parks and costs homeowners and local governments millions of dollars for treatment,

removal, and replacement of infested trees. We present a multi-stage, stochastic,

mixed-integer programming model to help decision-makers maximize the public

benefits of preserving healthy ash trees in an urban environment. The model allocated

resources to surveillance of the ash population and subsequent treatment and removal

of infested trees over time. We explore the multi-stage dynamics of an EAB outbreak

with a dispersal mechanism and apply the optimization model to explore surveillance,

treatment, and removal options to manage an EAB outbreak in Winnipeg, a city of

Manitoba, Canada.

In Chapter 3, we derive a nested risk measure for a maximization problem and

implement it in a scenario-based formulation of a multi-stage stochastic mixed-integer

programming problem. Specifically, we extend the multi-stage, stochastic, mixed-

integer programming formulation developed in Chapter 2 to a risk-averse formulation

for the optimal surveillance and control of the EAB. We present a mean-Conditional

Value-at-Risk (CVaR), multi-stage, stochastic mixed-integer programming model to

optimize a manager’s decisions about surveillance and control of EAB. The objective

is to maximize the benefits of healthy ash trees in forests and urban environments

under a fixed budget. Combining the risk-neutral objective with a risk measure

allows for a trade-off between the weighted expected benefits from ash trees and the

expected risks associated with experiencing extremely damaging scenarios. We solve
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the model using the Scenario Dominance Cuts (SDC) algorithm under different risk

parameters. We define scenario dominance cuts for the maximization problem and

test their performance relative to the CPLEX solution. We apply our risk-averse

model to the case of EAB management in the state of New Jersey. Computational

results demonstrate that our CVaR risk-averse approach improves the least-benefit

scenarios compared to the risk-neutral model. Our results show a shift in the optimal

strategy from applying less expensive insecticide treatment to more costly tree removal

as the manager becomes more risk-averse. We also find that risk-averse managers

survey more often to reduce the risk of experiencing adverse outcomes.

The problems discussed in Chapters 2 and 3 of this dissertation are large

NP-Hard combinatorial optimization problems. In Chapter 4, we address the

difficulty of solving large-scale combinatorial optimization problems presenting a novel

deep reinforcement learning (DRL) framework. Initially, we propose an unsupervised

learning approach using K-means to obtain a reasonable initial feasible solution that

is used to train the DRL agent. We also propose a heuristic to reduce the dimension

of Multidimensional Knapsack Problem (MKP) instances in our DRL framework.

We estimate a worthiness value for each item and re-order them by considering all

affecting factors in the MKP formulation. Using K-means and the item worthiness

ratio obtained from the heuristic as facilitators, we build a 2-D RL environment

to represent MKP instances of different sizes. We propose a Deep Reinforcement

Learning (DRL) framework where we aim to train different agents compatible with a

discrete action space for sequential decision-making while still satisfying any resource

constraint of the MKP. This novel framework incorporates the decision variable values

in the 2-D DRL where the agent is responsible for assigning a value of 1 or 0 to each

of the variables. To our knowledge, this is the first DRL model of its kind where a 2D

environment is formulated, and an element of the DRL solution matrix represents an

item of the MKP. Our framework is configured to solve MKP instances of different
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dimensions and distributions. We train four different agents in our framework and

present results by comparing each of them to the CPLEX commercial solver. Results

show that our agents can learn and generalize over instances with different sizes and

distributions. Our DRL framework shows that it can solve medium-sized instances

at least 45 times faster in CPU solution time and at least 10 times faster for large

instances with a maximum solution gap of 0.28% compared to the performance of

CPLEX. Furthermore, at least 95% of the items are predicted in accordance with the

CPLEX solution.

In Chapter 5, we take advantage of the solution approach developed in

Chapter 4 and an agent-based simulation model to address the controversies

of epidemic control planning by using a novel Simulation-Deep Reinforcement

Learning (SiRL) framework. COVID-19 reminded constituents over the world

that government decision-making could change their lives. During the COVID-19

pandemic, governments were concerned with reducing the fatalities of the virus spread

but at the same time also maintain a flowing economy. We aim to provide insights

into epidemic decision-making regarding what interventions are necessary at a point in

time of the epidemic based on the purpose of the decision-maker. Further, we intend

to compare different vaccination strategies to shine a light on who should get priority

in the vaccination process. To address these issues, we propose a simulation-deep

reinforcement learning framework. This framework is composed of an agent-based

simulation model and a governor DRL agent that can enforce interventions in the

agent-based simulation environment. Our results show that our framework can help

suggest optimal actions according to a specific epidemic situation. Our DRL agent

can learn effective strategies based on a reward structure. We compare our DRL

decisions towards the government interventions at different periods of time during the

COVID-19 pandemic. In addition, we compare the results of an age-based and random

vaccination strategy. Our results suggest that the timely introduction of interventions
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could have reduced the damage done by the COVID-19 pandemic. Furthermore, if

a random vaccination would have been used, infections would reduce by 32% and a

better economic situation would be maintained.

1.4 Organization of the Dissertation

This Ph.D. dissertation is organized in chapters that correspond to four journal

papers. Chapter 2 addresses the development of a multi-stage stochastic mixed-

integer program and its application to an urban environment in Manitoba, Canada.

Chapter 3 extends the MSS-MIP to a risk-averse MSS-MIP and implements scenario

dominance cutting planes to the decision-dependent scenario formulation. Chapter 4

proposes a deep reinforcement learning approach to solve multi-dimensional knapsack

problem instances. Chapter 5 presents a framework composed of an agent-based

simulation and deep reinforcement learning developed for epidemic control planning.

Finally, in Chapter 6, we summarize our contributions and further research directions

inspired by this dissertation.
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CHAPTER 2

OPTIMIZING SURVEILLANCE AND MANAGEMENT OF
EMERALD ASH BORER IN URBAN ENVIRONMENTS

2.1 Introduction

Invasive species are plant, animal, or pest species that are non-native to a location

and have the tendency to overspread and cause possible damage to the environment,

human health, and economy [Ehrenfeld, 2010]. The harmful effects of invasive species

on agriculture, aquatic, forests, and ecosystems have been studied extensively [Koenig

et al., 2013, Paini et al., 2016, Gallardo et al., 2016, DeSantis et al., 2013]. The

estimated total economic cost from invasive species in the U.S. alone was expected to

exceed $120 billion over 85 years [Pimentel et al., 2005]. The extent of the damage

may be an underestimate because many losses caused by invasive species (such as loss

of biodiversity, indirect impacts on human health, and loss of ecosystem services) are

difficult to estimate in monetary terms [Pejchar and Mooney, 2009].

Management of invasive pests requires substantial resources to locate and

control the established pest populations. Once the invader is established in a novel

ecosystem, two sets of decisions need to be made on how to survey the area and

how to manage the outbreak. By increasing surveillance to detect invasive species,

managers may increase their chances of finding a species early at lower population

sizes, lessening the extent of damages, and making subsequent control potentially less

expensive and more effective. However, detecting invasive species requires costly

surveillance, which limits the manager’s options to control the infestation when

budgets are limited [Mehta et al., 2007]. Optimization-based methods have been

widely used to assist with cost-effective resource allocation and address the trade-offs

between incurring the costs of damage from invasions versus the costs to detect

and manage the outbreaks [Hof, 1998, Mehta et al., 2007, Büyüktahtakın et al.,
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2011, Epanchin-Niell et al., 2012, Kovacs et al., 2014, Büyüktahtakın et al., 2015,

Büyüktahtakın and Haight, 2018].

In this work, we present a linear integer programming model that optimizes

surveillance and management decisions for controlling a pest outbreak in an urban

environment. The model is formulated as a multi-stage stochastic mixed-integer

programming problem (M-SMIP) based on the work of Kıbış et al. [2021]. We applied

the model to assess the options to manage the infestation of emerald ash borer (EAB)

in Winnipeg, a city of Manitoba, Canada. The insect poses a major threat to North

American ash species [Haack and Petrice, 2003, A Herms and Mccullough, 2013]

and has already caused major damage to urban and natural forests in the eastern

and central U.S. and Canada [Kovacs et al., 2010, 2014, McKenney et al., 2012a].

Long-distance EAB spread has been associated with human activities, primarily with

commercial and passenger vehicles that could potentially move firewood or other

infested materials [Haack, 2006, Haack et al., 2010, Kovacs et al., 2010, Koch et al.,

2011, Yemshanov et al., 2015]. There is also evidence that the pest can hitchhike

on vehicles [Buck and Marshall, 2008]. Timely detection of new EAB infestations

is difficult because insect damage is not immediately visible, and as a result, new

detections usually indicate the presence of large, established populations that are

difficult to control [McCullough et al., 2009, Ryall et al., 2011].

Major economic damage from EAB infestations occurs in cities and populated

places where high-value ash trees grow along streets or in parks [Poland and

McCullough, 2006]. The total cost of the EAB outbreak to property owners and

local governments is estimated to be $10.7 billion in the last decade in the U.S.

[Kovacs et al., 2010] and $524 million over a 30-year period in Canada [McKenney

et al., 2012b]. Since its discovery, much work has been done to develop management

strategies that reduce ash mortality from EAB infestations. A Herms and Mccullough

[2013] proposed various management activities, including surveillance to locate EAB
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populations at early stages of infestation, treatment of trees with insecticide to protect

high-value trees and reduce larval populations, and removal of infested ash trees to

slow EAB spread.

Our objective is to determine the optimal location and intensity of ash

surveillance, treatment, and removal each year (period) over a five-year horizon.

We consider a budget-constrained problem that maximizes the total benefits of

maintaining healthy ash trees in an urban area over a 5-year period minus the penalty

associated with the presence of the infested trees. We separate the landscape into

1-km2 management units (sites). For each unit, we know the number of ash trees

and build a scenario tree that depicts a set of possible surveillance and management

decisions and accounts for the uncertainty associated with EAB population growth

and spread. The scenario tree includes two decisions in each period. First decision

is whether or not surveillance is applied, and second decision is on the intensity of

treatment and removal of the infested trees, depending on the outcome of surveillance.

The uncertainty about the tree status after the surveillance is depicted with a set

of possible infestation outcomes and associated probabilities before a management

decision is made. At the beginning of the planning horizon, we describe the ash

population in each unit by the number of ash trees at different stages of infestation

based on prior knowledge about the infestation. The model then projects changes

in the ash population each year based on assumptions about EAB spread within

and between units. If surveillance is undertaken, the model estimates the number

of infested trees and makes decisions to remove or treat the infested ash trees, and

then updates the probabilities associated with the expected levels of infestation for

the next period.
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2.1.1 Literature Review

Optimization models have been widely used to assist with surveillance and management

of invasive species populations [Mehta et al., 2007, Baxter and Possingham, 2011,

Epanchin-Niell et al., 2012]. Several studies considered pest control measures

that include the removal of infested or susceptible host organisms and applying

chemical or biological control treatments to eradicate or slow the invasion [Hof,

1998, Büyüktahtakın et al., 2011, Büyüktahtakın and Haight, 2018]. Some studies

addressed pest surveillance and control under the assumption of uncertain spread

[Horie et al., 2013, Yemshanov et al., 2017]. These models considered a time

domain with only two periods. Onal et al. [2020] present a multi-period simulation-

optimization framework to find the optimal search path for locating and controlling

the infestation of a biological invader. Kıbış et al. [2021] addressed the problem of

joint optimization of surveillance and control decisions with a multi-stage stochastic

mixed-integer programming (MSS-MIP) formulation that extended the time horizon

to five stages and applied that model to the management of EAB in Burnsville,

Minnesota, USA. MSS-MIP combines the complexity of stochastic programming

with a mixed integer programming model and represents an NP-hard combinatorial

problem. Recent developments of multi-stage MIP solving techniques have been

limited [Birge and Louveaux, 2011]. Decomposition algorithms are the mainstream

methods to tackle two-stage stochastic MIPs. The non-convex region formed in

multi-stage MIP problems cannot be tackled using direct decomposition. Most

solution approaches are based on stage-wise (resource-directive) or scenario-based

(price-directive) decomposition. Recent studies in the last decades integrated solution

approaches of Stochastic Programming (SP) with discrete optimization methods (IP).

For example, Bender’s decomposition is applicable to a class of two-stage stochastic

problems where the first-stage decisions are mixed-integer and the recourse decisions

are found by solving the linear programming (LP) models [Sen, 2005]. Most studies of
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MSS-MIP problems decomposed them into multiple scenarios and treat each scenario

as a separate problem. For example, the study of CarøE and Schultz [1999] treated

the solution of the Lagrangian dual as a lower bound of the original problem by

relaxing the non-anticipative constraints. Heuristic algorithms were used to provide

an upper bound on the dual solution, and branch and bound was used to find a feasible

integer solution. Scenario-based decomposition approaches, such as Lagrangian and

Dantzig-Wolfe have been shown to be effective in different multi-stage stochastic

integer problems [Nowak and Römisch, 2000, Lulli and Sen, 2004].

In our multi-stage model, the number of variables, constraints, and scenarios

increases exponentially for each additional time period. Therefore, in order to improve

on the solution time and memory, we apply cutting planes and a pre-processing

algorithm adapted from Kıbış et al. [2021]. These cutting planes helped improve the

solution time by a factor of 10+ compared to the standard approach without using

cutting planes.

2.1.2 Key Contributions of the Chapter

We extend the MSS-MIP formulation of Kıbış et al. [2021] to a study area covering

472 km2 in the city of Winnipeg, Manitoba, Canada. Our model accounts for the

uncertainty about the infestation levels at each site, which is partially resolved by the

surveillance decisions.

Our model differs from the study of Kıbış et al. [2021] in the following ways.

We depict the temporal dynamics of the infested trees with four infestation levels

compared to a five-level model in Kıbış et al. [2021]. The first level represents healthy

trees, the second level includes asymptomatic infested trees, the third level includes

infested trees with visible signs of infestation, and the fourth level represents dead

trees.
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For each year of the planning horizon, we compute realization probabilities of

possible ash infestation outcomes that may be observed via surveillance. Compared

to the formulation in Kıbış et al. [2021] that used constant realization probabilities,

our probabilities are time-dependent. We present a new heuristic algorithm that

dynamically updates the probabilities of the uncertain infestation outcomes based on

the outcomes of the previous survey.

To account for EAB spread we apply a distance-dependent estimation of spread

probabilities at four 1-km distance classes from the infested sites, as opposed to

the 1-level spread considered in Kıbış et al. [2021]. This spread model captures the

short-range spread of EAB in urban environments, as suggested by records from

previous EAB surveys in Twin Cities, Minnesota [Osthus, 2017].

Based on the experiences from previous EAB survey campaigns, we assume

that only a fraction of the trees can be inspected at a site due to cost and personnel

constraints. To account for the incomplete survey, we used a surveillance efficiency

parameter to depict the percentage of infested trees detected after inspecting a

proportion of host trees. The new surveillance-efficiency parameter introduced in

our study compensates for the uncertainty of the surveillance outcomes.

We also compared two common EAB survey methods: applying branch sampling

with debarking to detect EAB galleries and placing sticky traps baited with EAB

pheromone and ash volatiles to capture EAB adults. We explore the trade-off between

the surveillance efficiency and its cost for each survey method over a 5-year planning

period.

2.2 Optimization Model

In this section, we present a revised version of the multi-stage stochastic mixed-integer

formulation originally proposed by Kıbış et al. [2021] for the optimal surveillance

and control of EAB. This modified formulation improves over the former one by
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addressing important issues regarding the surveillance uncertainty as well as the

dynamic probabilities of uncertain surveillance outcomes.

2.2.1 Problem Definition

We formulate the objective of the EAB surveillance and control problem as

maximizing the number of uninfested, healthy ash trees in a landscape at the end

of the planning period subject to an upper bound on the budget for surveillance and

control. Delimiting surveys typically divide the area of concern into a grid of survey

sites where a sample of ash trees is inspected at each site. The ash population in

each site is divided into healthy trees that are susceptible to infestation and infested

trees belonging to three classes (levels): asymptomatic trees, symptomatic trees,

and dead trees. Infested trees are the source of EAB spread to susceptible trees

in surrounding sites. Each year, infested trees transition to the next, more severe

infestation level, and susceptible trees may become infested through EAB spread

within and between neighboring sites. Asymptomatic trees represent the lowest

infestation level 1, followed by symptomatic trees with visible signs of infestation

(level 2) and, if no treatment or removal is applied, trees die (level 3) Figure 2.1. We

assume that decisions to treat the infested trees can be only effective when applied

to asymptomatic trees while symptomatic and dead trees may be removed. A time

stage in this study refers to a time period in the stochastic programming model. We

set each time period to one year because EAB generally has a 1-year life cycle and

ash trees may die after 3 to 4 years of heavy infestation, although it is difficult to

determine the time of first infestation [McCullough and Katovich, 2004]. The visual

ash tree canopy condition assessment data collected by Flower et al. [2013] shows

that ash trees progress from one level to the next within one year on average. Recent

evidence suggests that EAB may switch to a two-year life cycle in a colder climate
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[Cappaert et al., 2005] and in particular in Winnipeg, so our current assumption

depicts a pessimistic view of infestation outcomes.

Figure 2.1 Transitions between the infestation levels.

The number of healthy trees that may be infested at a survey site is uncertain,

which required using a probabilistic depiction of spread. In our case, the number of

newly infested trees at a site is a random variable that depends on the number of

EAB adults produced at a given site and neighboring sites. Surveillance decisions are

critical because they provide information about the infestation, which allows making

decisions about ash treatment and removal. Due to the high cost of surveillance, pest

surveys limit inspections to a small sample of trees. A partial observation provides

limited knowledge about the actual number and location of the infested trees. Because

only a portion of all trees is inspected the actual number of the infested trees after

surveillance is unknown, and treatment and removal measures are applied to both

infested and healthy trees. We address this uncertainty with a surveillance efficiency

parameter that denotes the percentage of infested trees detected after surveillance

and serves as a multiplier to adjust the number of detected infested trees that can be

treated or removed and update the number of remaining infested trees at a surveyed

site.
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The progression of tree infestation and an associated sequence of management

decisions is shown in Figure 2.2. In the first period, the actual level of infestation

at a survey site is unknown, and management decisions can only be made in the

next period after the site is surveyed. If asymptomatic trees (infestation level 1)

are treated in the second period, they become immune to infestation and regain the

susceptible tree status in period three. Symptomatic and dead trees at infestation

levels 2 and 3 can only be removed. In the third period, no surveillance is applied,

and due to the uncertainty in infestation spread, the numbers of susceptible trees and

trees at infestation level 1 are expectations based on the outcomes of the survey in

the previous period. In period four, no survey is applied, and we only have partial

information from period three. In period five, surveillance is applied, which provides

an estimated number of trees at each infestation level and allows making decisions on

treatment and removal.

2.2.2 Scenario Tree

Our scenario tree depicts the sequences of possible surveillance decisions and the

stochastic infestation outcomes over time and is based on the model of Kıbış et al.

[2021]. Full details are provided in Appendix A, here we provide only a general

description. The scenario tree starts in period one and at each branching progresses

through time based on realizations of the uncertain levels of infestation (see example

in Figure 2.3). Two types of nodes in the scenario tree indicate the surveillance

(black circles) and no surveillance conditions (empty circles). Square nodes represent

treatment or removal decisions. Given the uncertainty about EAB spread, each

decision has two possible outcomes: high or low realization of the uncertain level

of infestation. The outcome without surveillance (identified by empty circles) yields

the expected value of the uncertain infestation level. The notation on each arc, pHt

, pLt , and pMt , stands for the probability of detecting the infestation at a high (H) or
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Figure 2.2 An example transition diagram of the ash tree population with over
a 5-period planning horizon under a particular surveillance regime (i.e., surveys in
years 2 and 5 and no surveillance in years 1, 3 and 4). X-axis denotes time periods
and y-axis represents tree infestation levels. Node S denotes the susceptible trees and
nodes 1, 2, and 3 denote the infestation levels 1-3 (asymptomatic, symptomatic and
dead trees). In each stage, uncolored nodes represent the infestation levels for which
the actual number of infested trees is unknown because no surveillance was made.
Light shaded (green) nodes depict the detected susceptible trees; dark-shaded (red)
nodes depict trees at infestation levels 1-3 after surveillance; and black nodes represent
the infested dead trees that must be removed. Dashed green lines show the number of
treated trees that become temporarily immune to an infestation and are moved to a
pool of susceptible trees; dotted lines show the transition in tree infestation level from
one period to another; and bold arrows show infested dead trees that are removed.
Source: Adapted from Kıbış et al. [2021].

low (L) levels, or the expected infestation level (M) in the absence of surveillance in

period t, producing 3t scenarios. We assume a medium infestation level as an expected

outcome without surveillance and use this level to update the number of infested trees

at a given site without surveillance. Terms π1−π3t denote the conditional probabilities

of a scenario ω, ω ∈ [1, 2, . . . , 3t]. This probability is calculated by multiplying the

probability of each realization through the whole scenario path and normalizing it

over all scenarios so the sum of the probabilities over all scenarios is equal to 1. An

example of a two-stage scenario tree is depicted in Section A.1.
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Figure 2.3 Multi-stage scenario tree. Terms pHt and pLt denote the realization
probabilities of high (H) and low (L) levels of infestation after surveillance; pMt denotes
a default realization of medium infestation level (M) without surveillance. Black
circles represent nodes with decisions after the surveillance; white circles depict nodes
without surveillance; arcs leaving black and white circles depict possible realizations
of the estimated beliefs about the number of susceptible and infested trees; red
arrows depict realizations of high infestation levels; green arrows depict realizations
of low infestation levels; yellow arrows depict anticipated levels of infestation without
surveillance based on the initial belief. Squares Dt,s depict treatment and removal
decisions.
Source: Adapted from Kıbış et al. [2021].

2.2.3 Algorithm for Scenario Tree Probability

We computed the expected values of the infestation probabilities for each period in

the scenario tree using the uncertain outcomes of spread. Given that the surveillance

outcomes are unknown, we assumed equal probabilities for realizations of high and low

infestation levels in time period one. We then updated the realization probabilities for

future periods based on the outcomes of the surveys done in previous periods. For each

scenario in a multi-stage planning problem, we have calculated the probabilities of

infestation with a new heuristic algorithm. This algorithm assigns higher probabilities

to reoccurring events and assumes that realizations of infestation outcomes are time-
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dependent. For example, if a particular realization is observed in time period t, the

likelihood of having the same realization in time period t + 1 is higher. Section A.2,

Algorithm 5, describes the heuristic algorithm and shows a probability calculation

example for the three-stage scenario tree depicted in Figure 2.4.

Figure 2.4 Estimating the probabilities of the scenario occurrence for a 3-period
example using Algorithm 1. Bold red lines show realizations of high infestation
level, dashed green lines show realizations of low infestation level after surveillance,
and dotted black lines show realizations of the expected medium infestation level
without surveillance. The numbers between lines show the probabilities of scenario
realizations. π1 − π3t depict the probabilities for each scenario ω.

2.2.4 Notation

Sets and Indices

Γ Set of all sites, Γ =
{

1, 2, . . . , Γ̄
}
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K Set of infestation levels, K = {1, 2, 3}

T Set of time periods, T =
{

1, . . . , T̄
}

Ω Set of scenarios in a scenario tree, Ω =
{

1, . . . , Ω̄
}

χ Set of neighboring layers that a spread can happen from a site i; each layer represents
a distance dependent neighbor of site i with similar spread rates

i Index for site where i ∈ Γ

Θι
i Set of neighboring sites of site i at layer ι

k Index for infestation level where k ∈ K

t Index for time period where t ∈ T

j Index for neighboring sites of site i at layer ι where j ∈ Θι
i

ω Index for a scenario where ω ∈ Ω

ι Index for neighboring layer where ι ∈ χ

Parameters

πω Probability for scenario ω

c1 Cost of surveying (inspecting) a tree

c2 Cost of treatment

c3 Cost of removal

α Monetary value of an uninfested tree

ϑk Penalty value of each infested tree at infestation level k

rk Impact rate of each infested tree at infestation level k within a site i, i.e., number
of new infestations per infested tree at level k

υ Surveillance efficiency, i.e., percent of infested trees that are identified correctly

τ Discount rate

δt Discount factor at time t which is equal to
1

(1 + τ)t

Ψω Budget for scenario ω

θιk Infestation impact of kth-level infested trees in neighboring layer ι belonging to site
j

κ Maximum number of trees surveyed in each site i
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γi Number of surveyed trees in site i under surveillance at time t,i.e., γi = min (N t
iω, κ)

pιj→i Probability of infestation spread from site j to i at neighboring layer ι

βtikω Percentage change in belief of infestation after surveillance for site i, infestation
level k, at time t, for scenario ω

N̄i Initial number of tree population at site i

Īik Initial number of infested tree population at each infestation level k, at site i

Binary Decision Parameters in Decision Scenario Tree

xtω =

{
1 if surveillance is applied at time t, for scenario ω

0 otherwise

Decision Variables

N t
iω Total number of trees at site i, at time t, for scenario ω

Stiω Number of susceptible trees at site i, at time t, for scenario ω

Ĩ tikω Believed number of infested trees at site i, at time t, for infestation level k, for
scenario ω before surveillance

...
I
t
ikω Transition number of infested trees at site i, at time t, at infestation level k, for

scenario ω after surveillance without considering total tree population

I tikω Estimated number of infested trees at site i, at time t, at infestation level k, for
scenario ω after surveillance with considering total tree population

V t
ikω Number of treated trees at site i, at time t, at infestation level k, for scenario ω

Rt
ikω Number of removed trees at site i, at time t, at infestation level k, for scenario

ω

H t
iω Number of trees surveyed at site i, at time t for scenario ω

Qt
ikω Number of infested trees remaining after treatment and removal at site i, at

time t, at infestation level k, for scenario ω

Linearization Variables

utikω =


1 if transition population is assigned to infestation level k, at site i

at time t

0 otherwise
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2.2.5 Mathematical Model

Max
∑
ω∈Ω

πω

(∑
t∈T

δt
∑
i∈Γ

(
αStiω −

n∑
k=1

ϑkI
t
ikω

))
(2.1)

Subject to : Initial Total Population

N1
iω = N̄i ∀ ω, i, (2.2)

Initial Belief of Infestation

Ĩ1
ikω = Īik ∀ ω, i, k, (2.3)

Transition Infestation Level

...
I
t
ikω = Ĩ tikω

(
1 + xtωβ

t
iksω

)
∀ ω, i, t, k, (2.4)

Susceptible (Healthy) Tree Population

Stiω = N t
iω −

n∑
k=1

I tikω ∀ ω, i, t, (2.5)

Population Constraint

N t+1
iω = N t

iω −
n−2∑
k=1

V t
ikω −

n∑
k=1

Rt
ikω ∀ ω, i, &, t = 1, (2.6)
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N t+1
iω = N t

iω −
n−2∑
k=1

V t
ikω −

n∑
k=1

Rt
ikω +

n−2∑
k=1

V t−1
ikω ∀ ω, i, &, t = 2 . . . T̄ − 1,

(2.7)

Carrying Capacity Constraints

I tikω ≤ N t
iω −

n∑
d=min(k+1,n)

I tidω ∀ ω, i, t, k, (2.8)

I tikω ≤
...
I
t
ikω ∀ ω, i, t, k, (2.9)

...
I
t
ikω − I tikω ≤ N̄i

(
1− utikω

)
∀ ω, i, t, k, (2.10)

N t
iω −

n∑
d=min(k+1,n)

I tidω

− I tikω ≤ N̄iu
t
ikω ∀ ω, i, t, k, (2.11)

Number of Treated and Removed Trees

V t
ikω +Rt

ikω ≤ I tikω

t∑
a=max[t−k+1,1]

xaω ∀ ω, i, t, k = 1, (2.12)

Rt
ikω ≤ I tikω

t∑
a=max[t−k+1,1]

xaω ∀ ω, i, t k = n− 1 & n, (2.13)
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Believed (Expected) Number of Infested Trees

Ĩ t+1
i1ω =

n∑
g=1

Qt
igωrg +

n∑
g=1

∑
ι∈χ

∑
j∈Θιi

Qtι
jgωθ

ι
kp
l
j→i ∀ ω, i, ι, j & t = 1 . . . T̄ − 1,

(2.14)

Qtι
igω =


I tιigω − υV tι

igω − υRtι
igω g = 1

I tιigω − υRtι
igω g = n− 1 & n

∀ ω, i, t, ι, (2.15)

Ĩ t+1
ikω = I ti(k−1)ω − υV t

i(k−1)ω − υRt
i(k−1)ω ∀ ω, i, & t = 1 . . . T̄ − 1 & k = 2,

(2.16)

Ĩ t+1
ikω =

(
I ti(k−1)ω − υRt

i(k−1)ω

)
+
(
I tikω − υRt

ikω

)
∀ ω, i, t = 1 . . . T̄ − 1 & k = n,

(2.17)

Budget Constraint

c1

∑
t∈T

∑
i∈Γ

H t
iω + c2

∑
t∈T

∑
i∈Γ

n−2∑
k=1

V t
ikω + c3

∑
t∈T

∑
i∈Γ

n∑
k=1

Rt
ikω ≤ Ψω ∀ ω, i, t, k,

(2.18)

H t
iω = γix

t
ω ∀ ω, i, k, and t = 1, 2, . . . , T, (2.19)
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γi = min
(
N t
iω, κ

)
∀ ω, i, t, (2.20)

Non-anticipativity Constraints

N t
iω = N t

iω′ Stiω = Stiω′ Ĩ tikω = Ĩ tikω′ ,

I tikω = I tikω′
...
I
t
ikω =

...
I
t
ikω′ V t

ikω = V t
ikω′ ,

utikω = utikω′ utikω = utikω′ Rt
ikω = Rt

ikω′ ,

∀ ω = ω′ ∈ Ω s.t. ωt = ω′t, ∀ i, t, k,

(2.21)

Non-negativity and Binary Restrictions

N t
iω, S

t
iω, I

t
ikω, Ĩ

t
ikω,

...
I
t
ikω, V

t
ikω, R

t
ikω ≥ 0 utikω ∈ {0, 1} ∀ ω, i, k. (2.22)

The objective function of our model, as can be seen in Equation (2.1), maximizes

the expected number of susceptible (healthy) trees in the managed area over the

planning horizon minus the penalty associated with the number of asymptomatic

and symptomatic infested trees present in the area over a set of plausible infestation

scenarios. Equations (2.2) and (2.3) initialize the size of the host tree population and

the expected infestation levels for each site i and scenario ω in the model at time

period 1. Equations (2.6) and (2.7) estimate the total size of the ash tree population

and its change over time as more infested trees are removed and treated. Based on

the expected infestation level and decisions taken at the surveyed sites, we estimate

the number of removed or treated trees, which are infested, at a given site i from

the total tree population at that site. The treated trees that are removed from the
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infested tree population will be moved back to the infested population at later periods

once they become susceptible after a two-year immunity period.

Equation (2.4) computes the realizations of infestation scenarios at each level

k after the surveillance decisions. We assume that after surveillance, the estimated

number of infested trees for each infestation level k is known. Term Ĩ tikω represents

the believed expected number of trees infested at a particular level k. If surveillance

is applied, the parameter xtω will take a value of 1, and the value of Ĩ tikω will change

by βtikω, which defines the percent change in the expected level of infestation after

the surveillance is performed. Thus Equation (2.4) estimates the number of infested

trees for each infestation level k after surveillance where
...
I
t
ikω denotes the transition

number of the infested trees at each infestation level k, which represents the estimated

number without considering the total tree population in a site i.

Equation (2.5) calculates the number of susceptible (i.e., uninfested and treated)

trees. The total population in constraint (2.5) with Equation (2.7) also ensure that

treated trees are moved back to the infested tree population after their immunization

period ends.

We also need an equation to calculate the estimated number of infested trees in

a tree population because the number of new infestations is limited by the maximum

susceptible tree population that could be infested, i.e.:

I tkω = min

N t
iω −

n∑
d=min(k+1,n)

I tidω,
...
I
t
ikω

 (2.23)

Equation (3.45) defines the estimated number of infested trees at a survey site i,

for each scenario ω, time period t, at infestation level k and implied that the estimated

number of infested trees at an infestation level k cannot exceed the total number of

healthy trees minus the infested trees at higher infestation levels (k+1, . . . , n) at a site

34



i. If the remaining size of the healthy tree population exceeds the number of infested

trees calculated with Equation (2.4), the estimated number of trees is set equivalent to

the transition number of infested trees that gives the estimated number of trees based

on infestation growth equations and realization of the uncertain infestation outcomes

after surveillance. Equations (2.8)–(2.11) provide an equivalent linearization of the

non-linear carrying capacity constraint (3.45). Equations (2.8) and (2.9) set an upper

bound on the estimated number of infested trees and Equations (2.10) and (2.11) set

a lower bound by using an auxiliary binary decision variable utikω.

Equations (2.12) and (2.13) define the upper bound on the number of treated

and removed trees. As the infestation spreads, more susceptible trees could become

infested. When the budget is too small to treat or remove all detected infested trees

immediately, the infestation spreads to other trees in a given site and to neighboring

sites j ∈ Θι
i.

Equation (2.14) defines the expected number of newly infested trees at level

k = 1 in time period t + 1. The term, Qt
igω, denotes the number of untreated or

unremoved trees in time period t in site i and is defined in Equation (2.15). Parameter

υ defines the surveillance efficiency in Equation (2.15) which is the proportion of

infested trees that are detected at a site after surveillance. Term pιj→i in Equation

(2.14) defines the probability of infestation spreading from site j to site i located

at the ιth distance class from j. To calculate the infestation spread to a site i we

used four distance-dependent spread layers, ι, which cover a 4-km radius from the

infested site with 1-km distance intervals. Term Θι
i defines the spread rate from the

neighboring sites at each distance class ι to a given site i.

Inspecting a small sample of trees allows detecting only a portion of the infested

trees and leads to the failure to treat or remove all the infested trees at a survey site.

This issue is handled by Equations (2.16) and (2.17). Constraint (2.16) ensures that

trees at higher infestation levels (k > 1), if not removed or treated, transition to the
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next infestation level, k+ 1 at the next time period. Coefficient υ in Equation (2.16)

adjusts the number of removed and treated trees to compensate for the uncertainty

of the surveillance outcomes.

Equation (2.17) states that trees that reach the highest infestation level k = n

are considered dead and remain at this level until the end of the planning horizon.

We assume that dead trees do not pose an infestation threat but should be removed

due to hazard and liability concerns if the budget allows.

The medium extent (M) represents the expected level of infestation in the

absence of surveillance based on prior information about the invasion and is calculated

in the model using Equations (2.14) - (2.17). Because the surveillance selection

binary parameter xtω in Equation (2.4) becomes 0 under no surveillance, the expected

infestation level will not change. When surveillance occurs, the xtω = 1, and so the

expected infestation level will change by βtikω, (i.e., by +0.4 or -0.2 in realizations of

(H) or low (L) infestation levels, respectively).

Equation (2.18) sets an upper bound on the available budget over the planning

horizon in a scenario ω. Treatment and removal decisions depend on the infestation

level k. Term H t
iω denotes the number of inspected trees and is defined in Equation

(2.19). We assume that only a sample of maximum κ trees is inspected at each

surveyed site. In Equation (2.20), γi defines the number of surveyed trees, which is

the minimum of the total number of trees in site i and sample size κ. Terms V t
ikω and

Rt
ikω denote the number of treated and removed trees, respectively.

Equation (2.21) lists the non-anticipativity constraints, which ensure that the

scenarios with the same history up to a given stage t share the same decisions until

that stage. For example, if two scenarios ω
′
and ω have the same history of infestation

and surveillance decisions until period t, i.e., ωt = ω
′
t, all decision variables up to stage

t should be equal to each other. Finally, Equation (2.22) defines the non-negativity
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constraints on the decision variables and a binary status of the linearization variable,

utikω.

2.3 Model Application and Data

We applied our MSS-MIP model to assess the surveillance and management options

for EAB infestation in Winnipeg, Manitoba, Canada. The study area was divided

into 1x1-km survey units. We estimated the ash density at each survey site from a

municipal tree inventory (City of Winnipeg. (2018), H. Daudet, City of Winnipeg,

Urban For. Br., pers. comm.), which provided information about tree species,

ownership, and size (Figure 2.5).

We estimated the probabilities of EAB spread from historical records of urban

EAB infestation in Twin Cities, Minnesota [Osthus, 2017]. As with Winnipeg, we

divided the Twin Cities area into a grid of 1x1-km potential survey sites. For

each 1 − km2 site j, we estimated the distance to the nearest infested site in a

particular year and, based on that distance, estimated the infestation likelihood for

a corresponding distance 1-km class. Using a set of distance-dependent infestation

probabilities and the locations of the infested sites, we then generated the likelihoods

of EAB spread for potential survey sites in Winnipeg. When calculating the likelihood

of new infestations at a site, we also have taken into account the chance of the

infestation spread from the surrounding sites. For each survey site, the model

tracked the potential spread of EAB from the neighboring sites at four 1-km distance

classes each 1, 2, 3, and 4 km away from the infested site. Distance-dependent

probabilities of spread originating from symptomatic infested ash trees were estimated

as 0.34 at the infested site, 0.21, 0.12, and 0.05 at the neighboring sites at 2, 3

and 4-km distance while those originating from infested asymptomatic ash trees in

1, 2, 3 and 4-km neighboring sites are 0.2, 0.15, 0.08 and 0.03, respectively. We

estimated two sets of distance-dependent probabilities of spread for asymptomatic
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Figure 2.5 Host tree density map for a case study area in Winnipeg, Canada.
Square outline delineates the neighborhood area around the current EAB infestations.

and symptomatic infested trees. Symptomatic trees have typically more EAB galleries

than asymptomatic trees, hence their threat to other susceptible trees was assumed

to be higher [Knight et al., 2012]. We assumed that dead trees do not produce

propagules and have no impact on other susceptible trees. To address the uncertainty

about EAB spread, we modeled changes in the anticipated levels of infestation once

the surveillance is completed. We assumed that the manager anticipates changes in
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the infestation levels after surveillance by -20% or +40% from its current level. Each

of these two realizations occurs with the probability of 0.5 in the first period and then

updated dynamically for all other periods using Algorithm 1 as shown in Section A.2.

When no surveillance is applied, trees progress to the next infestation level based on

the default assumption about the infestation level.

The efficiency of surveillance depends on the choice of the method to detect the

signs of EAB attack. In Canada, two common inspection methods used in precious

survey campaigns include sampling host tree branches and installing sticky traps

[Hopkin et al., 2004, Ryall et al., 2011, 2013, Turgeon et al., 2016]. Sampling branches

and peeling their bark to inspect for EAB galleries is the most reliable method to

detect EAB [Ryall et al., 2011, Turgeon et al., 2016]. The application of sticky

traps includes hanging the traps baited with plant volatile and EAB pheromone

followed by one-two checkup visits [Ryall, 2015]. Based on the previous EAB survey

study [Yemshanov et al., 2019b], the detection rate for branch sampling was set to

0.7, based on a typical sample of two mid-crown branches from a medium-sized tree

[Ryall, 2015]. The likelihood of a single sticky trap detecting the presence of an EAB

population on a tree was set to 0.5. The specified detection rates were determined

for urban EAB populations in southern Ontario, Canada but should be applicable for

Winnipeg given its tree size distribution is typical of other urban areas in Canada.

Based on the experiences from past EAB surveys in Ontario typical sampling rates

for branch sampling and trapping rarely exceeded 5-10 trees –km−1 due to the high

cost of inspections, hence we consider the scenarios using a fixed sampling rate κ =

5 trees −site−1. We used the survey cost estimates from Yemshanov et al. [2019b]:

$87 for installing a sticky trap and $124 to inspect a tree via branch sampling. The

monetary value of services provided by a host tree was estimated at 72 CAD [Kıbış

et al., 2021]. The cost of treating asymptomatic infested trees was estimated at 180

CAD and the cost of removing an infested tree was estimated 800 CAD [Yemshanov
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et al., 2019b]. We explored the scenarios with the budget limits ranging from 1M to

2M over a 5-year planning horizon. The social discount rate was set to 2%.

2.4 Results

Our results reported below describe the general model behavior and present outputs

which have practical utility for decision-making, including general indication where

and when treatments and/or tree removal may be feasible, differences between using

trapping and branch sampling methods, and the impacts of survey timing and

management actions.

2.4.1 Optimal Management

Cost of Surveillance, Treatment, and Removal We illustrate the general

model behavior by showing the solutions for a small area surrounding the infested

sites - a 5x5 subset of survey sites under a budget of $2M (red outline in Figure

2.5). Since each scenario of the scenario tree has a different combination of

the infestation probabilities, management decisions, and budget allocations for

surveillance, treatment, and tree removal, we present examples of optimal solutions

for four distinct scenarios. For each scenario we assign an identifier that lists the

occurrence of surveillance events and the extent of the detected infestation over a

5-year planning horizon. For example, after surveillance is done, a possible outcome

of the survey is the detection of high (H) or low (L) levels of infestation. In the

absence of surveys, the expected state of the infestation is a medium extent (M). Our

scenarios depict different levels of infestation and distinct timing of surveillance. For

example, scenario H-H-H-H-H implies that surveillance is done each year and a high

infestation level is detected. Meanwhile, scenario 126 with realization L-L-M-H-H

implies that in the first two years surveillance is done and a low infestation level is

detected. Note that H and L only occur under surveillance, and M only occurs under
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no surveillance. Thus, we do not need to provide a specific notation for surveillance

decisions to represent scenarios. In the third year, no surveillance is done, so M

means we still remain truthful to the expected infestation growth calculated by the

mathematical model based on the initial belief of infestation of the manager. And

lastly, the last two years, surveillance is done, and a high realization is encountered.

In our case, the scenario with the highest net benefits is scenario 161, which only

surveys in the first stage of the problem and has a low infestation realization in the

initial stage, as denoted by L-M-M-M-M.

Figure 2.6 Treatment, removal, and surveillance cost for low and high realizations
over 5 years for four different scenarios. Scenario 0 is H-H-H-H-H, scenario 4 is
H-H-H-L-L, scenario 117 is L-L-L-H-H and lastly, scenario 121 is L-L-L-L-L, where L
and H stand for low and high realization, respectively.

In Figure 2.6, scenarios H-H-H-H-H and L-L-L-L-L assume the detection of

correspondingly high and low infestation levels in all time periods. Scenario H-H-H-

L-L assumes the detection of high infestation levels in periods 1-3 and low infestation

levels in periods 4 and 5 and scenario L-L-L-H-H depicts an opposite survey outcome

when low infestation levels are detected in periods 1-3 and high levels in periods 4

and 5. The total cost in each scenario varies due to different streams of treatment
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and removal decisions. Given that the surveys occur every time period, the cost

of surveillance is the same for all scenarios however, the cost of treatment and tree

removal depends on the level of the detected infestation. For example, scenario L-L-

L-L-L had the lowest total cost because the infestation was detected at a low level

and required less treatment and removal efforts. The level of infestation detected

early has a higher impact on management actions and their total cost. More budget

was allocated in the scenario with the detected high level of infestation in first two

periods than in the scenario with the detected low infestation level in periods 1-2

(compare the costs of scenario H-H-H-L-L and scenario L-L-L-H-H in Figure 2.6).

Where to Survey, Treat, and Remove Most of the applied survey and

management actions in optimal solutions have occurred in close proximity to the

infested sites hence we illustrate the model behavior using a 5x5 site area proximate

to the infested sites (big red rectangle in Figure 2.5). Figure 2.7 shows the number

of infested, treated, and removed trees for time periods 1-4 in the worst-case scenario

H-H-H-H-H with the high level of infestation detected in all periods. When no action

is taken, more trees get infested in close proximity to the infested sites, which increases

the local rate of spread and the number of infested trees. Timely treatment and

tree removal actions help reduce the number of infested trees in close proximity to

the infested sites. Most of the treatment occurred in the sites with the detected

infested trees in the first two periods (when treatment is the most effective). Tree

removal was prescribed roughly in the same selected locations but occurred over

periods 1-4. All treatments and tree removals in period 1 occurred in the sites with the

original infestations. Imperfect detection in the first period required a more aggressive

treatment and removal in the following periods to compensate for poor detection

accuracy. Our results show that detecting and treating the infested trees as early as
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possible is the most cost-effective approach, but imperfect detection necessitates a

larger-scale treatment and tree removal campaign in the following periods.

Figure 2.7 Total number of infested trees under no action, infested trees under
optimal action, treated, and removed trees for each period for scenario H-H-H-H-H
(high infestation level detected in all periods) over planning periods 1-4.

Figure 2.8 Total number of infested trees under no action, infested trees under
optimal action, treated, and removed trees for each period for scenario L-L-L-L-L
(low infestation level detected in all periods) over planning periods 1-4.

43



Figure 2.8 reports similar results but for scenario L-L-L-L-L when the surveillance

detects the low infestation level in each time period. Compared to the worst-case

scenario, the detection of the infested trees occurred at shorter distances from the

infested sites. Treatment and removal mostly occurred in the currently known infested

sites.

We have also compared the impacts of taking no action in four different

scenarios, H-H-H-H-H, H-H-L-L-L, L-L-H-H-H, and L-L-L-L-L. We define the net

benefit summary metric as a difference between the objective function value (which is

the total value of healthy and treated trees in a landscape) and the cost of surveillance,

treatment, and removal. As Table 2.1 suggests, optimal management solutions with

treatment and tree removal have higher benefits than no-action solutions, which

indicates that active treatment and removal options remain cost-effective despite the

incurred survey and management costs.

Table 2.1 Net Benefits in the Optimal Management (Action) and No-Action
Solutions for Scenario H-H-H-H-H, H-H-L-L-L, L-L-H-H-H, and L-L-L-L-L

Scenario Action No Action

H-H-H-H-H $122,258,000 $121,704,000

H-H-L-L-L $122,261,590 $122,183,550

L-L-H-H-H $122,399,610 $122,327,760

L-L-L-L-L $122,400,000 $122,119,000

2.4.2 Effect of Surveillance Timing on Net Benefits

Surveillance is crucial in our model as no action can be taken without surveillance.

When no surveillance is performed in a particular time period the infestation continues

to spread and cases larger damage. We illustrate the importance of maintaining the
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surveillance regime by analyzing the optimal solutions with a distinct timing of survey

actions. We compare four scenarios, H-M-M-M-M, M-H-M-M-M, M-M-H-M-M, and

M-M-M-H-M, which apply the surveys only in time periods 1, 2, 3 or 4. All scenarios

have the same surveillance costs (i.e., one year of surveys only). Table 2.2 indicates

that the scenarios with the earliest survey actions have the lowest total treatment and

removal cost. This is because early detection leads to a more effective treatment or

removal when the infestation is at an early stage. When the surveillance is delayed,

infestation is allowed to spread to further distances, and more trees get infested and

will require treatment or removal. In particular, the efficacy of tree removal action is

affected by the timing of surveillance. The sooner the infestation is detected the less

it will cost to remove the infested trees.

Table 2.2 Costs of Surveillance, Treatment, and Removal for the Scenarios with
Different Timing of the Survey Actions

Scenario Survey Period Surveillance cost Treatment cost Removal cost Total cost Net Benefits*

H-M-M-M-M 1 (no-delay) $286,440 $12,100 $94,520 $393,059 $123,990,000

M-H-M-M-M 2 $286,440 $5,640 $134,000 $462,082 $123,130,000

M-M-H-M-M 3 $286,440 $6,340 $160,680 $453,457 $123,170,000

M-M-M-H-M 4 $286,440 $3,620 $175,660 $465,724 $123,030,000

? The net benefit value is calculated as a difference between the objective value minus the total cost of surveys, treatment and tree removal.

The scenario with no survey-delays (H-M-M-M-M) also had the highest net

benefits. Overall, the delay in surveillance allows the infestation to spread to a larger

area and will necessitate costlier tree removal and treatment actions, hence it is always

beneficial to survey and treat the sites as early as possible.

2.4.3 Budget Allocation and Priority of Actions

We have solved the problem for the range of budget levels including $1.45M, $1.5M,

$1.75M, and $2M. Here, we present optimal solutions for treatment and removal

decisions in the worst-case scenario H-H-H-H-H, with the detected high levels of
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infestation and the surveillance done in every time period. Figure 2.9 shows the

surveillance, treatment, and removal costs for the worst-case scenario at different

budget levels. At the lowest budget, $1.45M, only a portion of the infested trees

in closest proximity to the infested sites can be treated and also a small number of

symptomatic trees can be removed in period 1. Since the budget is too small to

treat or remove all detected infested trees, the infestation continues to spread. At

the budget level of $1.75M, more funds are available for treatment of asymptomatic

trees and removal of symptomatic and dead trees. Given a small extent of the current

EAB infestation in Winnipeg, all the detected infested trees in close proximity to the

infested trees can be treated, but only a small portion is feasible to remove due to

the high cost of tree removal. The best strategy is to treat the detected infested

asymptomatic trees, and if funds permit, remove a portion of symptomatic infested

and dead trees in closest proximity to the infested sites.

Figure 2.9 Surveillance, treatment, and removal costs for different budget levels
under worst-case scenario H-H-H-H-H with continuous surveillance over the planning
horizon and the detected high level of infestation.

The budget level affects the timing and the extent of tree removal and treatment

actions. Figures 2.10 (a) and (b) show the total number of infested, treated, and
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removed trees over a planning horizon for budget allocations of $1.5M and $2M,

respectively. In both solutions, treatments of asymptomatic infested trees and removal

of symptomatic infested trees help minimize the impact of infestation on a host

tree population. Treatments of healthy and asymptomatic trees prevent them from

transitioning to a more severe infestation level and so helps reduce the local spread

rate in the next time period. Removal of symptomatic infested trees has a higher

priority than removal of dead trees because it reduces the chances of EAB spreading

to nearby trees in close proximity to the infested nuclei.

For example, in the scenario with $1.5M budget, insufficient budget level limited

the scope of tree removal actions to a few symptomatic infested trees (Figure 2.10).

Note that the removal of dead trees may be mandatory in an urban setting in some

circumstances due to liability or safety concerns, and therefore may require additional

funds to be allocated for mandatory tree removal. Given a small extent of the current

EAB infestation in Winnipeg, we did not include mandatory tree removal options

but this could be a focus of future work if the EAB infestation causes widespread

tree mortality (like in previous urban EAB outbreaks in Ontario and Michigan).

Treatments of asymptomatic trees is only effective in the first three time periods

when the infestation is in its early stage. Removal of symptomatic trees becomes most

effective in period 2 and essentially is a more preferred action than the treatment as

the number of symptomatic trees increase. Removing dead trees is feasible in periods

2 and 3 only when there the budget is sufficient to treat the detected asymptomatic

and remove the symptomatic trees. No management action is taken for periods 4 and

5 under a budget of $1.5M because all budget was already spent during time periods

1, 2, and 3.
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Figure 2.10 Total number of infested, treated, and removed trees over time under
scenario 0 with $1.5M (a) and $2M (b) budget.

2.4.4 Is treatment a choice?

We also illustrate the impact of applying the treatments of asymptomatic trees

using four distinct scenarios with different infestation level sequences of management

decisions. Table 2.3 shows differences in net benefit values between the solutions

with and without treatments in the scenarios having different levels of infestation.

The scenarios show distinct infestation profiles with the surveillance done in all time

periods. In general, treatments increased the net benefit value in all infestation

scenarios.
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Table 2.3 Net Benefit Values in Optimal Treatment vs No-Treatment Under Various
Scenarios

Scenario Scenario
Description

No-Treatment Net
Benefits

Optimal Treatment
Net Benefits

H-H-H-H-H 1 (no-delay) $121,994,000 $122,258,000

H-H-L-L-L 2 $122,184,000 $122,262,000

L-L-H-H-H 3 $122,328,000 $122,400,000

L-L-L-L-L 4 $122,335,000 $122,400,000

2.4.5 Impact of Surveillance Efficiency

Surveillance efficiency has a direct impact on the total cost, therefore, affecting also

the total net benefits. Here we discuss the trade-off of the surveillance cost and

surveillance efficiency.

We have compared the optimal solutions using branch sampling vs. the

detection with sticky traps in a high-infestation scenario H-H-H-H-H with the

surveillance done in all time periods 1-5. Figure 2.11 shows that branch sampling

yields a higher objective value than using sticky traps because it has a higher detection

accuracy and so enables finding and treating more infested asymptomatic trees at

early stages. However, branch sampling is a more costly option hence the total cost

portion spent on surveillance is higher (Figure 2.12). Comparatively, the solutions

with sticky traps spend more on treatment and a significantly more on removal

because sticky traps cannot detect the infestation at early stages. We have also

compared the optimal timing of treatment and tree removal actions for the solutions

using branch sampling and sticky traps in high-infestation scenario H-H-H-H-H under

$2M budget limit. Figure 2.13 shows the number of infested, treated, and removed

trees over time for each of the detection methods. Both methods show a similar

number of removed and treated trees in period 1, but the solutions with branch

sampling show that a lower number of trees required treatment and removal in periods

2 and 3. This is because the higher accuracy of the branch sampling method allows
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Figure 2.11 Objective function values for scenario 0 (H-H-H-H-H) using branch
sampling and sticky trap methods with $2M budget.

Figure 2.12 Surveillance, treatment, and removal cost comparison between branch
sampling and sticky trap methods for scenario 0 (H-H-H-H-H) with $2M budget

detecting more infested trees at the earliest possible time (period 1) and so fewer

infested trees will need treatment or removal in the following periods. Also, the

solutions using sticky traps required more periods of surveys to detect the bulk of the
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infestation than the solutions using branch sampling. This is because sticky traps

have lower surveillance efficiency. Detecting and subsequently treating or removing

fewer trees in a current period leads to a higher infestation rate in the following

periods. Our results indicate that while branch sampling has a higher cost, its higher

efficiency makes up for the increased cost in terms of reducing the number of trees

infested with EAB.

Figure 2.13 Total number of infested, treated and removed trees over time for
scenario 0 with budget $2M: a) using branch sampling; b) using sticky traps.
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In terms of the net benefits, the surveillance via sticky traps costs less than

using branch sampling. However, branch sampling has a higher objective value, that

is, it enables keeping more uninfested trees in the managed area. The difference in

net benefit values is bigger in small-budget solutions than in large-budget solutions

(Table 2.4) because small budgets are insufficient to treat and remove all the detected

trees which essentially renders the survey efforts ineffective.

Table 2.4 Net Benefit Values in the Solutions Using Branch Sampling and Sticky
Traps

Surveillance Method $1.45M $1.5M $1.75M $2M

Branch Sampling $121,913,000 $122,055,000 $122,257,000 $122,258,000

Sticky Traps $122,652,000 $122,652,000 $122,481,000 $122,652,000

2.5 Discussion and Conclusions

In this chapter, we modified the MSS-MIP model proposed by Kıbış et al. [2021] to

evaluate main management strategies to manage an EAB infestation in Winnipeg,

Canada. The model applies surveillance to inform decisions on optional treatment

and removal of the infested trees under a limited budget. The sequences of scenario

decisions and associated infestation outcomes are integrated into a scenario tree

where, for each scenario, the probability of infestation in a given time period is

calculated dynamically. Managing pest outbreaks often requires allocating scarce

resources between surveillance and control actions. Our approach helps address this

challenge and demonstrates how accounting for key assumptions about the infestation

severity, cost, and spatial patterns of the infestation may affect the scope and timing

of control decisions. Our results demonstrate that timely detection and early response

actions are key factors in the successful control of a pest invasion and a maximization

of net benefits of the urban ash trees.
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The findings also emphasize the importance of treatments of ash trees as early

as possible. Treating asymptomatic trees at the earliest stages of invasion provides

higher net benefits than tree removal or no-treatment options. However, we show

that treatment of the infested trees is only effective when done at the earliest stage of

infestation. When the surveillance is delayed tree removal becomes a more preferred

option but would require significantly higher cost to achieve the same level of control.

Our results also provide new insights about the preferred use of trapping versus

branch sampling techniques for EAB detection. In multi-year EAB surveys, the use of

branch sampling is advised because it yields better accuracy of detecting the infested

asymptomatic trees and so, when implemented at early stages of infestation, enables

treating and removing more infested trees which may help reduce the local rate of

spread.

Another important insight from our work is that the level of available budget

essentially controls the decisions on treatment or removal of the infested trees. Since

tree removal is costly the extent of tree removal actions depends on the level of

the budget available after the surveillance. Our results emphasize the importance

of allocating a sufficient budget for tree removal to slow the spread of EAB. Tree

removal becomes less important in small-budget solutions where the optimal policy

is to spend most of the budget on treatments.

Future work

Dealing with uncertainty about the pest’s rate of spread is a common problem in

managing biological invasions. Precise estimates of spread rates are rarely available for

newly detected infestations and can only be approximated from previous infestations

or from general knowledge of the invasive organism’s biology. In our model, we used a

simplified treatment of the uncertainty about the infestation rates via an introduction

of the expected high and low levels of infestation. Potentially more infestation levels
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could be added to a scenario tree in a future study. Refining the data assumptions is

another avenue for improving the practical utility of the model. For instance, colder

winters in Winnipeg may cause EAB to switch to a longer, 2-year life cycle, which

would require the re-parameterizing of the model for two-year time steps.

In our model, we assumed a fixed tree sampling rate across all surveyed sites.

Potentially, the problem could be modified by allowing an optimal selection from a

set of pre-defined sampling rates via an introduction of auxiliary binary variables

which select a particular sampling rate value at a survey site (and a linked set of

surveillance efficiencies). Further refinements also include an account for long-distance

spread assumptions for distances beyond 4 km. These modifications are expected

to significantly increase the problem size and its combinatorial complexity and will

require new approaches to solve the model for practical cases. Another future

direction includes the introduction of coherent risk measures to capture the variability

of the random variables in the upcoming stages of the model enabling the risk-averse

decision making of the manager. This will be the focus of our future work.
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CHAPTER 3

RISK-AVERSE MULTI-STAGE STOCHASTIC OPTIMIZATION FOR
SURVEILLANCE AND OPERATIONS PLANNING OF A FOREST

INSECT INFESTATION

3.1 Introduction

Multi-stage stochastic programming has been widely used in many fields, including

but not limited to healthcare [Yin and Büyüktahtakın, 2020], forestry [Kıbış et al.,

2021], and finance [Abdelaziz et al., 2007]. Multi-stage stochastic programs typically

minimize (maximize) an expectation criterion that calculates the expected cost

(benefit) of all possible scenarios, each of which is mapped with a certain probability

of occurrence. The expectation objective is useful in situations where the uncertainty

does not indicate a potential for observing extreme events. However, if the

environment features the possibility of experiencing high-impact events, even with

small probabilities, the expectation criterion may not perform well because it does

not capture the variability of events. In these situations, where a high impact scenario

might happen, the expectation criterion is accompanied by a risk measure.

In this research, we consider a risk-averse multi-stage stochastic mixed-integer

program (RA-MSS-MIP), where the objective function is a combination of an

expectation operator and a Conditional Value-at-Risk (CVaR) measure for each stage.

We then apply this model to optimize the surveillance and control of a non-native

forest insect, the emerald ash borer (EAB), which has infested large areas covered

with ash trees in North America. The EAB is a wood-boring beetle native to Asia

and discovered in the United States in 2002. Since its discovery, the EAB has killed

millions of ash trees and cost homeowners and local governments billions of dollars.

EAB is a prime example of an invasive species - one that is transported outside

of its native range and introduced to a non-native ecosystem causing economic or

environmental harm. Effective management of invasive species has become a pressing
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problem because they threaten sustainability by adversely impacting the economy, the

environment, and health. Invaders harm biodiversity and degrade the environment

[Wilcove et al., 1998]; increase health problems by spreading many diseases [Juliano

and Philip Lounibos, 2005], and affect food security by reducing the value of

agricultural products [Pejchar and Mooney, 2009]. Due to the substantial impacts

on sustainability and human well-being, the international community, including the

United Nations’ Global Invasive Species Program (GISP), National Invasive Species

Council (NISC), and Center for Invasive Species Management (CISM), has called

for rapid control of invaders to minimize their adverse impacts [Büyüktahtakın and

Haight, 2018].

This study addresses the problem of building a risk-averse spatial-dynamic

model to help communities develop cost-effective strategies for the surveillance

and control of EAB. Former multi-stage stochastic programming models of EAB

surveillance and control decisions [Bushaj et al., 2021b, Kıbış et al., 2021] only

considered an expectation criterion in the objective function, the popular Risk Neutral

measure. However, due to the intrinsic biological characteristics of the invader and

some outside factors, such as careless transportation of infested wood, an infestation

could spread fast, and substantial losses of ash trees could happen in a shorter time

frame than expected. To alleviate the adverse impacts of experiencing such events,

we consider a risk measure in the objective function in addition to the expectation

criterion. The incorporation of the risk factors complicates the model, thus requiring

advanced computational methodologies to solve it. To tackle the computational

difficulty of the proposed complex risk-averse multi-stage stochastic mixed-integer

program, we implement the scenario dominance cutting plane algorithm introduced

in Büyüktahtakın [2020] to solve the RA-MSS-MIP model more efficiently. The

effectiveness of these cuts is studied under the risk-neutral and risk-averse models.

We provide insights on how risk-aversion affects decision-making, such as the budget
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allocated to insecticide treatment and tree removal. We also analyze the benefits of

ash trees under risk compared to the original expectation criterion in the risk-neutral

problem.

3.2 Literature Review

3.2.1 Risk-Averse Stochastic Programming

Traditional two-stage and multi-stage stochastic programs consider only expectation

criterion in the objective function of the optimization problem based on the

probability of each scenario, also known as a risk-neutral approach. In problems

containing outliers in the distribution of the scenarios, the risk-neutral approach may

perform poorly. Assuming that the manager wants to be careful of these extreme

scenarios, in the risk-neutral approach, these undesirable outcomes associated with

a bad scenario cannot be prevented. The solution obtained from optimizing the

expected objective function will perform poorly when one of these outlier scenarios

happens. In such cases, risk-averse models become necessary. For example, in a

disaster management situation [Escudero et al., 2018a], non-repetitive decisions, such

as facility locations [Escudero et al., 2017], may result in a substantial operational

cost or even an inability to fulfill the demand for a specific realization of the random

parameters [Escudero et al., 2018b].

One of the most popular risk measures is the V aRα (Value-at-Risk), which

represents the maximum possible loss over a time horizon at the confidence level

α. While there has been much interest from academic researchers and industry,

implementing the VaR is computationally challenging. In the last two decades, a new

group of risk measures known as coherent risk measures is originated and studied

extensively [Artzner, 1997, Ogryczak and Ruszczyński, 1999]. One of those coherent

risk measures is the Conditional Value-at-Risk (CVaR), representing the weighted

average of the extreme values in the tail of the distribution beyond the VaR cut-off.
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Rockafellar and Uryasev [2000] present a technique on how to evaluate VAR and also

optimize CVaR at the same time. It is shown that CVaR can be linearized and easily

incorporated into a stochastic optimization problem, making it more preferable to

VAR.

Mean-risk models, including VaR, have been widely used in financial

optimization; however, the use of mean-risk models with CVaR in stochastic

programming models is relatively new [Rockafellar and Uryasev, 2000, Ahmed, 2006,

Schultz and Tiedemann, 2006, Miller and Ruszczyński, 2011]. CVaR-based mean-risk

stochastic programming has been studied in various applications, such as supply chain

management [Alem and Morabito, 2013], reverse logistic network design [Soleimani

and Govindan, 2014], and water resources planning [Zhang et al., 2016, Alonso-Ayuso

et al., 2018].

The majority of solution approaches presented for risk-averse multi-stage

stochastic optimization problems are extensions of the solution techniques proposed

for the risk-neutral equivalents Birge and Louveaux [2011]. For example, Shapiro et al.

[2013] and Philpott and De Matos [2012] have extended the stochastic dual dynamic

programming algorithm to risk-averse problems. Schultz and Tiedemann [2006]

develop a Lagrangian decomposition algorithm to solve the scenario-based formulation

of two-stage mixed-integer stochastic programming involving CVaR. Zhang et al.

[2016] use a nested L-shaped method and investigated multiple cuts to improve the

efficiency of a risk-averse multi-stage program. Guo and Ryan [2017] obtain lower

bounds using the progressive hedging algorithm to solve time-consistent risk-averse

multi-stage stochastic integer programs.

When formulating a risk-averse multi-stage stochastic problem, differently from

mean-risk and two-stage stochastic problems, we have to be careful with time

consistency. For risk-neutral and two-stage problems, consistency is ensured by

default [Gollmer et al., 2011, 2008], but as stages increase, different methods to
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preserve time consistency are developed [Shapiro, 2012, Pflug and Pichler, 2016].

Time consistency simply states that the decisions taken today must support the

decisions that happened yesterday for the scenario that was realized. For example,

following the time consistency definition in Alonso-Ayuso et al. [2018] let us assume

that the decisions taken up to the realization of a group of scenarios say scenario 1

to scenario n and stage t′ > 1 (i.e., the decisions from stage 1 to stage t′ − 1 for

this group of scenarios) have been made according to the solution obtained in the

original model solved at stage t = 1. Then the rationale behind a time consistent

risk-averse measure (RAM) is that the solution value to be obtained for any scenario

in our group at time stage t′ and the later solution values obtained in the scenario

tree by the related submodel ‘solved’ at stage t′ should have the same value as in the

original model that is solved at stage t = 1. In other words, the scenarios that are

not in the scenario group we select should not influence the solutions of the submodel

at stage t′ and later solutions for our scenario group (scenarios 1–n).

Pflug and Pichler [2016] have shown that measuring risk at each time stage

separately and measuring the accumulation of risk over a scenario path are incon-

sistent. Ruszczyński and Shapiro [2006] propose a nested risk measure that proves to

be consistent. They ensure its consistency by defining the appropriate conditional risk

mappings in each stage, thus, presenting the risk formulation as a recursive function.

Homem-de-Mello and Pagnoncelli [2016] propose a similar notion of a nested measure

as Expected Conditional Risk Measure (ECRM), stating it to be better from an

algorithmic point of view. As the ECRMs consider only continuous variables, another

type of risk measure that is increasingly used lately is also the Expected Conditional

Stochastic Dominance [Escudero et al., 2018b, 2020], which is based on multi-stage

stochastic dominance functional.
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3.2.2 EAB Control and Risk-Averse Forest Management Planning

Invasive species pose a serious threat to the ecosystems they invade, and thus much

research is performed to design surveillance and control strategies. Management of

invasive species is a complex topic as each different invasive species has its specific

behavior and biological characteristics. Many optimization problems are proposed for

managing invasive species under a limited management budget [Bushaj et al., 2021b,

Kıbış et al., 2021, Kıbış and Büyüktahtakın, 2017, Albers et al., 2010, Hof, 1998,

Huffaker et al., 1992, Kovacs et al., 2014, Büyüktahtakın et al., 2011, Onal et al.,

2020]. For a detailed review of such optimization models, see, e.g., the reviews of

Billionnet [2013] and Büyüktahtakın and Haight [2018].

EAB is one of the most damaging invasive species ever to reach the United

States. Since its discovery in Michigan in 2002, EAB has spread to more than 37

U.S. states and five Canadian provinces, killing millions of ash trees and costing

homeowners and local governments billions of dollars in damages [Aukema et al.,

2011]. To slow down the spread of EAB and reduce its harm, city, county, and

state planners design surveillance and control strategies, usually with limited budgets.

Kıbış et al. [2021] and Bushaj et al. [2021b] addressed the cost-effective allocation

of resources to survey and control of EAB. They integrate surveillance and control

decisions and jointly optimize them to maximize the benefits of healthy ash trees

by saving as many trees as possible. They model dispersal of EAB over time and

space similar to discrete reaction-diffusion models (see, e.g., Kıbış and Büyüktahtakın

[2019], Büyüktahtakın et al. [2018a]) and surveillance to identify infested trees and

their stage of infestation. Modeling EAB dispersal and ash tree health within the

optimization model allows for targeted control decisions, such as insecticide treatment

and tree removal, which are more cost-effective than naive decisions, such as removing

all ash trees without ever surveying the severity of infestation.
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The models of Kıbış et al. [2021] and Bushaj et al. [2021b] considered only the

expected maximum benefits of healthy ash trees in the objective function without

emphasizing the risks and costs of low-chance, high-damage infestation scenarios.

Optimal surveillance and control for EAB management may depend on the risk-

aversion of managers, who seek to balance between maximizing the expected benefits

of ash trees and minimizing the expected damage that could result under the worst

possible scenarios of infestation growth.

While accounting for the risk-aversion of decision-makers is standard in

finance and economics, such accounting is limited in optimization models for forest

management planning, including the surveillance and control of forest invasive species.

Among the studies that use risk-averse management and stochastic optimization in

forestry operations planning, Alonso-Ayuso et al. [2018] present a time-consistent

mean-CVaR multi-stage programming model for planning the harvest of forest land

designated for timber production and the construction of access roads needed to

transport the timber. Pagnoncelli and Piazza [2017] present a stochastic dynamic

programming model for harvest scheduling in which the decision maker wishes to

minimize the overall CVaR of her decisions. On the other hand, Eyvindson and

Cheng [2016] present a two-stage stochastic programming formulation with CVaR

objectives to identify the optimal timing to measure and re-measure forest stands

intending to maximize net present value. Yemshanov et al. [2019a] use CVaR in

a one-period model to develop optimal surveillance strategies that avoid worst-case

outcomes of their surveying actions, where an outcome refers to the expected time to

the first detection of a forest pest species.

3.2.3 Key Contributions

The use of risk-averse stochastic programming is limited in forestry operations

planning and invasive species management. Former risk-averse stochastic optimization
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approaches on invasive species control involved only a time domain of a single period.

Our approach contributes to the OR and invasive species management literature in

the following ways.

Modeling and Algorithmic Contributions. First, we derive a nested risk

measure for a maximization problem and integrate it in a scenario-based formulation

of a multi-stage stochastic programming problem to obtain a time-consistent formu-

lation. Our time-consistent formulation is different than the node-based formulation

of Alonso-Ayuso et al. [2018] in that we define the value-at-risk variable at each stage

and under each scenario and include non-anticipativity constraints to impose that

decisions and value-at-risk for those scenarios that share the same history up to a

certain stage should be the same. Our definition of the risk-related constraints is

similar to theirs in that we compute the positive difference between the value-at-risk

at each stage and the total benefit up that time stage, and then penalize the expected

difference in the objective function. Here, we focus on invasive species surveillance

and control, while Alonso-Ayuso et al. [2018] study forest harvest management.

Second, we adapt the scenario dominance cutting planes introduced by

Büyüktahtakın [2020] to the case of decision-dependent uncertainty. Specifically, we

redefine the scenario dominance concept of Büyüktahtakın [2020] for our problem by

considering the endogenous uncertainty modeled in our scenario tree and incorporated

the surveillance pattern in defining the scenario dominance sets. We adapt the bounds

and cuts to the problem with a maximization objective. Also, different than the

method in Büyüktahtakın [2020], we provide a formal cutting plane algorithm, which

systematically derives and adds cuts considering the decision-dependent uncertainty

and specifics in our problem. While we apply those cuts to solve our case study

problem, the proposed scenario dominance framework is general and can be applied

to other mean-risk, multi-stage stochastic programming problems.
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Third, we perform extensive computational analysis and present results regarding

the optimal decision strategies under risk-averse and risk-neutral objectives. Our

results demonstrate that scenario dominance cuts reduce the time complexity without

an optimality gap. Furthermore, those cuts improve the initial integrality gap, and

their performance is not affected by the changes in risk parameters.

Applied Contributions and Policy Insights. To our knowledge, we present

the first risk-averse multi-stage stochastic programming model in the invasive species

management literature. Multistage stochastic programming is superior to its two-

stage counterparts because it can capture the spatial-dynamic features of the EAB

infestation and its host trees over multiple time periods. Further, combining the risk-

neutral objective with the risk measure allows managers to assess trade-offs between

the weighted expectation objective and the risk of loss from low-probability, high-

damage EAB scenarios. Using a CVaR risk-averse measure, we improve the benefit

for the top 100 × α% worst-case scenarios compared to the risk-neutral approach.

Our model provides several important insights into the spatio-temporal dynamics

and risk-averse management of EAB that would not be possible with existing models

and methods, as summarized below:

� Our results suggest that, as the manager becomes more risk-averse, insecticide
treatment becomes less preferred compared with tree removal, especially for
scenarios that involve high infestation spread each year. This is an important
practical finding because forest managers often debate over two broad strategies
for EAB management: surveillance and insecticide treatment of ash trees versus
surveillance and staged removal of ash trees. Our results suggest that the former
strategy may provide a higher expected net benefit while the latter strategy may
provide a lower risk of outcomes with very low net benefits. The selection of the
appropriate strategy will depend on the risk preference of the decision maker.

� Based on our results, increasing risk-aversion by emphasizing the poorly
performing scenarios in the objective function might come at a price of reduced
expected net benefit. Despite this price, the manager may see this loss as a
worthy sacrifice towards the mitigation of possible disaster scenarios.
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� Our analysis of surveillance frequency suggests that as we survey less, the
expected risk increases due to higher uncertainty about infestation realizations.
Thus, a risk-averse manager would want to survey more often.

In Section 3.3, we derive the risk measure for a maximization problem and

present the general mean-risk multi-stage stochastic MIP framework. In Section

3.4, we describe notation and formulate the risk-averse multi-stage stochastic

mixed-integer programming model for the EAB management in public forests. We

derive the scenario dominance cuts and bounds presented in Büyüktahtakın [2020]

for a maximization problem and present the associated theoretical results. Finally, in

Section 3.6, we describe the implementation details of the model and test six different

sets of data estimated by some prior knowledge of the EAB infestation in the state

of New Jersey and provide computational results.

3.3 Risk-Averse MSS-MIP Framework

3.3.1 General Formulation of MSS-MIP

Let T = {1, . . . , T}, where T represents the number of stages. Let nt, ht, qt, and mt

represent the number of decision variables, the number of uncertain parameters, the

number of integer variables, and the number of constraints, respectively, at time t.

We denote the decisions to be taken at each stage t = 1, . . . , T as xt ∈ Rnt−qt
+ × Zq

t

+

and the uncertainty observed in stage t as ξt ∈ Rht , i.e., ξt is an F t−measurable

mapping from Ω to Rht .

The realization of ξt+1 is known after the decision xt in stage t. We denote

the history of the realizations up to state t as ξ[t] = (ξ2, . . . , ξt) for t = 2, . . . , T and

the decision history up to stage t as x[t] = (x1, . . . , xt) for t = 1, . . . , T . In a t-stage

model, the decision-realization sequence is formulated as

x1, ξ2, x2(x1, ξ2), ξ3, x3(x1, x2, ξ2, ξ3), . . . , xT (x[T ], ξ[T ]). The general formulation for

a T -stage risk-neutral multi-stage stochastic mixed-integer program (MSS-MIP) is

written as
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max
x2

f2
(
x2, ξ2

)
+ Eξ3|ξ[2]

[
. . .+ EξT |ξ[T−1]

[
max
xT

fT
(
xT , ξT )

)]]]}
(3.1)

subject to

A1x1 ≤ b1 (3.2)

At
(
ξ[t−1]

)
xt−1

(
ξ[t−1]

)
+W t

(
ξ[t]
)
xt
(
ξ[t]
)

≤ bt
(
ξ[t]
)
∀ t ∈ T \ {1} (3.3)

x1 ∈ Rn
1−q1

+ × Zq
1

+ ; xt
(
ξ[t]
)
∈ Rn

t−qt
+ × Zq

t

+ ∀ t ∈ T \ {1} . (3.4)

where A1 ∈ Rm1×n1
and b1 ∈ Rm1

are known; and as time t progresses, the realization

of uncertain parameter ξt is given by At (ξ) ∈ Rmt×nt ,W t (ξ) ∈ Rmt×nt , and bt (ξ) ∈

Rmt ; f t (xt, ξt) : Rnt×ht → R represents a linear function for positive integers nt

and ht such that f t (xt, ξt) = ct (ξt)xt (ξt) where ct (ξt) ∈ Rnt

+ ; and Eξt|ξt−1 [·] is the

expectation with respect to ξt depending on the random realization of the uncertainty,

ξ[t].

3.3.2 CVaR, the Risk Averse Measure of Choice

Risk-neutral models simply consider the expected value of the objective function

without any estimation of the variability of random outcomes. The expectation

objective metric performs poorly under certain scenarios that have outliers with high

variability. Depending on whether to maximize or minimize an objective function,

one has to account for the large loss of profit or incurred costs falling in the tails of the

objective value distribution. Next, we focus on and briefly discuss risk measures that

are based on quantiles, such as the Value-at-Risk and the Conditional-Value-at-Risk,

to mitigate large losses in the tails of the distribution of objective values.

Definition 3.3.1 Let FX(·) represent the cumulative distribution function of a

random variable X. The α-quantile of this distribution is called the Value-at-Risk
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(VaR). VaR is represented as:

inf {η ∈ R : FX(η) ≥ 1− α} (3.5)

and denoted by V aR+
α (X), α ∈ (0, 1].

In a profit maximization context, VaR is the α-quantile of the distribution

of the profits providing a lower bound on the distribution of profits, which is not

fallen short of with a defined probability 1 − α. For the profit maximization case,

we use the values less than the threshold level of VaR to derive V aR−α . Because

V aR−α (X) = V aR+
α (−X) the value-at-risk equation for a maximization problem

becomes

V aR−α (X) = − sup {η ∈ R : FX(η) ≤ α} . (3.6)

This representation still preserves the monotonicity, translation, and positive

homogeneity properties of VaR [Artzner, 1997].

Definition 3.3.2 Conditional Value-at-Risk (CVaR) for a profit maximization

function is defined as

CV aR−α (X) = E(X|X ≥ V aR−α (X)) (3.7)

and represents the conditional expected shortage value, not reaching the value-at-risk

at the confidence level α.
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CVaR for a random variable X at a confidence level α is formulated as [Rockafellar

and Uryasev, 2000]

CV aR−α (X) = inf
{
−η + 1

α
E(η −X)+

}
(3.8)

where (a)+ = max {0, a}.

Despite the good properties it offers, the VaR is considered a non-coherent risk

measure. The VaR also does not consider how bad the scenarios with an objective

value below V aR−α can be. On the other hand, the CVaR is coherent and takes into

account the scenarios in the α tail, thus, it is preferable to VaR [Acerbi and Tasche,

2002].

3.3.3 Time-Consistent Mean-Risk MSS-MIP

The risk-neutral formulation (3.1)–(3.4) maximizes the expected value function

without considering the impact of the extreme and unwanted scenarios on the

expectation value. When the objective includes only expectation, the decision-maker

will not mainly consider extreme loss scenarios, and a decision that works well for the

expectation may result in considerable costs in an extreme scenario. Combining the

expected value formulation with risk measures enables the decision-maker to model

a trade-off between the profit maximization on average and the risk minimization.

Deriving Time-Consistent CVaR As mentioned above, there are different

definitions of time consistency risk measures in literature; we refer to the definition

provided in Homem-de-Mello and Pagnoncelli [2016]. Let (Ξ,F , P ) be a probability

space and F1 ⊂ F2 ⊂ . . . ⊂ FT be sub sigma-algebras of F . Let X t denote a space

of F t -measurable function form Ξ to R and X := X 1 × X 2 × . . . × X T . Then, a

multi-stage risk function F is said to be a mapping from X to R.
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Homem-de-Mello and Pagnoncelli [2016] define the following multi-period risk

function F as expected conditional risk measure (ECRM):

F (X 1, . . . ,X T ) = X 1 + ρ2
(
X 2
)

+ Eξ[2]

[
ρ3
ξ[2]

(
X 3
)]

+ . . .+ Eξ[T−1]

[
ρT
ξ[T−1]

(
X T
)]
, (3.9)

where ρt[ξt] represents the risk measure at time t. Homem-de-Mello and Pagnoncelli

[2016] prove that any risk function F defined as in (3.9) is time consistent, provided

that each ρt[ξt] satisfies some basic properties that automatically hold, for example,

for coherent risk measures.

Using the “tower property” of expectations, F defined in (3.9) could be re-

written as:

F (X 1, . . . ,X T ) = X 1 + ρ2
(
X 2
)

+ Eξ[2]

[
ρ3
ξ[2]

(
X 3
)

+ Eξ[3]

[
ρ4
ξ[3]

(
X 4
)

+ . . .+ (3.10)

+Eξ[T−1]

[
ρT
ξ[T−1]

(
X T
)]
. . .
]]
.

Homem-de-Mello and Pagnoncelli [2016] consider the conditional value at risk

of the realization at time t as a particular case of ECRMs defined in (3.9) and (3.10).

That is ρt[ξt] = CV aR
[ξt]
αt , where

CV aR
[ξt]
αt = max

ηt∈R
ηt − 1

αt
Eξ[t]

[(
ηt − f t

(
xt, ξt

))
+
|ξ[t−1]

]
. (3.11)

Using CV aR
[ξt]
αt as our risk measure in (3.10), we can formulate our 5-stage time-

consistent E−CV aR model as below:
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max
x1,...,xT

f1(x1) + max
η2∈R

η2 − 1

α2
Eξ[2]

[
(η2 − f2(x2, ξ2))+

]
(3.12)

+ Eξ[2]

[
max
η3∈R

η3 − 1

α3
Eξ[3]

[
(η3 − f3(x3, ξ3))+|ξ[2]

]
+Eξ[3]

[
max
η4∈R

η4 − 1

α4
Eξ[4]

[
(η4 − f4(x4, ξ4))+|ξ[3]

]
+Eξ[4]

[
max
η5∈R

η5 − 1

α5
Eξ[5]

[
(η5 − f5(x5, ξ5))+|ξ[4]

]
|ξ[4]

]
|ξ[3]

]
|ξ[2]

]

subject to

xt ∈ Xt(X [t−1], ξ[t]) ∀ t = 1, 2, . . . , T.

where X t represents the decisions up to stage t − 1 considering the realization of

uncertainty parameter up to stage t (ξ[t]).

If the uncertain process is discretized by considering a finite number of

realizations of ξ, each random realization over time is named as a scenario, and

its index is denoted by ω. Let Ω be the set of scenarios. Each scenario ω ∈ Ω has

a corresponding probability pω of occurring. Each decision denoted as xtω := xt (ξtω),

represents the decision for the scenario realization up to stage t, ξtω, for t = 1, . . . , T .

Defining a new variable vtω to account for the positive difference between ηtω and xtω

for each t ∈ T , we linearize Equation (3.12) by imposing two additional constraints

for each time stage t:

vtω ≥ 0 and vtω ≥ ηtω −
t∑

t′=1

f t
′
(xt
′

ω, ξ
t′

ω ) ∀ t = 2, . . . , T. (3.13)

For each stage t, the auxiliary variable ηtω is a “stage-(t − 1) variable,”

representing the value-at-risk, V aR
[ξt]
αt . We use an auxiliary variable vtω, which is

a “stage-t variable,” to represent the stage-t shortage value, not reaching ηtω.
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The general E−CV aR optimization problem can be formulated as a dynamic

program, which then can be cast into a scenario-based formulation (see Section B.2).

Mean-Risk Scenario-Based MSS-MIP Formulation The CVaR takes into

account the benefit for those unwanted scenarios that are below the VaR. However, it

does not consider scenarios with a higher benefit than the VaR, which are also included

in the expectation objective function. On the other hand, the objective function with

only a risk measure, without considering the profit, will provide non-efficient solutions.

Consequently, the decision maker prefers a trade-off between risk minimization and

benefit maximization. Therefore, in the presence of uncertainty, a widely used

approach among practitioners and researchers is to combine the risk measures with the

optimization of the expected value of the objective function, leading to the mean-risk

models introduced by Markowitz [1952] (see, e.g., Schultz and Tiedemann [2006],

Alonso-Ayuso et al. [2018], Ogryczak and Ruszczyński [2001]). Using the CV aR−α in

Equation (3.8) as a risk measure, we consider the following mean-risk problem within

a maximization context:

max
x∈X

{
E(f(xω, ξω)) + λCV aR−α (f(xω, ξω))

}
, (3.14)

where λ represents a trade-off coefficient between the expected benefit and the loss

due to risk, and X represents the set of feasible solutions for x. In the mean-risk

formulation (3.14), the manager can easily shift from risk-neutral to risk-averse by

adjusting the λ parameter. Setting λ to 0, the expression (3.14) would be equivalent

to the expectation objective (no matter what α value is). Additionally, giving a

certain weight to λ and using α to decide on the size of the tail of the objective value

distribution enables the manager not only to decide on the risky values but also to

determine how important they are with respect to the expectation.
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Using the linearization shown in Equation (3.13), we present the E−CV aR

optimization problem as a general risk-averse multi-stage stochastic mixed-integer

program (RA-MSS-MIP) below:

P : max
x1,...,xT

η2,...,ηT

v2,...,vT

∑
ω∈Ω

pω

(
T∑
t=1

ctωx
t
ω + λ

T∑
t=2

(
ηtω −

1

αt
vtω

))
(3.15)

subject to

vtω ≥ ηtω −
t∑

t′=1

ct
′

ωx
t′

ω ∀ ω ∈ Ω, t ∈ T \ {1} , (3.16)

A1x1
ω ≤ b1

ω ∀ ω ∈ Ω, (3.17)

Atωx
t−1
ω +W t

ωx
t
ω ≤ btω ∀ ω ∈ Ω, t ∈ T \ {1} , (3.18)

xtω ∈ Rnt−qt
+ × Zq

t

+ ∀ ω ∈ Ω, t ∈ T , (3.19)

vtω ≥ 0 ∀ ω ∈ Ω, t ∈ T , (3.20)

xtω = xtω′ vtω = vtω′ ∀ t ∈ T ; ω, ω′ ∈ Ω s.t. ξ[t]
ω = ξ

[t]
ω′ .

(3.21)

where the random parameters are realized as ξtω = (ctω, b
t
ω, A

t
ω,W

t
ω) for each t ∈ T and

ω ∈ Ω. An important constraint in the scenario-based representation of the RA-MSS-

MIP problem in Equations (3.15)-(3.21) is Equation (3.21). The non-anticipativity

Equation (3.21) implies that decisions for all scenarios that share the same history up

to a specific time t are the same and ensures the implementability of solutions [Wets,

1974, Rockafellar and Wets, 1991]. It also implies that the decision chosen at time t

may only depend on the realizations of ξ up to that time period and not on the results

of future observations. Furthermore, enforcing non-anticipativity constraints on vtω

plays a crucial role in ensuring the time-consistency of the multi-stage decisions.
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3.4 RA-MSS-MIP for the Surveillance and Operations Planning of EAB

We apply the mean-CVaR formulation (3.15)-(3.21) to optimize the surveillance and

control of the EAB, which has infested large areas covered with ash trees in North

America. This section presents the notation and the RA-MSS-MIP formulation for the

surveillance, treatment, and removal planning of the ash trees for the EAB infestation.

We also provide a verbal description of the model and the assumptions made as well

as an example multi-stage scenario tree in Section B.1.

3.4.1 Notation

Sets and Indices

Γ Set of all sites, Γ =
{

1, 2, . . . , Γ̄
}

.

K Set of infestation levels, K = {1, 2, 3}.

T Set of time periods, T = {1, . . . , T}.

χ Set of neighboring layers that a spread can happen from a site i; each layer represents
a distance-dependent neighbor of site i with similar spread rates.

Ω Set of scenarios in a scenario tree, Ω =
{

1, . . . , Ω̄
}

.

i Index for site where i ∈ Γ.

Θι
i Set of neighboring sites of site i at layer ι.

k Index for infestation level where k ∈ K.

t Index for time period where t ∈ T .

j Index for neighboring sites of site i at layer ι where j ∈ Θι
i.

ω Index for a scenario where ω ∈ Ω.

ι Index for neighboring layer where ι ∈ χ.

Parameters

pω Probability for scenario ω.

c1 Cost of surveying (inspecting) a tree.

c2 Cost of treatment.
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c3 Cost of removal.

ζ Monetary value of a susceptible tree.

ϑk Penalty value of each infested tree at infestation level k.

rk Impact rate of each infested tree at infestation level k within site i, i.e., number of
new infestations per infested tree at level k.

% Surveillance efficiency, i.e., percent of infested trees that are identified correctly.

τ Discount rate.

δt Discount factor at time t, which is equal to
1

(1 + τ)t
.

Ψω Budget for scenario ω.

θιk Infestation impact of kth-level infested trees in neighboring layer ι belonging to site
j.

κ Maximum number of trees surveyed in each site i.

γi Number of surveyed trees in site i under surveillance at time t,i.e., γi =
min (N t

iω, κ).

pιj→i Probability of infestation spread from site j to i at neighboring layer ι.

βtkω Percentage change in belief of infestation after surveillance for infestation level k,
at time t, for scenario ω.

N̄i Initial number of tree population at site i.

Īik Initial number of infested tree population at each infestation level k, at site i.

Decision Variables

N t
iω Total number of trees at site i, at time t, for scenario ω.

Stiω Number of susceptible trees at site i, at time t, for scenario ω.

Ĩ tikω Believed number of infested trees at site i, at time t, for infestation level k, for
scenario ω before surveillance.

...
I
t
ikω Transition number of infested trees at site i, at time t, at infestation level k, for

scenario ω after surveillance without considering total tree population.

I tikω Estimated number of infested trees at site i, at time t, at infestation level k, for
scenario ω after surveillance with considering total tree population.

V t
ikω Number of treated trees at site i, at time t, at infestation level k, for scenario ω.
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Rt
ikω Number of removed trees at site i, at time t, at infestation level k, for scenario

ω.

H t
iω Number of trees surveyed at site i, at time t for scenario ω.

Qt
ikω Number of infested trees remaining after treatment and removal at site i, at

time t, at infestation level k, for scenario ω.

Risk Variables

ηtω value-at-risk parameter.

vtω Linearization variable for the risk constraint.

Binary Decision Parameters in Decision Scenario Tree

ytω =

{
1 if surveillance is applied at time t, for scenario ω

0 otherwise.

Linearization Variables

utikω =


1 if transition population is assigned to infestation level k, at site i

at time t

0 otherwise.

3.4.2 Mathematical Model

Following the convention in Bushaj et al. [2021b], we present the following RA-MSS-

MIP formulation for the surveillance and control of the EAB as follows:

Max
∑
ω∈Ω

pω

(∑
t∈T

(
δt
∑
i∈Γ

(
ζStiω −

n∑
k=1

ϑkI
t
ikω

))
+ λ

T∑
t=2

(
ηtω −

1

α
vtω

))
(3.22)

Subject to :

Risk Linearization Constraint

vtω ≥ ηtω −
t∑

t′=1

δt′
∑
i∈Γ

(
ζSt

′
iω −

n∑
k=1

ϑkI
t′
ikω

)
∀ ω ∈ Ω, t ∈ T \ {1} , (3.23)
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Initial Total Population

N1
iω = N̄i ∀ ω, i, (3.24)

Initial Belief of Infestation

Ĩ1
ikω = Īik ∀ ω, i, k, (3.25)

Population Constraint

N t+1
iω = N t

iω −
n−2∑
k=1

V t
ikω −

n∑
k=1

Rtikω ∀ ω, i, t = 1, (3.26)

N t+1
iω = N t

iω −
n−2∑
k=1

V t
ikω −

n∑
k=1

Rtikω +

n−2∑
k=1

V t−1
ikω ∀ ω, i, t = 2 . . . T − 1, (3.27)

Transition Infestation Level

...
I
t
ikω = Ĩtikω

(
1 + xtωβ

t
kω

)
∀ ω, i, t, k, (3.28)

Susceptible (Healthy) Tree Population

Stiω = N t
iω −

n∑
k=1

Itikω ∀ ω, i, t, (3.29)

Number of Treated and Removed Trees

V t
ikω +Rtikω ≤ Itikω

t∑
a=max[t−k+1,1]

yaω ∀ ω, i, t, k = 1, (3.30)
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Rtikω ≤ Itikω
t∑

a=max[t−k+1,1]

yaω ∀ ω, i, t, k = n− 1, n, (3.31)

Carrying Capacity Constraints

Itikω ≤ N t
iω −

n∑
d=min(k+1,n)

Itidω ∀ ω, i, t, k, (3.32)

Itikω ≤
...
I
t
ikω ∀ ω, i, t, k, (3.33)

...
I
t
ikω − Itikω ≤ N̄i

(
1− utikω

)
∀ ω, i, t, k, (3.34)

N t
iω −

n∑
d=min(k+1,n)

Itidω

− Itikω ≤ N̄iu
t
ikω ∀ ω, i, t, k, (3.35)

Believed (Expected) Number of Infested Trees

Ĩt+1
i1ω =

n∑
k=1

Qtikωrk +

n∑
k=1

∑
ι∈χ

∑
j∈Θιi

Qtιjkωθ
ι
kp
l
j→i ∀ ω, i, ι, j, t = 1 . . . T − 1, (3.36)

Qtιikω =


Itιikω − %V tι

ikω − %Rtιikω k = 1

Itιikω − %Rtιikω k = n− 1 n

∀ ω, i, t, ι, (3.37)

Ĩt+1
ikω = Iti(k−1)ω − %V

t
i(k−1)ω − %R

t
i(k−1)ω ∀ ω, i, t = 1 . . . T − 1, k = 2, (3.38)
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Ĩt+1
ikω =

(
Iti(k−1)ω − %R

t
i(k−1)ω

)
+
(
Itikω − %Rtikω

)
∀ ω, i, t = 1 . . . T − 1, k = n,

(3.39)

Budget Constraint

c1

∑
t∈T

∑
i∈Γ

Ht
iω + c2

∑
t∈T

∑
i∈Γ

n−2∑
k=1

V t
ikω + c3

∑
t∈T

∑
i∈Γ

n∑
k=1

Rtikω ≤ Ψω ∀ ω, i, t, k,

(3.40)

Ht
iω = γix

t
ω ∀ ω, i, k, t = 1, 2, . . . , T, (3.41)

γi = min
(
N t
iω, κ

)
∀ ω, i, t, (3.42)

Non-anticipativity Constraints

N t
iω = N t

iω′ Stiω = Stiω′ Ĩtikω = Ĩtikω′

Itikω = Itikω′
...
I
t
ikω =

...
I
t
ikω′ V t

ikω = V t
ikω′

ηtω = ηtω′ vtikω = vtikω′ Rtikω = Rtikω′

∀ i, t, k, ω = ω′ ∈ Ω s.t. ξ[t]
ω = ξ

[t]
ω′ ,

(3.43)

Non-negativity and Binary Restrictions

N t
iω, S

t
iω, I

t
ikω, Ĩ

t
ikω,

...
I
t
ikω, V

t
ikω, R

t
ikω ≥ 0 utikω ∈ {0, 1} ∀ ω, i, k. (3.44)
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The objective function of our model shown in Equation (3.22) is a mean-risk

scenario formulation of the form shown in Equation 3.15. It allows the manager

to adjust the level of risk-averseness by varying the value of λ. As the λ value is

increased, the decision-maker becomes more risk-averse by putting a higher weight

on the bad scenarios that could occur. Equation (3.23) represents the constraint to

linearize the risk parameter.

In Equations (3.24) and (3.25), we define the initial value of the tree population

and the expected initial infestation levels for each site i and for all possible scenarios

ω ∈ Ω for the initial time period 1. Equations (3.26) and (3.27) keep track of

the current population based on decisions made for removing and treating trees.

Equation (3.28) computes the believed infestation level for each k. Depending on

the surveillance regime and the realization value β, for each infestation level k, the

believed number of infested trees in each site i is calculated.

Equation (3.29) keeps track of the number of susceptible trees for each site i

by deducting every infested tree from the total population. Equations (3.32)–(3.35)

are used as the linearization of the carrying capacity constraint, which is a non-linear

equation given below:

Itkω = min

N t
iω −

n∑
d=min(k+1,n)

Itidω,
...
I
t
ikω

 (3.45)

Equation (3.45) states that as infestation continues, there is a limit on how many trees

can get infested and how many trees can die. In the worst case, if no management

decision is taken at all, this limit is constrained by the total number of trees in

each site i. Equations (3.32) and (3.33) serve as an upper bound on the number of

estimated infested trees, while Equations (3.34) and (3.35) serve as a lower bound by

using an auxiliary binary decision variable utikω.
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Equations (3.30) and (3.31) serve as a limit on how many trees can be treated

and removed, respectively. Treated and removed trees cannot be more than the

number of infested trees. Furthermore, if no surveillance is performed for several

periods in a row, then no treatment or removal can be applied.

Equations (3.36) - (3.39) define the number of newly infested trees for each

infestation level k for the time period t + 1. When trees are neither treated nor

removed in infestation level k, they are passed to the next infestation level k + 1 in

the next period. Once trees reach the last infestation level k = n, if not removed, they

still stay in that same infestation level. The equations (3.36) - (3.39) represent the

growth of infestation over time and space, similar to discrete reaction-diffusion models

(see, e.g., Holmes et al. [1994], Kıbış and Büyüktahtakın [2019], Büyüktahtakın et al.

[2018a]).

Equation (3.36) estimates the number of trees that will be in infestation level

k = 1. This is done by collectively calculating the effect of infested trees on susceptible

trees nearby. The term pιj→i in Equation (3.36) defines the probability that infestation

will spread from site j to site i located at the ιth distance class from j. When

calculating dispersal, we cover a radius of 4-km from the infested site. We handle these

distance classes using the term θιi in Equation (3.36). The unremoved or untreated

trees in each of these sites are denoted by the term Qt
ikω as given in Equation (3.37).

Equation (3.40) ensures that the cost of surveillance, treatment, and removal

is under the budget available throughout the planning horizon. Equation (3.43)

ensures that scenarios with the same history up to a given stage t share the same

decisions until that stage, also known as non-anticipativity constraints in the scenario

formulation. Finally, Equation (3.44) defines the non-negativity constraints on the

decision variables and defines the linearization variable utikω, as a binary variable. For

a more detailed description of the risk-neutral version of the mathematical model

above, we refer the reader to the explanation in Bushaj et al. [2021b].
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3.5 Scenario Dominance Decomposition

In this section, we present the scenario dominance concept, the scenario sub-problem,

the bounds obtained from the scenario sub-problem, and the scenario dominance

cuts introduced by Büyüktahtakın [2020] for RA-MSS-MIPs. We first provide those

definitions and results for the general risk-averse maximization problem (P ) (3.15)-

(3.21), and then show the adaptation of these concepts to derive the dominance

relations, bounds, and cuts to improve the solvability of our case-study problem in

Equations (3.22) – (3.44), which involves decision-dependent uncertainty.

Definition 3.5.1 The scenario-ω problem [Büyüktahtakın, 2020]

The scenario-ω problem Pω is formulated as follows:

Zω = max pω

(
T∑
t=1

ctωx
t
ω + λ

T∑
t=2

(
ηtω −

1

αt
vtω

))
(3.46)

s.t. Equations (3.16) to (3.21).

Remark 1. The scenario-ω problem (3.46) is an MIP, which includes all the

variables and the constraints of the original problem P . However, having an objective

defined only for a single scenario ω improves the solution time compared to the original

problem (3.15)-(3.21).

Definition 3.5.2 The relaxed scenario-ω problem

The relaxed scenario-ω problem PR
ω is defined as follows:

ZRω = max pω

(
T∑
t=1

ctωx
t
ω + λ

T∑
t=2

(
ηtω −

1

αt
vtω

))
(3.47)

s.t. Equations (3.16) to (3.20). Note that PRω is obtained by removing the non-anticipativity

constraints (3.21) in Pω.

Definition 3.5.3 The classical scenario-ω problem

The classical scenario-ω problem PC
ω is defined as follows:
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ZCω = max pω

(
T∑
t=1

ctωx
t
ω + λ

T∑
t=2

(
ηtω −

1

αt
vtω

))
(3.48)

s.t. Equations (3.16) to (3.20) pertaining only to scenario-ω problem. Not that PCω is

obtained by reducing the solution space to that of only scenario-ω.

Proposition 1 PR
ω is a relaxation of Pω:

ZRω ≥ Zω ∀ ω ∈ Ω. (3.49)

Proof. It is easy to see that the feasible region of Pω is a subset of the feasible region

of PR
ω . That is X ⊆ XR, where X is the feasible region of the original problem, P ,

and XR is the feasible set of solutions for the relaxed scenario-ω problem, PR
ω . 2

PC
ω is obtained by removing constraints (3.21) from P and decomposing the

model to |Ω| independent sub-models, each of them related to one scenario ω. On

the other hand, PR
ω includes all the constraints and variables of the original problem

except the constraints (3.21). Because PC
ω and PR

ω are not defined in the same space,

PC
ω is not a relaxation of PR

ω . Yet, the optimal objective value of PC
ω provides an

upper bound on the optimal objective value of PR
ω , as shown in Proposition 2 below.

Proposition 2

ZCω ≥ ZRω ∀ ω ∈ Ω. (3.50)

Proof. Let (ẍω, η̈ω, v̈ω) be the optimal solution for the scenario-ω problem, PR
ω .

Substituting this solution into the objective function of the problem PC
ω , we have:
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ZCω ≥ pω

(
T∑
t=1

ctωẍ
t
ω + λ

T∑
t=2

(
η̈tω −

1

αt
v̈tω

))
= ZRω . (3.51)

2

Remark 2. From Propositions 1 and 2, it is easy to see that:

ZCω ≥ ZRω ≥ Zω ∀ ω ∈ Ω. (3.52)

3.5.1 Sub-additivity and Upper Bound

Let x∗ be the optimal solution for the original problem (3.15)-(3.21) (P), and Z(x∗)

be the corresponding objective function value. Let ẋω be the optimal solution for

scenario-ω problem Pω and Zω(ẋω) be the corresponding optimal objective value.

Also, let x̄ω be the optimal solution to the classical scenario-ω problem PC
ω and

ZC
ω (x̄ω) be the corresponding objective function value. Next, we provide the classical

definition of a sub-additive set function.

Definition 3.5.4 Let Ω be a set and φ : 2Ω → R be a set function, where 2Ω denotes

the power set. The function φ is sub-additive if ∀ a, b ⊂ Ω, we have φ(a) + φ(b) ≥

φ(a ∪ b).

Definition 3.5.5 Multiple Scenario Problem Let Ω̄ ⊆ Ω. Then the multiple

scenario problem including the set Ω̄, PΩ̄ is formulated as below:

ZΩ̄ = max
∑
ω∈Ω̄

pω

(
T∑
t=1

ctωx
t
ω + λ

T∑
t=2

(
ηtω −

1

αt
vtω

))
(3.53)

s.t. Equations (3.16) to (3.21).
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Proposition 3 ZΩ̄ is subadditive on Ω̄ ⊂ Ω, which means that for Ω1,Ω2 ⊂ Ω

ZΩ1 + ZΩ2 ≥ ZΩ1∪Ω2 . (3.54)

Proof. Consider PΩ1 , PΩ2 and PΩ1∪Ω2 . All those three problems share the same

feasible region with P . Thus, using the optimal solution of the PΩ1∪Ω2 , a feasible but

sub-optimal solution can be built for each of PΩ1 and PΩ2 . 2

Remark 3. Using a similar proof in Proposition 3, it is easy to see that the

inequality (3.54) also holds for the classical scenario-ω problem PC
ω , whose feasible

set is only limited to that of only scenario-ω.

Proposition 4 (Upper Bound)
∑
ω∈Ω

Zω provides an upper bound on the optimal

objective function value of the original problem, i.e.,

∑
ω∈Ω

Zω ≥ Z(x∗). (3.55)

Proof. The proof follows from the generalization of the sub-additivity property in

Proposition 3 to include all scenarios ω ∈ Ω. 2

3.5.2 Lower Bound

Let ẋω be the optimal solution for the scenario-ω problem Pω and Z(ẋω) be the

objective value of the original problem P where ẋω is substituted in the original

problem objective function.

Remark 4. Z(ẋω) is a lower bound on the objective function value of the original

problem as follows:

Z(x∗) ≥ Z(ẋω) ∀ ω ∈ Ω. (3.56)

83



As Equation (3.56) holds for each ω ∈ Ω, Z(x∗) is bounded below by the maximum

of Z(ẋω) over all ω ∈ Ω, i.e.,

Z(x∗) ≥ maxω∈Ω Z(ẋω). (3.57)

3.5.3 Scenario Dominance

As described in Section 3.3.1, we define scenario ξω as the realization path of a

random variable ξ over multiple time stages t ∈ T . Therefore, we derive scenario

dominance relations by comparing the realizations of the uncertainty parameter ξ

at each time stage t for two different scenarios. Below we first give the original

definition of the scenario dominance concept for the general RA-MSS-MIP introduced

by Büyüktahtakın [2020] and then provide the definition of scenario dominance for

our case-study problem (3.22) – (3.44) presented in Section 3.4.

Definition 3.5.6 Scenario Dominance [Büyüktahtakın, 2020]. Considering

a scenario realization at time t ∈ T as ξtω := (ctω, b
t
ω, A

t
ω,W

t
ω) and two specific

scenarios ξa and ξb, scenario ξa dominates scenario ξb, denoted by ξb � ξa, for the

original problem (3.15)–(3.21) (P) if

(pa ≥ pb) ∧ (cta ≥ ctb) ∧ (bta ≥ btb) ∧ (Ata ≤ Atb) ∧ (W t
a ≤ W t

b ) ∀ t ∈ T , a, b ∈ Ω

and f(xω, ξω) =
∑

ω∈Ω pω
∑T

t=1 c
t
ωx

t
ω is a non-decreasing function ∀t ∈ T and ω ∈ Ω.

Here we define the scenario dominance relations and sets for the EAB

surveillance and operations planning problem presented in Section 3.4. We provide
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a detailed verbal description of the model in Section B.1. An example scenario tree

is demonstrated in Figure B.1, and its description is also provided in Section B.1.1

for this problem. This scenario tree depicts the sequences of possible surveillance

decisions and the stochastic infestation outcomes over time. There are three outcomes

of infestation depending on the surveillance action: low (L) or high (H) if surveillance

is performed and medium (M) if surveillance is not performed. Then, L-L-L-M-H

represents a specific scenario for a 5-stage problem, where a low realization is observed

for the first three years after surveying trees each year, followed by a medium

realization without any surveillance, and a high realization at the last stage of the

planning horizon after the surveillance is performed.

A dominating scenario is a scenario in which the uncertainty realization at each

period is lower, thus providing a higher objective compared to some other scenario.

Since our objective is the maximization of the benefits of healthy ash trees, a scenario

having a lower EAB infestation provides a higher objective than the one with a

higher infestation. For example, defining a scenario having a low (L) infestation

realization over five years in consecutive as L-L-L-L-L and a scenario with a high (H )

infestation realization over the next five years by H -H -H -H -H, the scenario L-L-L-L-L

dominates the scenario H -H -H -H -H if also its probability is larger than the scenario

H -H -H -H -H because it leads to less infested trees in each time period.

Similar to the study of Büyüktahtakın [2020], a scenario dominates another

scenario if only it yields a higher objective function value. Specific to our problem,

we take management action only when we apply surveillance. When we compare two

scenarios, we need to consider the surveillance regime of each. For the two scenarios

with a different surveillance regime, we cannot be sure which would be the dominating

one. We modify the scenario dominance concept defined in Büyüktahtakın [2020] to

our problem described in Section 3.4 and present the following definition.
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Definition 3.5.7 In our problem, in addition to the probability of a scenario ω, pω,

and the left-hand side uncertainty parameter, βtkω, which represents the percentage

change in belief of infestation after surveillance for infestation level k, time t, and

scenario ω (see Equation (3.28)), we also consider the surveillance regime. Therefore,

considering our scenario realization at t ∈ T as ξtω := βtkω for ω ∈ Ω and k ∈ K,

and given two scenario realizations ξa and ξb that share the same surveillance regime,

scenario ξa dominates scenario ξb, denoted as ξb � ξa, for the case-study problem

(3.22) – (3.44), if

(pa ≥ pb) ∧ (βtka ≤ βtkb) ∀ t ∈ T , k ∈ K, a, b ∈ Ω.

Based on Definitions 3.5.6 and 3.5.7, we now present the dominance set.

Definition 3.5.8 Dominance Set. The set of scenarios which are dominated by

scenario ξa ∈ Ω (Λ+
(ξa)) are described below:

Λ+
(ξa) = {b ∈ Ω : ξb � ξa} .

3.5.4 Cuts based on Scenario Dominance

Definition 3.5.9 Let x∗ω be the portion of the optimal solution of the original problem

that corresponds to scenario ξω and Z̄(x∗ω) be the portion of the objective function value

at x∗ω, such that:

Z̄(x∗ω) = pω

(
T∑
t=1

ctωx
t∗
ω + λ

T∑
t=2

(
ηt∗ω −

1

αt
vt∗ω

))
. (3.58)
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Definition 3.5.10 Let ẋω be the optimal solution for the scenario ξω problem Pω and

Zω(ẋω) be the corresponding optimal objective function value such that:

Zω(ẋω) = pω

(
T∑
t=1

ctωẋ
t
ω + λ

T∑
t=2

(
η̇tω −

1

αt
v̇tω

))
. (3.59)

Lemma 1 The optimal objective value of scenario ξa problem Pa, Za(ẋa), and the

objective value portion of the original problem corresponding to scenario ξa, Z̄(x∗a),

are related in the following way:

Z̄(x∗a) ≤ Za(ẋa) ∀ a ∈ Ω. (3.60)

Proof. Assume that for some a ∈ Ω we have:

Za(ẋa) < Z̄(x∗a).

Then we would have:

pa

(
T∑
t=1

ctaẋ
t
a + λ

T∑
t=2

(
η̇ta −

1

αt
v̇ta

))
< pa

(
T∑
t=1

ctax
t∗
a + λ

T∑
t=2

(
ηt∗a −

1

αt
vt∗a

))
. (3.61)

Then, we define a new solution to the scenario-ξa as below:

...
x ta = xt∗ ∀ t ∈ T . (3.62)

This new solution
...
x ta is feasible since x∗ is optimal to the original problem and

increases the value of Za(ẋa), which contradicts the optimality of ẋa for the scenario-ξa
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problem. 2

Lemma 2 Let ξa and ξb be two scenarios such that ξa � ξb. Let ẍb and ẋa be the

optimal solution of scenario ξb and ξa problems, respectively. Then, the optimal

objective value of the scenario ξa, Za(ẋa), and the optimal objective value of the

scenario ξb, Zb(ẍb), have the following relation:

Za(ẋa) ≤ Zb(ẍb) ∀ a ∈ Λ+
(ξb)

. (3.63)

Proof. Let P̃b and P̃a be two new problems by adding the following inequalities to both

scenario-ω problems, in this case, Pb and Pa, respectively:

xtb = xta ∀ t ∈ T . (3.64)

We define the following two sets as below:

Ω′ =
(
ω ∈ Ω \ {{a} , {b}} : ∃ t ∈ T such that ξ[t]

ω = ξ[t]
a for some t > 1

)
.

Ω′′ =
(
ω ∈ Ω \

{
Ω′ ∪ {a} ∪ {b}

})
.

Then, we say that Ω = Ω′ ∪ Ω′′ ∪ {a} ∪ {b}. Note that the set Ω′ only includes scenarios

ω 6= {a, b} that share a common history with scenario a up to stage t. Therefore, Ω′′ is not

an empty set, and Ω = Ω′ ∪Ω′′ ∪ {a} ∪ {b}. Let x̃ be a feasible solution for both problems,

P̃b and P̃a, as below:

x̃tb = ẍtb
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x̃ta = ẍtb

x̃tω = ẍὼ ∀ ω ∈ Ω′, ὼ ∈ Ω

s.t. ξ[t]
ω = ξ[t]

a for t = 1, . . . , t′

ξ
[t]
ὼ = ξ

[t]
b for t = 1, . . . , t′

ξ[t]
ω = ξ

[t]
ὼ for t = t′ + 1, . . . , t

x̃tω = ẍtω ∀ ω ∈ Ω′′.

The solution defined above is feasible for both of the problems, P̃a and P̃b because it satisfies

all the constraints of the original problem, including the non-anticipativity constraints.

We define the optimal objective function values of the problems P̃a and P̃b as Z̃a and

Z̃b, respectively. The solution of x̃ for P̃b because for each feasible solution xb, we have

Z̃b(xb) ≥ Zb(xb) and Z̃b(x̃) = Zb(x̃) = Zb(ẍb). Due to no uncertainty in the objective, the

decisive parameters are the probability of each scenario to happen pω and the uncertainty

in left-hand side βtkω. Because pb > pa and βtkb ≤ βtka and a feasible solution vector x̃a has

to satisfy constraints related to scenario ξb due to the Equation (3.64), we get

Z̃b(x̃) ≥ Z̃a(x̃) (3.65)

Z̃a(x̃a) ≥ Za(ẋa). (3.66)

Because x̃ = ẍb, we have

Z̃b(x̃) = Zb(ẍb). (3.67)
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Furthermore, we can say that

Zb(ẍb) = Z̃b(x̃) ≥ Z̃a(x̃) ≥ Za(ẋa). (3.68)

2

Theorem 1 Let ξa and ξb be two scenarios such that ξa � ξb, where a, b ∈ Ω and

a 6= b. Then, the optimal objective value corresponding to scenario-ξb problem, Zb(ẍb),

and the objective value portion of the original problem for scenario ξa, Z̄(x∗a), have

the following relation:

Z̄(x∗a) ≤ Zb(ẍb) ∀ a ∈ Λ+
(ξb)

, (3.69)

where

Z̄(x∗a) = pa

(
T∑
t=1

ctax
t
a
∗

+ λ

T∑
t=2

(
ηta
∗ − 1

αt
vta
∗
))

. (3.70)

Proof. From Lemma 1 we have Z̄(x∗a) ≤ Za(ẋa), and from Lemma 2 we have Za(ẋa) ≤

Zb(ẍb). Therefore, we can state that:

Z̄(x∗a) ≤ Za(ẋa) ≤ Zb(ẍb),

where ẍb is the optimal solution to the scenario-ξb problem. 2

Remark 5. The trade-off between bound and time. Although scenario-ω

formulation Pω with all the constraints of the original problem provides a better bound

than PC
ω , depending on the size of the problem, PC

ω could be faster to solve compared
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to Pω. Since PC
ω provides an upper bound on Pω, the inequality in Equation(3.69) of

Theorem 1 can be adapted to the following inequality:

Z̄(x∗a) ≤ ZCb (~xb) ∀ a ∈ Λ+
(ξb)

, (3.71)

where ~xb is the optimal solution for PC
b .

Proposition 5 Strong Scenario Dominance Cuts (ssdc). Let ξb be a scenario

with b ∈ Ω, and ẍtb represent the partial optimal solution to the scenario-ξb problem

and xta
∗

represent the partial optimal solution corresponding to scenario ξa, where

a ∈ Ω, in the original problem P, such that ξa � ξb holds for each time period 1 to

t. Then the optimal objective value corresponding to scenario-ξb problem over time

periods 1 to t, Zt
b (ẍtb) and the objective value of the original problem for scenario-ξa

over time periods 1 to t, Z̄t
(
xta
∗)

have the following relation:

Z̄t
(
xta
∗) ≤ Ztb (ẍtb) ∀ a ∈ Λ+

ξb,t
, ∀ t ∈ T , (3.72)

where Λ+
ξb,t

represents the set of scenarios that are dominated by scenario ξb for time

periods 1 to t and

Z̄t
(
xta
∗)

= pa


t∑

j=1

cjax
j
a
∗

+ λ

t∑
j=2

(
ηja
∗ − 1

αj
vja
∗
) . (3.73)

Remark 6. Adapting sdc to the case-study problem.

The sdc (3.71) given in Remark 5 can be adapted to our case-study problem (3.22)

91



– (3.44) by defining Z̄(x∗ω) and ZC
ω (~xω), respectively, as follows:

Z̄(x∗ω) = pω

(∑
t∈T

(
δt
∑
i∈Γ

(
ζSt∗iω −

n∑
k=1

ϑkI
t∗
ikω

))
+ λ

T∑
t=2

(
ηt∗ω −

1

α
vt∗ω

))
, (3.74)

ZC
ω (~xω) = pω

(∑
t∈T

(
δt
∑
i∈Γ

(
ζ ~Stiω −

n∑
k=1

ϑk~I
t
ikω

))
+ λ

T∑
t=2

(
~ηtω −

1

α
~vtω

))
. (3.75)

Remark 7. Adapting ssdc to the case-study problem.

The ssdc (3.72) given in Proposition 5 can be adapted to our case-study problem

(3.22) – (3.44) by defining Z̄t (xt∗ω ) and Zt
ω(ẍω), respectively, as follows:

Z̄t
(
xt∗ω
)

= pω

(
t∑

j=1

(
δj
∑
i∈Γ

(
ζSj∗iω −

n∑
k=1

ϑkI
j∗
ikω

))
+ λ

t∑
j=2

(
ηj∗ω −

1

α
vj∗ω

))
, (3.76)

Zt
ω(ẍtω) = pω

(
t∑

j=1

(
δj
∑
i∈Γ

(
ζS̈jiω −

n∑
k=1

ϑkÏ
j
ikω

))
+ λ

t∑
j=2

(
η̈jω −

1

α
v̈jω

))
. (3.77)

Remark 8. In the case of sdc, we compare two scenario realizations based on

their respective probabilities (pω), left-hand side uncertainty parameter (βtkω), and

the surveillance regime. For strong scenario dominance cuts (ssdc), we value each of

these conditions for up to a time period t. Depending on specific applications, ssdc

might even cut the optimal solution. In our problem, by involving the surveillance

regime in the dominance definition, we prevent these cuts from cutting off the optimal

solution.

92



3.5.5 Cutting-Plane Algorithms

We formally describe the steps of the scenario dominance cutting plane (sdc)

algorithm under Algorithm 3.1a and the strong scenario dominance cutting plane

(ssdc) algorithm under Algorithm 3.1b. Initially, we formulate the scenario sub-

problems. Studying the relation between scenarios and the uncertainty realized after

the surveillance, we can define and formulate the dominance relations. In dominance

sets, we specify how each scenario relates to another. This part is crucial to decide

which cuts are used. For scenario dominance, we group scenarios in five categories

considering how many periods in total we surveyed. Using the dominance relations,

we can now create dominance sets. Depending on the number of scenarios, a problem

may have many cuts. Once solving the randomly selected scenario sub-problem, we

use dominated scenarios in set Λ+
ω to define the scenario dominance cuts.

To generate the strong scenario dominance cuts, we care that the surveillance

perfectly matches in periods from 1 to t for two scenarios compared in the cut.

Defining a scenario up to each time t as ω[t], we define a set of scenarios that are

dominated by scenario ω[t] and denote this set as Φ
+[t]

ω[t] . Then, we select the best

scenario to solve the sub-problem and add cuts for all the dominated scenarios in set

Φ
+[t]

ω[t] .
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Algorithm 3.1 Algorithms for sdc (3.1a) and ssdc (3.1b)
(a) Scenario Dominance Cut Generation

1: Procedure: Define Dominance Sets

2: Define: βω , pω , Λ+
ω , Λ−ω , Nω

3: for ω ∈ Ω do

4: for ω′ ∈ Ω do

5: if ω and ω′ have same number of surveyed periods
then

6: if βω ≤ βω′ and pω ≥ pω′ then

7: append ω′ to Λ+
ω

8: append ω to Λ−
ω′

9: else

10: append ω to Nω′

11: append ω′ to Nω

12: end if

13: end if

14: end for

15: end for

16:
17: Procedure: Create Cut Map

18: Define: Υ, n {Υ : set of scenarios used as upper bound
in the cut; n : cardinality of Υ}

19: Define: map 〈ω ∈ Υ,Λ+
s 〉 {Mapping a scenario to the

scenarios dominated by it}
20: for i ∈ [0, n] do

21: select a random scenario ωr ∈ Λ+
ωr

22: add the pair { ωr : Λ+
ωr
} to map

23: end for

24:
25: Procedure: Add Scenario Dominance Cut

26: Solve Pω and obtain Zω

27: Define xωr {xωr : decision variables corresponding to
scenario ωr}

28: Define Z̄(xωr ) {Z̄(xωr ): objective value portion of the
original problem for scenario ωr}

29: Define cutNum {cutNum : the number of cuts added
∀ω ∈ Υ}

30: for i ∈ [0, cutNum] do

31: select scenario ωr ∈ Λ+
s

32: add cut: Zω ≥ Z̄(xωr )

33: end for

(b) Strong Scenario Dominance Cut Generation

1: Procedure: Define Strong Dominance Sets

2: Define: ω[t] {ω[t] : scenario ω from time 1 to t}
3: Define: β

ω[t] {β
ω[t] : uncertainty realization of

scenario ω from time 1 to t}
4: Define: p

ω[t] {pω[t] : probability of scenario ω from

time 1 to t}
5: Define: Φ

+[t]

ω[t]
{Φ+[t]

ω[t]
: set of scenarios dominated

by scenario ω from time 1 to t}
6: for t ∈ T do
7: for ω[t] ∈ Ω and ω′[t] ∈ Ω do
8: if ω[t] and ω′[t] have the same surveyed

periods from time 1 to t then

9: if β[t]
ω ≤ βω′[t] and p

ω[t] ≥ pω′[t] then

10: append ω′[t] to Φ
+[t]

ω[t]

11: end if
12: end if
13: end for
14: end for
15:
16: Procedure: Add Strong Scenario Dominance

Cut
17: Solve P

ω[t] and obtain Z
[t]

ω[t]
{P
ω[t] : sub-problem

for scenario ω[t], Z
[t]

ω[t]
: objective value of P

ω[t]}

18: Define x
ω̂[t] { x

ω̂[t] : decision variables

corresponding to scenario ω̂ from time 1 to t}
19: Define Z̄[t](xω̂) {Z̄[t](xω̂): objective value portion

of the original problem for scenario ω̂ from time 1
to t}

20: for t ∈ [1, T ] do

21: while Φ
+[t]

ω[t]
is not ∅ do

22: select scenario ω̂[t] ∈ Φ
+[t]

ω[t]

23: add cut: Z
[t]

ω[t]
≥ Z̄[t](x

ω̂[t] )

24: end while
25: end for

3.6 Computational Experiments

In this section, we present results from our implementation of scenario dominance

cuts for solving the case-specific RA-MSS-MIP given in Equations (3.22) - (3.44). We

apply the model to sets of data generated for the state of New Jersey.

3.6.1 Implementation Details

We implement each of the models (cpx, sdc, and ssdc) defined above. All of these

models are solved using CPLEX v12.7.1 with default settings, and their respective

cuts are added as user cuts. We observe results and compare the three models, cpx,

sdc, and ssdc, based on solution time, the optimality gap, and the numbers of nodes

generated in the branch and bound tree to solve each formulation.
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In our multi-stage stochastic problem, uncertainty is observed in the left-hand

side parameter βtkω. For T = 5 stages, we have 35 = 243 scenarios. When defining

dominance cuts, we also have to consider the probability of each scenario happening.

To calculate probabilities, we use the heuristic algorithm developed in Bushaj et al.

[2021b]. Since we have a high number of scenarios, many dominance relations can

be defined. In our problem, it is important to define the scenario dominance cuts

by considering the surveillance regime. We categorize the surveillance regime into

five groups, which are based on how many years we survey during the 5-year period.

These categories are defined as: only survey once, survey twice, survey three times,

survey four times, and survey every year. The scenario dominance relations are

defined by comparing scenarios within these five categories. For each category, we

solve the dominating scenario problem, which will provide the best solution among

that category, thus in total, we solve five dominating scenario problems. Due to the

large number of cuts that can be generated using scenario relations, we randomly

select five dominated scenarios from each category. Therefore, in total, we define

25 sdc cuts for the scenario dominance problem, which makes nearly 10% of the

total number of scenarios. Regarding the strong dominance cuts, we solve only one

dominating scenario problem, but we solve it for each t = 1, . . . , 5. The number of

strong dominance cuts that can be generated increases as we also consider the time

dimension.

Computational experiments were conducted in a Workstation with an 8-core

Intel CPU reaching 3.6 GHz and 64 GB RAM running a Windows 10 Enterprise

and using CPLEX. We use a time limit of 12,000 CPU seconds for solving each test

instance.
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3.6.2 Instance Generation and Test Data

We apply our risk-averse model to the case of EAB management in the state of New

Jersey. We describe the economic and EAB-related biological and economic data as

well as the generation of test instances for the state of New Jersey in Section B.3 and

present the results of the computations in the next section.

3.6.3 Results

We solve the data sets generated by using different optimization models with specific

features defined as below:

� cpx: solving the problem CPLEX 12.7.1 on default settings

� sdc: solving the problem with scenario dominance cuts defined on Equation
(3.71), which are adapted to our case-study problem (3.22) – (3.44) as described
in Remark 6.

� ssdc: solving the problem with strong scenario dominance cuts in Equation
(3.72), which are adapted to our case-study problem (3.22) – (3.44) as described
in Remark 7.

To report computational results, we define the following columns:

� T: number of stages;

� Sce: number of scenarios;

� II: Initial infestation size of the area [small (s) at 1% or large (l) at 2.5%
infestation of the total ash trees];

� DR: Infestation dispersal rate [slow (s), medium (m), fast (f)];

� Exp: Solution approach (cpx, sdc, ssdc) used;

� Cut: Number of inequalities added as user cuts;

� Ctime: CPU time required to solve the scenario sub-problems and generate
scenario dominance cuts (sdc and ssdc);

� Time: CPU time required to solve the problem, including Ctime;
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� Tfac: Time factor improved by cuts over cpx;

� Node: Number of nodes explored in the branch and bound tree;

� Obj: Best objective value;

� InitGap: Percentage integrality gap of formulation before inequalities are
added (InitGap = 100 × (Obj − relaxObj)/Obj), where relaxObj and Obj
are objective function values of the initial LP relaxation and the best feasible
solution by cpx, respectively;

� GapImp: Percentage improvement in the integrality gap at the root node
(GapImp = 100 × (1 − rootObj/relaxObj), where rootObj is the objective
function value of the LP relaxation after cuts are added at the root node.

Computational Results for Scenario Dominance Cuts In this subsection, we

present results regarding the efficiency of sdc and ssdc on six different test files run

for five different budget levels as described in Section 3.6.2. Each of these 30 instance

combinations is run five times for sdc and ssdc in order to capture the randomness

in dominated scenario selection to generate the cuts. Thus, we average over five runs

for cpx and 25 runs for sdc and ssdc for each test file, as shown in each row of Table

3.1. This will give an average solution time, which also captures the performance of

each model under various budget levels. The Overall Average row gives the results

for an overall average of 30 instances. In Table 3.1, the first column noted as (II, DR)

identifies the instance by the characteristics it was created. For example, (s,f) stands

for the instances generated using a small initial infestation and a fast infestation

dispersal rate.

For all instances, we can see that sdc and ssdc cuts reduce the solution time.

In addition, they also reduce the number of nodes in the branch and bound tree. As

all our instances have five stages, the complexity of the instances increases as the

initial infestation is increased, as the infestation spread rate increases, and as the

budget tightens. Interestingly, the cut generation time does not increase much as the

complexity of the instance increases.
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Table 3.1 Experiment Results for CPX, SDC, and SSDC Under Different Infestation
Patterns

(II,DR) Exp Cut Ctime Time Tfac Node Obj InitGap % GapImp %

cpx 0 0 108 - 0 2,150,592 0.53 -

(s,s) sdc 25 8.8 71 1.52 0 2,150,592 0.43 18.7

ssdc 502 6.8 55 1.96 0 2,150,592 0.34 36.2

cpx 0 0 113 - 0 1,192,578 0.78 -

(s,m) sdc 25 8.8 76 1.47 0 1,192,578 0.56 28.7

ssdc 502 7 65 1.72 0 1,192,578 0.45 42.1

cpx 0 0 297 - 0 265,106 0.96 -

(s,f) sdc 25 8.8 230 1.3 0 265,106 0.8 16.9

ssdc 502 7.8 168 1.76 0 265,106 0.76 20.6

cpx 0 0 108 - 0 420,554 0.61 -

(l,s) sdc 25 8.8 80 1.35 0 420,554 0.57 7.5

ssdc 502 8 75 1.44 0 420,554 0.52 14.9

cpx 0 0 615 - 829 196,572 0.97 -

(l,m) sdc 25 8.8 326 1.88 169 196,576 0.79 18.4

ssdc 502 8.2 350 1.76 374 196,576 0.83 13.7

cpx 0 0 702 - 1019 -490,969 0.81 -

(l,f) sdc 25 8.8 445 1.58 657 -490,969 0.6 26.3

ssdc 502 8.2 483 1.45 556 -490,969 0.58 29

Overall
Average

cpx 0 0 324 - 308 622,405 0.78 -

sdc 25 8.8 205 1.52 138 622,406 0.62 19.8

ssdc 502 7.7 199 1.69 155 622,406 0.58 25.2

As the overall average shows in Table 3.1, sdc cuts improve the results by a

factor of 1.52 while ssdc improves even more, with a factor of 1.69. On average, the

cpx solution time is 324 CPU seconds, while the time consumed to generate the sdc

and ssdc cuts is 8.8 and 7.7 CPU seconds, respectively. By adding cut generation

time to the solution time, sdc and ssdc add up to a total solution time of 205 and 199

CPU seconds, respectively. Furthermore, this improvement is achieved without any

loss in the optimal solution. In addition, sdc and ssdc help to improve the solution of
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the problem’s linear programming (LP) relaxation, and thus providing a better initial

gap compared to cpx, as shown in the InitGap and GapImp columns. We refer the

reader to Table B.1 in Section B.4 for more information on the LP relaxation solution

and the gap improvement with and without sdc and ssdc with respect to cpx.

To investigate the effect of dominance cuts on larger instances, we generate five

more test files by increasing the size of the landscape of the base case of 5-by-5, from

6-by-6 (6x6) to 10-by-10 (10x10), each representing a larger landscape than the base

case of 5-by-5 test file. For all the larger landscape generations, we use the same

initial infestation size (l) and infestation dispersal rate (s). For each unit increase in

the landscape size, we increase a unit budget of 5x5 landscape with (l,s), $200,000.

For example, for a 6x6 landscape, we have twice the budget of 5x5, for 7x7, we have

three times the budget of 5x5, and thus we end up with a six times larger budget

than that of 5x5 in the case of a 10x10 landscape.

Table 3.2 presents results for cpx, sdc, and ssdc for larger instances compared

to Table 3.1. We have used the same cut generation schema as in Table 3.1, and to

account for the change in difficulty, we increase the cut number for sdc and ssdc

models. The tables demonstrate the advantage of the sdc and ssdc cuts over the

standard cplex solution for larger instances. Overall, the performance of both sdc

and ssdc shows an increasing trend as the instances get larger and harder.

To study the impact of the risk parameters in the time complexity of the

model, we perform experiments on a combination of α = {0.05, 0.25, 0.5} and

λ = {0.001, 0.1, 1, 10, 1000} values. Computational results show that the sdc and

ssdc cuts still improve on risk-averse models for various values of the risk parameters

with a similar solution time as the risk-neutral model. For detailed results, see Section

B.5.
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Table 3.2 Experiment Results for CPX, SDC, and SSDC Under Different Landscape
Sizes

(Size) Exp Cut Ctime Time Tfac Binary
Variables

Cont
Variables Constraints

cpx 0 0 112 - 91,125 549,180 1,200,020

5x5 sdc 50 8.8 90 1.24 91,125 549,666 1,200,731

ssdc 716 8 82 1.37 91,125 551,367 1,202,496

cpx 0 0 369 - 131,220 789,750 1,726,799

6x6* sdc 50 24 270 1.37 131,220 790,236 1,727,510

ssdc 716 18 230 1.60 131,220 791,937 1,729,2755

cpx 0 0 503 - 178,605 1,074,060 2,349,356

7x7* sdc 50 66 270 1.86 178,605 1,074,546 2,350,067

ssdc 716 61 245 2.05 178,605 1,076,247 2,351,832

cpx 0 0 1,713 - 233,280 1,402,110 3,067,691

8x8* sdc 50 89 883 1.94 233,280 1,402,596 3,068,402

ssdc 716 75 720 2.38 233,280 1,404,297 3,070,167

cpx 0 0 2,860 - 295,245 1,773,900 3,881,804

9x9* sdc 50 92 1,772 1.61 295,245 1,774,386 3,882,515

ssdc 716 85 1,623 1.76 295,245 1,776,087 3,884,280

cpx 0 0 5,210 - 364,500 2,189,430 4,791,695

10x10* sdc 50 115 1,992 2.62 364,500 2,189,916 4,792,406

ssdc 716 98 1,719 3.03 364,500 2,191,617 4,794,171

Overall
Average

cpx 0 0 1,794.5 - 215,662 1,296,405 2,836,228

sdc 50 65.8 880 1.77 215,662 1,296,891 2,836,939

ssdc 716 57.5 769.8 2.03 215,662 1,298,592 2,838,704

* The data used in this test are simulated data, as described in Section 3.6.3.

Comparison of Risk-Neutral and Risk-Averse Policies We compare the risk-

neutral (λ = 0) model results with three different risk-averse problems. We set λ = 10

and α = 0.05 to represent low risk aversion, λ = 100 and α = 0.25 to represent
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moderate risk aversion, and λ = 1000 and α = 0.5 to represent high risk aversion

(Table 3.3).

Table 3.3 Comparison of Objective Values, Expected Benefit and Risk, and Costs
for the Risk-Neutral, Low, Moderate, and High Risk-Averse Models

Risk-
neutral

Low Risk
(α=0.05,
λ=10)

Moderate Risk
(α=0.25,
λ=100)

High Risk
(α=0.5,
λ=1000)

Objective Valuea 1,310,000 1,406,286 2,517,570 16,507,780

Exp. Benefit ($) 1,310,000 1,309,930 1,309,290 1,301,480

Exp. Risk ($)b - 9,635 12,082 15,206

Exp. Net Benefit ($) 1,121,280 1,121,230 1,121,170 1,120,710

Exp. Treat. Cost ($) 8,956 8,920 8,773 8,632

Exp. Removal Cost ($) 87,045 87,082 87,230 87,373

Benefit of Scn
H-H-H-H-H ($) 965,810 965,863 965,978 970,124

a The calculation with units is represented as Expected Benefit ($) + λ * Expected Risk ($)
b The expected risk does not include preceding λ coefficient

The optimal objective function values of the risk-averse models are higher than

the risk-neutral models because the additional values of risk are added to the objective

formulation. When we decompose the objective function into the expected benefit

[E(f(x, ω))] and the expected risk [λCV aR−α (f(x, ω))] in Equation (3.14), we notice

that there is a price for being risk-averse – the expected benefit decreases as we

increase the risk aversion (α and λ). In addition, as we become more risk-averse a

larger subset of risky scenarios is considered, and the expected CVaR value increases.

In other words, the VaR value will get smaller, and the expected positive difference

between the VaR and the benefits from risky scenarios will get bigger when considering

a higher number of risky scenarios. In Table 3.3, the Objective Value represents the

result of the whole multi-objective formulation shown in Equation (3.22). We also

decompose Equation (3.22) into two parts as in Equation (3.14): Expected Benefit
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and Expected Risk. The Expected Net Benefit is calculated by reducing the expected

total management cost from the expected benefit.

We notice that, as we become more risk-averse, the Objective Value increases

because of the increase in the Expected Risk amplified by the λ coefficient. Decomposing

the Objective Value into two parts shows that as we are more risk-averse, the Expected

Benefit decreases, indicating that there is a cost of being risk-averse. The Expected

Net Benefit decreases, as well. We will analyze the changes in Expected Net Benefits

with varying risk parameters in more detail in Section 3.6.3. Expected Treatment

and Expected Removal costs, as shown in Table 3.3, help us understand how the

optimal decisions change as the manager becomes more risk-averse. The changes in

the optimal costs for both treatment and removal under scenario 0, as we become more

risk-averse are shown in Table 3.3. Here, we notice a shift in budget allocation between

treatment and removal decisions as risk-aversion increases; more of the budget is

allocated to removing trees rather than treating trees.

With risk neutrality, the treatment of the asymptomatic infested trees at the

earliest stage of infestation provides a higher net benefit than removing those trees or

no treatment [Bushaj et al., 2021b]. With risk aversion, the removal of asymptomatic

trees is a better option than treatment for the worst-case scenarios. For example,

for scenario 0, which involves a high infestation each year, the optimal strategy in

the risk-neutral model is to treat as many infested trees as possible for each period

within the budget. In the risk-averse model however, a higher benefit is achieved

for this scenario by removing these infested trees rather than treating them. Since

this scenario has more weight in the risk-averse objective function, the strategy of

removing trees rather than treating them increases both the expected benefit and the

expected risk portion of the objective function for scenario 0. Further, as the risk

aversion increases, the expected treatment cost decreases, and the expected removal

cost increases (Table 3.3).
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Similar to the benefits case discussed above, the adjustment of the worst-case

scenarios under risk aversion also might affect the full objective, expected benefit,

and expected net benefit values of other good-performing scenarios.

Figure 3.2 compares the cumulative distribution function of the benefit values

for each scenario for the risk neutral and moderate risk-averse models. The risk-averse

model now tries to find a better budget allocation strategy between treatment and

removal to improve unwanted risky scenarios, even if this improvement can cause a

decrease in the expected net benefit value. This is also supported by the shift of

the low net benefit values towards higher values (see objectives from 450k to 800k)

and the fall in the frequency distribution of the high net benefit values (see objective

values from 1,720k to 1,760k) under the moderate risk-averse model compared to its

risk-neutral counterpart. We notice that the improvement in low benefit values is

obtained to increase the overall expected benefit while we can see the fall of the high

net benefit values as the price to pay for being risk-averse.

Figure 3.2 The CDF of benefit values of all scenarios for risk-neutral and risk-averse
models.
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Effect of Risk Parameters in Net Benefits To illustrate further the advantage

of using risk measures in our model, we generate some “extreme” scenarios and

analyze the Expected Net Benefit, the Expected Profit over the 100 × α% worst-case

scenarios, and the CVaR under both risk-neutral and risk-averse models. Here,

we compute the CVaR of a risk-neutral model by calculating the expected profit

over the top 100 × α% worst-case scenarios. Specifically, “extreme” scenarios are

generated by changing the realization of infestation for high and low cases. For the

high realization, we increase the severity of the infestation from 40% to 80% more

than the manager’s expectation, while for the low realization, we decrease the severity

from 20% to 40% less than the expectation. We validate the impact of risk in our

model by performing experiments with α values of 0.05, 0.1, and 0.2 and for each

λ ∈ {0, 0.1, 0.5, 1, 5, 10, 50, 100}.

Figure 3.3 shows the plot of the Expected Net Benefit across a different

combination of risk parameters α and λ. Each line represents an α value for a set

of λ parameters. The trend we observe is that we can get an increase in Expected

Net Benefit as we increase λ from 0 to 0.5, and the Expected Net Benefit is lower for

smaller α values when λ is smaller than 0.5. For the combination of larger α and

bigger λ values, emphasizing the worst-case scenarios, the Expected Net Benefit also

shows a decreasing trend. This happens because when using a bigger α, we improve

more of the worst-case scenarios and we emphasize the expected risk with a larger λ.

To investigate further how objective values change under the “extreme” or

worst-case scenarios, we plot the expected profit for the top 100 × α% worst-case

scenarios when scenario profit values are sorted in ascending order under both

risk-neutral (λ = 0) and the risk-averse cases (λ > 0). Figure 3.4 shows how the

least benefit scenarios are improved using the CVaR risk measure. Notice that for

each of the combinations of the risk parameters α and λ, the expected profit over the

top 100 × α% worst-case scenarios under the risk-neutral case (λ = 0) is improved.
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The lower the α, the higher the expected profit over the top 100 × α% worst-case

scenarios and the corresponding expected profit is increasing as we increase the λ

value. A lower α implies that we are more risk-averse, resulting in a higher expected

profit over the worst-case scenarios. That being said, after a certain increase in λ,

we do not notice further improvement over the 100 × α% worst-case scenarios for

different α parameters.

Figure 3.3 Expected net benefit versus CVaR for each combination of risk
parameters α and λ under both risk-neutral (λ = 0) and the risk-averse cases (λ > 0).

Impact of Risk-Averseness on Surveillance Frequency During our exper-

iments, we notice an interesting relationship between the expected risk and the

surveillance frequency. In Table 3.4, we show the risk values for five scenarios having a

different surveillance frequency under low, moderate, and high levels of risk aversion.

Each scenario is noted using the realization for each time stage. As described in

Section 3.5.3, H and L stand for incurring a high and low realization, respectively,

while M stands for no surveillance; hence no action is taken in that time stage. For

example, the scenario H -H -H -H -H represents surveillance at each period of a 5-stage

problem and observing a high outcome at each stage. On the other hand, the scenario

105



Figure 3.4 Expected profit for the top 100× α% worst-case scenarios for different
values of λ under both risk-neutral (λ = 0) and the risk-averse cases (λ > 0).

M -H -H -H -H corresponds to no surveillance in the first stage and thus assuming a

medium infestation and doing nothing followed by surveillance in stages two to five

and observing a high realization. As can be seen from Table 3.4, as we survey less,

the risk increases under each risk-averseness level. This is because as we survey less,

we know less about the infestation and make fewer management interventions.

Table 3.4 Risk Values for Five Scenario Realizations with Different Surveillance
Frequency Under Various Risk Levels*

Scenario Low Risk (α=0.05,
λ=10) ($)

Moderate Risk
(α=0.25, λ=100)

($)

High Risk (α=0.5,
λ=1000) ($)

H -H -H -H -H 4,428 12,260 17,752

M -H -H -H -H 6,755 14,351 20,930

M -M -H -H -H 9,650 21,821 36,621

M -M -M -H -H 15,990 30,354 44,150

M -M -M -M -M 20,432 38,421 58,501

* The risk does not include the λ coefficient
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Budget Constraint Effect on Risk Mitigation Measures To observe the

results without the effect of the budget constraint in the risk mitigation, we modify

the original model in Equations [(3.22)–(3.44)] by adding the left-hand side of the

budget constraint in Equation (3.40) as a negative cost in the objective function

in Equation (3.22), thus excluding the budget constraint from the model, as shown

below:

Max
∑
ω∈Ω

pω

(∑
t∈T

(
δt
∑
i∈Γ

(
ζStiω −

n∑
k=1

ϑkI
t
ikω − c1H

t
iω − c2

n−2∑
k=1

V t
ikω − c3

n∑
k=1

Rt
ikω

))

+λ
T∑
t=2

(
ηtω −

1

α
vtω

))
(3.78)

In this modified model, we also update the risk constraint in Eqution (3.23) to include

the cost of surveillance, treatment, and removal as shown in the below constraint:

vtω ≥ ηtω−δt
∑
i∈Γ

(
ζStiω −

n∑
k=1

ϑkI
t
ikω − c1H

t
iω + c2

n−2∑
k=1

V t
ikω + c3

n∑
k=1

Rt
ikω

)

∀ t = 2, . . . , T, ω ∈ Ω

(3.79)

The modified model without the budget constraint is obtained by replacing Equations

(3.22) and (3.23) with Equations (3.78) and (3.79), respectively, dropping the budget

constraint in Equation (3.40) and keeping all other constraints in the original model

the same. Table 3.5 presents objective values, expected benefit and risk, and

expected costs for varying risk-averseness levels for the modified model without the

budget constraint. Similar to the results of the original model shown in Table 3.3,

the expected benefit reduces and the expected risk increases as we become more

risk-averse. We also observe the same decision shift between treatment and removal

costs. As we become more risk-averse, the budget used on treatment decreases while
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more budget is allocated to the removal actions. Different from the original model

with the budget constraint, we notice that a higher amount of money is used for the

removal of ash trees. This shows that the budget constraint on the model, apart from

the cost of actions we can take, does not affect the trends in the risk-averse decision

strategies.

Table 3.5 Comparison of Objective Values, Expected Benefit and Risk, and Costs
for the Risk-Neutral, Low, Moderate, and High Risk-Averse Models

Risk-
neutral

Low Risk
(α=0.05,
λ=10)

Moderate Risk
(α=0.25,
λ=100)

High Risk
(α=0.5,
λ=1000)

Objective Valuea 1,627,967 5,059,190 8,525,780 12,153,700

Exp. Benefit ($) 1,627,967 1,586,430 1,496,830 1,485,580

Exp. Risk ($)b - 3,171,230 3,175,990 3,206,590

Exp. Treat. Cost ($) 7,248.5 7,236.8.2 7,222.3 7,204.8

Exp. Removal Cost ($) 318,691 329,367 329,624 332,310

a The calculation with units is represented as Expected Net Benefit ($) +
λ* Expected Risk ($)

b The expected risk does not include preceding λ coefficient

3.7 Concluding Remarks

In this research, we developed a risk-averse, multi-stage, stochastic mixed-integer

programming model where we incorporate a CVaR risk measure into the objective

function to control low-objective scenarios. To facilitate an optimal solution to this

complex problem, we defined the scenario dominance sets and generated multiple

scenario dominance cuts. We applied the RA-MSS-MIP to the problem of designing

surveillance and control strategies for emerald ash borer, a non-native forest insect

that damages forests in the eastern U.S. In our application, we tested our dominance

cuts and strong dominance cuts and compared solution results to the CPLEX solution
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in default settings. We also examine how the budget allocation policies change from

risk-neutral to risk-averse formulations.

Our results show that our implementation of sdc and ssdc cuts reduces the

solution time of risk-averse models by CPLEX by more than 30%. Also, we provide

results to show that the performance of the sdc and ssdc cuts does not change much

with respect to the variations in risk parameters.

By comparing the risk-neutral and risk-averse policies, we show that there is a

price for being prepared for the worst-case scenarios. Despite this price, the manager

may see this loss as a worthy sacrifice towards the mitigation of possible disaster

scenarios. Our results also imply that as the risk-aversion increases, the budget

allocation shifts from inexpensive insecticide treatment to more costly tree removal

to slow the infestation. This shift in resources happens because tree removal is more

effective at slowing the spread of EAB in scenarios with relatively high rates of

spread and damage, and these scenarios are given added weight in the risk-averse

management objective. Investigating the effects of risk parameter values on the

expected net benefits, we show that the number of poor scenarios included in CVaR

measure of risk should be decided carefully by adjusting the (α) parameter.

Here, we study a scenario-based formulation of our multi-stage stochastic MIP

problem with ECVaR risk measures. The benefit of the multi-stage formulation is that

we can capture the spatial-dynamic features of EAB and its host population of ash

trees. Further, the model can address questions of the optimal timing of surveillance

and subsequent management decisions under a budget designated for multiple periods

larger than two stages. The drawback of the multi-stage formulation is that it cannot

handle spatial representation of the survey decision because this would explode the

scenario tree. A future study could use a two-stage stochastic programming model to

analyze decisions on where to survey in the first stage and subsequent management

actions in the second stage. But such a two-stage model sacrifices the ability to
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analyze the optimal sequence of surveys and account for the spatial dynamics of the

pest and its host population.

The uncertainty in our case-study model is exogenous, which is also known as

decision-dependent uncertainty because the realization of the uncertain infestation

depends on the binary surveillance actions that are integrated into a multi-stage

scenario tree [Kıbış et al., 2021]. A future extension of this work could explicitly use

surveillance actions in the mathematical formulation and tackle the complexity of the

resulting non-linear mixed-integer program. Another future direction of this study

could compare the computational performance of our scenario-based RA-MSS-MIP

formulation with a node-based multi-stage formulation using Expected Conditional

Stochastic Dominance (ECSD) risk measures.

Future research directions include the development of new ways to decide on

the selection of cuts for sdc and ssdc. In our problem, we average over a random

selection on the dominance sets, but more research could be done to provide insights

on which scenarios can perform better when used to derive cuts.

Another possible future direction can be the introduction of a long-distance

dispersal mechanism in addition to the 4-km dispersal algorithm. This method could

simulate a long dispersal spread of EAB. Finally, we notice from our results that

deciding on the values of (α) and (λ) may provide different insights. More work can

be done to provide more assistance to the manager by also providing a recommended

risk level for the model solved based on the expectations of the management team.
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CHAPTER 4

A DEEP REINFORCEMENT LEARNING APPROACH FOR
SOLVING MULTI-DIMENSIONAL KNAPSACK PROBLEM

4.1 Introduction

Multidimensional Knapsack Problem (MKP) is an intriguing, strongly NP-Hard

problem [Kellerer et al., 2004] with multiple knapsack constraints. MKP can also be

considered as a special case of integer programming, restricting the decision variables

to 0 or 1. MKP first got attention as a capital budgeting problem [Lorie and Savage,

1955]. MKP is a core resource allocation problem that lies as a sub-problem in many

other problems having resource allocation constraints. Thus, contributions to solving

MKP can affect a wide range of applications in various businesses, logistics, and

computer networks.

Despite many research efforts worldwide and multiple solution approaches to

solve the MKP, there is still a large room for improvement, especially for solving

large-scale instances efficiently. The recent empowerment of machine learning

methods for tackling optimization problems presents a wide area to explore. In

particular, reinforcement learning is a promising candidate to outperform current

approaches for large MKP instances. Literature suggests that reinforcement and

deep reinforcement learning (DRL) approaches can learn solution strategies to solve

combinatorial optimization problems [Ma et al., 2019, Bello et al., 2016, Barrett et al.,

2020].

In this chapter, we propose a deep reinforcement learning approach combined

with a heuristic and a K-Means algorithm to enforce the DRL in a framework to

solve large MKP instances. The heuristic reduces the MKP to a more compact

representation by evaluating all items and assigning a worthiness value for each.

Specifically, we make up an RL environment that arranges a feasible solution
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according to the worthiness of items suggested by the heuristic. We use this

environment as a training ground for an agent where different MKP instances are

generated. Then, we propose a K-means clustering iterative algorithm to get a

reasonable initial feasible solution that is used to train the DRL algorithm. We

construct the DRL framework as a sequential decision-making process where at each

step of the algorithm, the agent decides whether the value of a specific item is

predicted 1 or 0 until the problem becomes infeasible. So, an episode of the DRL

algorithm is made of sequential decisions. Our approach is flexible to train and test

using different state-of-the-art DRL models as a sub-method, such as deep Q-learning,

policy gradient, or trust region gradient-based methods, in our DRL framework. In

our framework, we account for solving MKP instances of various sizes. Our results

suggest that we can train RL agents using distinct instances and then generalize

prediction to instances of different sizes and distributions. We improve CPLEX

performance in terms of solution time with only an average of 0.28% additional

solution gap over CPLEX. Furthermore, we offer the option to partially use predicted

MKP solutions to find better solutions than those provided by CPLEX.

4.1.1 Notations

C: Set of constraints where the respective right-hand side value is appended to each
constraint.

A: Set of possible actions.

V: Set of violated constraints.

Ψ: Set of item worth values.

Υ: Set of clusters.

υ: Index for a cluster where υ ∈ Υ.

υ̇: Index for a centroid of a cluster υ.

ι: Number of K-means iterations.
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θ: DRL testing steps.

τ : DRL training steps.

Q: DRL trained model.

Problem Notations:

J Set of all items, J = {1, 2, . . . , n}.

I Set of knapsack constraints, I = {1, 2, . . . ,m}.

B Set of knapsack limits, B = {b1, . . . , bm}.

W Set of weights for each item of set J .

P Set of all P problem instances.

j Index for an item where j ∈ J .

i Index for knapsack constraint where i ∈ I.

bi Index for knapsack limit where bi ∈ B.

aij Index for knapsack weight where aij ∈ W .

Binary Decision Parameter

xj =


1 if item j is selected

0 otherwise.

x̂j =


1 if item j is in reverted item vector is selected

0 otherwise.

4.2 Related Work

Early work on MKP treats it as a budget planning problem [Lorie and Savage, 1955,

Weingartner, 1966, Weingartner and Ness, 1967]. Applications include but are not

limited to computer science [Gavish and Pirkul, 1986, Thesen, 1973], retail business

organization [Yang, 2001], and planning and optimization [Shih, 1979]. There exist
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different solution approaches to solve MKP, such as exact algorithms [Vasquez and

Vimont, 2005, Mansini and Speranza, 2012], approximation schema [Nomer et al.,

2020], heuristics, and meta-heuristics [Chu and Beasley, 1998, Haul and Voss, 1998,

Glover and Kochenberger, 1996, Vasquez et al., 2001, Gaspar et al., 2020]. The main

approaches used to get an exact solution of MKP are based on branch-and-bound and

branch-and-cut. Different approaches are suggested over the years for branch-and-

bound for the MKP (see, e.g., Thesen [1975], Shih [1979], Gavish and Pirkul [1985],

Vasquez and Vimont [2005], and Mansini and Speranza [2012]). A number of studies

have also used dynamic programming (DP) to get an exact solution Büyüktahtakın

[2011]. Among the recent DP attempts are methods proposed by Pisinger [1997],

Bertsimas and Demir [2002], and Balev et al. [2008]. Finding an optimal solution is

computationally very expensive, motivating researchers to investigate approximation

algorithms. Different contributions for polynomial-time approximation solutions are

due to Frieze and Clarke [1984] and Caprara et al. [2000]. Again, the computational

difficulty of MKP inspired many heuristic algorithms to compute a feasible solution

in a reasonable time. We can categorize such heuristics as greedy [Dobson, 1982,

Senju and Toyoda, 1968, Loulou and Michaelides, 1979, Yan Yang, 2020], relaxation-

based [Bertsimas and Demir, 2002, Hillier, 1969, Balas and Martin, 1980, Magazine

and Oguz, 1984], and advanced [Lee and Guignard, 1988, Pirkul, 1987, Fréville and

Plateau, 1993]. The greedy approach is based on a relatively simple idea of considering

items one by one until the problem becomes infeasible [Fox and Scudder, 1985]. Even

more detailed greedy approaches do not fall far from that.

Lately, Deep Reinforcement Learning (DRL) has gained much attention from

researchers working in Combinatorial Optimization Problems (COP). Despite many

heuristics and exact algorithms proposed to solve COPs, solving large instances is

still impossible by the best exact algorithms, such as branch-and-bound [Woeginger,

2003]. Despite the excellent performance in small and medium-sized models, these
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methods are still not efficient in handling large-scale COPs. Other studies propose

different approximation algorithms to deal with the time complexity of these instances

[Vazirani, 2013]. Although approximation algorithms improve on the solution time,

they frequently involve specific properties that require change each time problem

settings are altered.

Recent studies use DRL in Traveling Salesmen Problem (TSP) [Bello et al.,

2016, Nazari et al., 2018, Kool et al., 2018], job scheduling [Chen et al., 2017, Li

and Hu, 2019], bin packing [Verma et al., 2020, Hu et al., 2017], logistic problems

[Pontrandolfo et al., 2002, Delarue et al., 2020] and game playing [Silver et al., 2018,

Mnih et al., 2013]. These developments have shown that DRL formulation is suitable

for solving sequential decision-making problems. Although many of these applications

aim to solve TSP and vehicle routing, it is not difficult to extend these applications

to the sequence-to-sequence concept, which is then applicable for solving knapsack

problem (KP) instances Bello et al. [2016]. Most of these studies intend to use the

power of deep learning towards tackling the curse of dimensionality. Some studies

use a Pointer Network architecture [Vinyals et al., 2015, Bello et al., 2016, Gu et al.,

2020, Kool et al., 2018]. Others come up with either image or matrix formulations

that can represent different classes of COP problems, such as maximum cut, minimum

vertex cover, and knapsack [Hubbs et al., 2020, Afshar et al., 2020, Dai et al., 2016,

Barrett et al., 2020]. Some more recent studies use DRL to learn from state-of-the-art

algorithms and improve them further [Tang et al., 2020, Etheve et al., 2020, Liao et al.,

2020, Yang and Rajgopal, 2020].

Vinyals et al. [2015] introduce a Pointer Network architecture, in which the

output layer of the deep neural network used in the pointer networks is a function of

the input. Bello et al. [2016] use the pointer with reinforcement learning to solve the

TSP and knapsack problem. They use a policy gradient with an Advantage Actor-

Critic (A3C) algorithm to train their deep neural network. Although initially designed
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to tackle TSP problems, they report optimal solutions for instances with up to 200

items for the knapsack problem. Gu et al. [2020] present a deep learning algorithm to

learn sequential decisions in an unconstrained binary quadratic programming problem

(UBQP) since many of the COPs can be generalized into a UBQP. Kool et al. [2018]

propose a model based on attention layers with benefits incorporated over the Pointer

Network. Using REINFORCE algorithm, they claim to obtain a close-to-optimal

solution for two variants of TSP problems with instances up to 100 nodes of the TSP

network.

Dai et al. [2017] introduce a new neural network framework for graph-based

combinatorial optimization problems. They refer to a structure2vec, introduced in

Dai et al. [2016], to derive an embedding of the graphs’ vertices. They claim that

their approach learns effective algorithms for TSP, Maximum Cut, and Minimum

Vertex Cover problems. Barrett et al. [2020] use DRL in a different direction as they

present the exploratory combinatorial optimization where they aim to improve the

agent learning even during test time continuously. Doing so, they claim they can

achieve state-of-the-art performance, although further improvements can be made

by developing a better starting point. Afshar et al. [2020] propose a DRL approach

to solve the knapsack problem. They use state aggregation to extract features and

construct states. They compare results with pointer network implementations done in

Bello et al. [2016] and Gu et al. [2020] and report that their state-aggregated approach

outperforms them. Hubbs et al. [2020] develop a library of reinforcement learning

environments consisting of multiple classic optimization problems. Even though they

show that DRL is capable of picking up a policy for every problem, it was not able

to outperform the heuristic models related to off-line knapsack problems. Kong et al.

[2019] follow a slightly different approach to using RL. They investigate whether a

theoretically optimal algorithm can be found for online optimization problems. They
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claim their results are consistent with the behaviors of the optimal algorithms for

problems, such as AdWords problem, online knapsack, and secretary.

Another exciting approach is demonstrated in Tang et al. [2020]. Unlike the

implementations mentioned above, where the focus is on building a configuration

or classical representation of the original models, they propose using DRL to learn

state-of-the-art cutting plane methods. They state that their model outperforms

human-designed heuristics, and their model can also benefit from the branch-and-

cut algorithm. Similarly, Liao et al. [2020] involve DRL in improving global vehicle

routing algorithms. Based on their results, they claim they can outperform the A*

algorithm, which is a benchmark on a global search. Etheve et al. [2020] show the

DRL’s strength as they use it to optimize the branching strategy of a Mixed Integer

Program (MIP). They present Fitting for Minimizing the SubTree Size (FMSTS),

a model that learns the branching strategy from scratch, and they compare it with

commercial solvers, such as CPLEX.

To our knowledge, there is no existing DRL approach proposed to solve the

multidimensional knapsack problem. Despite the increased complexity due to the

multiple items and constraints considered in the multidimensional KP, our DRL

method could be generalized to solving other Binary Integer Programming (BIP)

problems.

4.2.1 Key Contributions

In this study, we present a new DRL algorithm to tackle the computational difficulty

of solving one of the most difficult classes of problems, MKP. Our approach joins the

forces of reinforcement learning, K-means, and heuristic approaches and integrates all

into a DRL framework to solve COPs, such as the MKP. Because MKP forms the root

of many practical problems, Chu and Beasley [1998] state that MKP can be regarded

as a general zero-one integer programming with non-negative coefficients. Therefore,
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improvements on solution methods to this class of problems can be extended to

any zero-one integer programming problem. Furthermore, due to a large domain

of applications, this NP-hard problem is frequently used as a benchmark problem to

compare general-purpose methods in combinatorial optimization [Hanafi and Freville,

1998].

Initially, we present a heuristic that helps us estimate each item’s worth. This

is a contribution to the heuristic solution approaches, which combines some data

analysis and greedy strategy that can be used alone as an algorithm itself. In an

attempt to simplify the problem at hand by finding a reasonably starting solution, we

propose an unsupervised learning algorithm using K-means to cluster the constraints

with a distance-based similarity matrix and relax the problem by only considering

a subset of the constraints determined by this K-means algorithm. This approach

enables us to reduce the complexity of the problem at hand and get a reasonable

feasible solution even for the largest instances to train our DRL algorithm. To

harness the power of reinforcement learning, we formulate our problem initially in

a 1D environment and then extend it to a 2D environment where an agent is trained

to select and deselect items. Together with the above algorithms, a powerful DRL

framework is presented to solve large MKP instances. To our knowledge, this is the

first DRL model of its kind where a 2D environment is formulated, and an element

of the matrix represents an item of the MKP. In addition to the framework, we

also create a helper generator for the MKP instances that are randomly generated.

We use this generator to produce MKP instances with a different number of items,

constraints, and varying distributions of weight and cost parameters.

Among the powerful properties of the DRL framework is its generalization. The

environment is set to extract information from different MKP instances and to learn

general patterns. The heuristic and K-means algorithm play an important role in

generalization as well. For every instance, the heuristic and K-means are executed,

118



enabling a similar pattern to the DRL environment despite the different distribution

of the instances. With their help, the solution is concentrated in an isolated area

of the 2D environment. Specifically, when we create the DRL environment, we use

sorting according to the heuristic, and for all instances, the agent learns “focused”

and “advantageous” areas in the environment and where it focuses on searching for

an optimal solution. Once trained using the K-means initial solution, the DRL model

used with the same training can solve distinct instances. We present results to show

that the DRL framework solves instances of different sizes and distributions faster

than CPLEX, with a small gap where the DRL agent is only trained once.

4.3 Multi-Dimensional Knapsack Problem Formulation

Here we present the mathematical formulation of the multidimensional knapsack

problem. Without loss of generality, we assume all parameters are non-negative.

The multidimensional knapsack problem (MKP) is formulated as a binary integer

program (BIP) in Equations (4.1) as follows:

P min
n∑
j=1

cjxj (4.1a)

s.t.
n∑
j=1

aijxj ≥ bi ∀i = 1, 2, . . . ,m. (4.1b)

xj ∈ {0, 1} ∀j = 1, 2, . . . , n. (4.1c)

The objective function (4.1a) minimizes the sum of knapsack (investment) costs over

all items j ∈ {1, 2, . . . , n}. Constraints (4.1b) ensure that the total return value of

items invested must exceed a given lower bound bi defined for each constraint i ∈ I,

representing an investment type i. Finally, constraints (4.1c) represent binary integer
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restrictions on the xj variables.

4.4 Deep Reinforcement Learning Knapsack Model

To solve our multidimensional knapsack problem, we present a DRL framework to

derive a sequential selection policy minimizing the cost without violating any of the

original constraints. Originally, our problem P consists of a set of items J , a set of

constraints I with a capacity bi for each i ∈ I, a set of weights aij ∈ W for each item

j ∈ J , and constraint i ∈ I. To solve our problem, we incorporate four different

state-of-the-art DRL algorithms, as described in Section 4.4.3.

4.4.1 Heuristic Transformation

To facilitate the multidimensional knapsack problem for the usage in the DRL

algorithm we present a heuristic that evaluates the items and sorts them based on

their importance, considering their contribution to the objective function and the

feasibility of the constraints.

We build our analysis by a worthiness formulation considering the effect of cost

values, weights of each item, and the sizes of each knapsack. Despite many different

heuristic approaches in literature used to solve knapsack and multidimensional

knapsack problems [Boyer et al., 2009, Pirkul], we develop a new heuristic used before

the DRL algorithm to improve its performance. In our heuristic, we consider every

component of the problem that affects the decision regarding a certain item, such

as item cost, item weight for each constraint and, the respective right-hand-side

value. We only aim to transform our multidimensional knapsack into a one or

two-dimensional vector representation. We do not consider any duality properties

or multipliers but only consider proportions between the problem components.
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Therefore, we state the following rules to derive our worthiness formulation for each

item j:

Rule 1. The smaller the cj, the more desirable it is with respect to the objective

function.

Rule 2. Considering each constraint/knapsack alone, then the larger the aij, the

more valuable the item is in terms of satisfying the knapsack constraint i.

Rule 3. The smaller the bi, the easier it is to satisfy constraint i with the selected

items.

Going further in our analysis, we consider the relationship between each of the

statements above, and we provide the following extensions of the rules:

Rule 4. Regarding Rules 2 and 3, the higher the
aij
bi

, the more desirable item j is

because it fills a larger portion of the knapsack.

Rule 5. Using Rules 1 and 4, the lower
cj

aij/bi
, the more valuable item j is since we

prefer an item j with a lower numerator and a larger denominator.

Importance of an item: Based on the above rules, we formulate the worthiness of

an item j for a multi-dimensional knapsack formulation as:

rj =

|I|∑
i=1

cj
aij/bi

|I|
∀ j = 1, 2, . . . , n (4.2)

The lower the worthiness score of an item calculated in Equation (4.2) is, the

more beneficial we see it to be selected. Therefore, sorting the items based on this

ratio in ascending order gives us a vector where the most favorable items are listed

first.

Throughout the DRL algorithm, we use a reverted vector of items based on

these ratios. We denote the items in the original vector as xj ∀j ∈ J and the items

in the reverted vector as x̂j ∀j ∈ J . For example, in Figure 4.1, we move from the

regular vector in blue to the new order in green based on the worthiness ratios. We
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use some helper methods to keep a relationship between both representations that

allow us to easily switch from one to another.

Figure 4.1 Reverting the items based on the worthiness ratios.

Algorithm 1 shows the step-by-step procedures of the heuristic algorithm.

Initially, we calculate the item worth for each item in the knapsack and store them

in a vector. Then on a second procedure, we sort them in ascending order, but we

maintain their original position. We use some utility methods to convert from the

sorted items to the original problem.

Algorithm 1 Knapsack Transformation Heuristic

1: Procedure: Calculate Item Worth
2: Input: cj , aij , bi {Item cost, item weight, and constraint i right-hand side.}
3: Output: Ψ {The item worth set.}
4: for j ∈ J do {for each item}
5: for i ∈ I do {for each knapsack}
6: rj = +

cj
aij/bi

{Calculate worthiness ratio.}

7: end for
8: append

rj
|I| to Ψ

9: end for
10:
11: Procedure: Sort Elements According to Item Worth
12: Input: Ψ {Item worth list.}
13: Output: S, S′ {S - sorted values, S′ keeps re-ordered indices for items according to worthiness ratio.}
14: S, S′ ←− sortAscending(Ψ)

4.4.2 K-means Algorithm and Initial Solution

To provide a feasible good starting solution for the DRL algorithm and a benchmark

of how a solution should look like as an input into the RL training algorithm, we use

the K-means algorithm, which divides the constraints of the knapsack instance into

122



multiple clusters and generates an initial solution. Algorithm 2 shows each step of

the K-means Constraint Clustering Algorithm in detail.

We provide all constraints (weights and right-hand side) as an input for the

K-means algorithm. We calculate the similarity of two constraints using an n +

1-dimensional Euclidean distance between two n + 1−dimensional vectors. Each

of the vectors contain n items and the right-hand side value of the corresponding

constraint. Considering two vectors df = [af1, . . . , afn, bf ] and dk = [ak1, . . . , akn, bk]

where f and k ∈ I, we calculate each distance between df and dk, Ddf ,dk as:

Ddf ,dk
2 =

n+1∑
j=1

(dfj − dkj)2 , (4.3)

where dij is the jth element of the constraint vector di for i ∈ I. At the starting

point, we assign a centroid for each cluster by selecting one of the constraints randomly

for each cluster. A distance map is populated by calculating the distance between

each vector di for i ∈ I and the centroid vectors υk ∈ Υ, using Equation (4.3). Using

this distance map, we reassign the vector di to the closest centroid or cluster. With

the new cluster assignment, we recalculate cluster means and new centroids. We

repeat this procedure for a pre-set number of iterations. We limit the number of

iterations since we do not want to spend too much time on the K-means algorithm.

Here, we only need a good feasible solution to design our RL environment.
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Algorithm 2 K-means Constraint Clustering

1: Procedure: Generate Clusters
2: Input: ι,Υ, C = I ∪ B {Number of iterations, set of clusters, set of constraint vectors for problem P.}
3: υ̇1 = ζ1, υ̇2 = ζ2, . . . , υ̇|Υ| = ζ|Υ| {Assign first constraints as centroids for each cluster υ ∈ Υ, where υ̇ is

a centroid of a cluster υ and ζ ∈ C}
4: Output: υ1, υ2, . . . , υ|Υ| {Output |Υ| clusters.}
5: for each ι do
6: for ζ ∈ C do
7: for υ̇ ∈ Υ do

8: Dζ,υ̇ =
√∑n+1

j=1 (ζ − υ̇)2

9: end for
10: end for
11: for ζ ∈ C do
12: Assign ζ to the closest cluster υ ∈ Υ {Reassign constraints to the closest cluster υ with centroid

υ̇.}
13: end for
14: for υ ∈ Υ do {for each cluster}
15: for ζ ∈ υ do

16: υ̇ =
[∑

ζ1
|υ| , . . . ,

∑
ζ|υ|
|υ|

]
{Recalculate the mean distance for each cluster dimension and assign it

as the new centroid.}
17: end for
18: end for
19: end for
20:
21: Procedure: Cplex Recursive Selection
22: Input: υ1, υ2, . . . , υ|Υ|
23: Define: P̄ {P̄ is the unconstrained original problem.}
24: Define: V {Set of violated constraints.}
25: Output: X̄, Z̄ {Feasible solution and objective value of P̄ .}
26: for υ ∈ Υ do
27: Append the farthest pair of vectors of υ to P̄
28: end for
29: Solve P̄ 7−→ V {Solve P̄ and determine the set of the violated constraints V.}
30: while V is not ∅ do
31: if |V| > 10 then
32: Append five most violated constraints to P̄
33: else
34: Append all the remaining constraints to P̄
35: end if
36: Solve P̄ 7−→ V {Recalculate violation set V.}
37: end while

4.4.3 DRL Model

In recent years, different algorithmic approaches using neural network approximators

have been proposed for RL to tackle large problems, especially COPs. Among the

most popular ones are Deep Q-learning, policy gradients methods, and trust region

gradient methods. For each algorithm, we serve the state and possible actions as

input, and we get back an action as an output. We perform training and testing

using four state-of-the-art algorithms. For example, we train the model and test it

using the Advantage Actor-Critic (A2C) method introduced in Mnih et al. [2016].
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The authors propose a DRL framework that uses asynchronous gradient descent to

optimize deep neural network controllers. They use parallel actor-learners to update a

shared model instead of experience replay used in Deep Q Network (DQN) to achieve a

stable learning process. We also train and test our knapsack framework using a Double

DQN with an experience replay presented in Schaul et al. [2015]. Although using too

much memory and computational power, experience replay can decorrelate episode

updates. Among the trust region policy optimization algorithms, we also test our

results in Actor-Critic using Kronecker-Factored Trust Region (ACKTR) developed

by Wu et al. [2017]. ACKTR is a scalable trust-region optimization algorithm for

actor-critic methods. The authors use a Kronecker-factored approximation to natural

policy gradient allowing the covariance matrix of the gradient to be inverted efficiently.

Their paper is among the first to try to combine the benefits of different groups of

algorithms (trust region policy optimization and the policy gradient). Another such

algorithm is proposed by Schulman et al. [2017] to attain the data efficiency and

reliable performance of trust region policy optimization while only using the first-order

optimization.

4.4.4 One-dimensional Knapsack Environment

In this section, we describe a one-dimensional vector representation of potential

solutions of the multidimensional knapsack problem. We represent the states of the

DRL algorithm as the combination of all possible binary selections in the vector where

each element of the vector represents an item. Figure 4.2 shows the environment used

to describe the one-dimensional formulation achieved using our heuristic in Algorithm

1. Our heuristic provides the order of the items in a vector based on their importance,

and when sorting it, the agents will learn to concentrate on searching for the solution

in a slightly isolated area. For example, when we sort the items according to the

item’s worth, the first items are more likely to be selected, and the last items are
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more likely to be ignored. This approach creates a focus area of decisions. We aim to

train the agent to learn “swimming” in that area. Below, we describe episodes, state,

action, and a reward function in our deep reinforcement learning algorithm using this

1D knapsack environment.

Figure 4.2 One-dimensional vector representation of our problem.

Episode: We define an episode as the steps taken from a current state until we

find an infeasible solution or the maximum number of steps per episode is reached.

In each episode, we aim to maximize the average reward.

State s(P ): Each state describes the current selection of an item j ∈ J , as

either 0 or 1. The heuristic defined in Algorithm 1 simplifies our states from the

collective combination of items with their costs and weights and knapsack constraints

to a simple state-space of 2n where n represents the number of items, and each item

can take a value of 0 or 1. Thus, the state space is only defined by the selection of

items free from the structure of constraints. We denote a state of the problem as s(P ).

Actions: We allow the agent to select/deselect an item at a step of each episode

based on the current state. Therefore, we have n potential actions where n is the

number of items at each step of the algorithm. We denote each action as Aj where j

denotes a specific item. For each step, our algorithms are fed a certain state describing

whether an item j is selected or deselected, and an action is taken upon that state.

For example, if action Aj is taken at state s(P ), then if item j was selected, we

deselect it, or if an item was not selected, we select it. This will form a new state
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s′(P ). At each step, we only take one action Aj for a particular item j.

Reward Function: Our reward function is guided using the original problem.

Since we minimize the objective function, we aim to reduce the objective value

without violating any constraints. Therefore, we give rewards based on four different

situations. First, if the action reduces the objective value and leads to another feasible

state, the agent is given a positive reward. Second, if the objective is increased and

the problem remains feasible, then a small negative reward is given. Third, if an

action leads to infeasibility, then a high negative reward is given. Lastly, if an action

leads to a better solution than the starting solution, we give a higher positive reward,

and if the solution is still feasible, we continue the next step. Let Zs be the objective

value of a certain state s and j be the item currently selected in a step. We then can

formulate the reward function as:

r(s(P ), Aj) =



+Zs if a better solution than the starting solution is found

+cj if the objective is reduced and feasibility is maintained

−cj if the objective is increased and feasibility is maintained

−Zs otherwise

(4.4)

Based on our results, there are some disadvantages of using the 1D represen-

tation of the model. First, as instances’ size increases, the number of states and

actions increase exponentially, thus, having a considerable effect on training time.

Therefore, the model training time and the time agent needs to learn will also increase.

To overcome these weak points, we reformulate our model using a two-dimensional

representation, gaining more advantage of the heuristic and lower action space, as

presented in the next section.
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4.4.5 Two-dimensional Knapsack Environment

Here we develop a novel two-dimensional knapsack environment and formulation to

overcome the weaknesses of the one-dimensional representation described in Section

4.4.4. The heuristic is used in this representation as well, but besides, we reshape a

vector of n items into a square two-dimensional matrix of
√
n, as shown in Figure

4.3.

The reshape from the 1D representation is done after using the sorting heuristic.

Here, the items are sorted according to their worthiness, starting from the top-left

first cell to the bottom-right the last cell. Similar to the isolated area of the solution

on the 1D representation, sorting and locating the items based on their worthiness in

the 2D matrix will help the agent learn faster to select or deselect items.

Figure 4.3 Two-dimensional matrix representation of the state space.

As an extension of the 1D formulation, some of the design properties are

inherited. Changing the shape of the environment does not change our state space.
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Instead, it reduces the action space and also provides a path-like movement into

selecting and deselecting items.

Episode: Similar to the 1D formulation, the episode starts with a feasible

solution and moves on the 2D matrix until the solution (state) becomes infeasible or

the maximum number of steps for each episode is reached.

States s: Changing the dimensions of the representation does not change our

state space. For example, consider a 1D representation with 100 items. In our

2D representation, the solutions will be represented as a 10x10 matrix, where each

element of the matrix represents an item’s location. Again, state-space would amount

to 2n.

Actions: In this formulation, the primary benefit is seen in the action space.

From having a representation where the action space increases with the size of the

problem, we move to a formulation where the action space is the same for different

sized instances. We model the actions as movements in the matrix. We have four (4)

discrete actions at any step. Up, Down, Right, and Left. Whenever the agent moves

from one cell to another at each step, it reverts an item’s selection or deselection

decision and moves to another item to make a decision for in the next step.

Reward Function: The reward structure does not change with our structure

as well. So, for the 2D formulation, we still use the reward function shown in Equation

(5.2).

4.4.6 Main Algorithm

To train and test both 1D and 2D knapsack environments, we use a similar algorithm.

The environments differ internally, but the general steps of the algorithm are the
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same. Combining the above structures, we build our training framework, as shown in

Figure 4.4. We use the same testing framework as in the training framework shown in

Figure 4.4. Using ten knapsack training instances of different sizes, we process each

one in our K-means cluster to get a close-to-optimal feasible solution and also feed

these instances to our heuristic to create a 1D ratio representation for each of the

instances. Both of these results are used to prepare the DRL environment. Converting

the 1D representation of ratios to a 2D matrix and organizing the K-means solution

according to the ratios make up our initial DRL environment. We reset the training

environment for every new knapsack instance. Each of the MKP instances for training

is generated randomly and has different sizes. Independent of the sizes, the learning

is controlled by a set number of steps that we define in the algorithm. Each of the

instances is used to train the DRL model until the set number of steps is done. When

all training is finished, the model is stored to be used for testing.

For testing, a similar flow to the training algorithm is followed, using a different

set of instances for testing. Different from training, we perform three tests. For each

of the tests, we generate ten instances for each considered size: small, medium, and

large. So, in total, 30 instances are tested based on the same loaded model from the

training.

Figure 4.4 Training DRL flowchart.
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We demonstrate the steps of the training DRL framework given in Algorithm

3 in Figure 4.4. The steps of the testing DRL framework given in Algorithm 3 are

also similar to the training procedure’s steps. We use K-means Constraint Clustering

(Algorithm 2) to get a close-to-optimal feasible solution and a suboptimal objective

value. The variable indices for each instance are re-ordered based on a list of item-

worth values, using the heuristic shown in Algorithm 1. Using the initial solution

combined with the item worthiness values, we can create the 1D and 2D environments

with re-ordered items. After creating the environment, we train our agent for a

pre-set number of steps and use one of the training DRL algorithms, A2C, ACKTR,

DQN, and PPO2. Internally, 1D and 2D environments have their differences and

similarities. When it comes to the state space, reward strategy, and episode concept,

they are similar. What changes is the action space. In a 2D environment, we have

reduced the number of possible actions in each step to four (4) from n possible actions

in a 1D environment, where n is the number of items in the knapsack.

Algorithm 3 describes the training and testing procedures of the DRL framework.

Both training and testing procedures make use of Algorithms 1 and 2 to prepare the

ground for training DRL agents. The training loop is configured to run a set number

of steps for each training instance. Although having the same number of steps, larger

instances contribute mostly to the training time. Also, the testing loop is run for

a set number of steps for each MKP instance. The number of steps for testing is

calculated based on the MKP instance size because of the huge range of the instance

sizes we solve. During a set number of steps, multiple episodes can happen. Because

of selection and deselection decisions, we keep track of the best solution achieved

throughout all episodes.
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Algorithm 3 DRL Framework Algorithm

1: Procedure: Training DRL Framework
2: Input: τ {DRL training steps.}
3: Input: P {Set of problems P for training.}
4: Output: Q {DRL trained model.}
5: for p ∈ P do

6: X̂ ←− Heuristic {Get 2D ratio representation using heuristic Algorithm 1.}
7: X̄, Z̄P ←− K-means {Solution and objective obtained using K-means Algorithm 2.}
8: Env ←− X̄ + X̂ {Using heuristic result and K-means initial solution build DRL environment (Env).}
9: end for
10: for each τ do
11: Predict action a ∈ A {For each step we only perform one action.}
12: Perform action a→ obs, rew, done {After action get the new state (obs), reward (rew), and episode

end flag (done).}
13: end for
14:
15: Procedure: Testing DRL Framework
16: Input: θ {DRL testing steps.}
17: Input: PT ,Q {Set of test problems PT , DRL trained model.}
18: Output: Ẋ∗, ŻPT {Solution and objective value at the end of the testing procedure.}
19: for p ∈ PT do

20: X̂ ←− Heuristic {Get 2D ratio representation using Algorithm 1.}
21: X̄, Z̄PT ←− K-means {Solution and objective obtained using Algorithm 2.}
22: Env ←− X̄ + X̂ {Using heuristic result and K-means initial solution build DRL environment.}
23: end for
24: for each θ do
25: Predict action a ∈ A {For each step we only perform one action.}
26: Perform action a→ obs, rew, done {After action get the new state (obs), reward (rew), and episode

end flag (done).}
27: Store Ẋ∗ and ŻPT {Keep the solution and objective if it is the best found.}
28: end for
29: ←− Ẋ∗, ŻPT {Return best solution and objective value from DRL.}

4.4.7 Generalization to Larger Instances

Another essential property for every machine learning model is knowledge transfer.

Knowledge/Learning transfer is a machine learning technique where a model trained

on one task is re-purposed on a second related task [Goodfellow et al., 2016]. With

the current methods, similar instances can be easily implemented, and the agent

learns fast in a stable environment. In our model, we do not aim to solve only the

same-sized instances. We model our environment in a 30x30 matrix, despite the size

of the instances. Our initial environment has all the cells (items) assigned as -1. With

this environment, we aim to solve instances as large as 900 items and 900 constraints.

For the large instances, the values of -1 are replaced by assigning item values of

1 or 0 in all cells. For smaller instances, we put the formulation of the square matrix
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in the top left corner of the environment as 0 and 1s of an initial state obtained from

K-means while leaving the other cells at -1 as initially assigned. Figures 4.5, 4.6, and

4.7 show how the environment is filled on different instance sizes. We expect the agent

to learn a path leading to the best solution. In the case of 4.5 and 4.6, we expect

the agent to learn not to move around cells assigned with -1. This representation is

used to generalize the framework to instances with different sizes as it orders items

in the matrix and the RL agent learns to focus on a certain search area that is

more advantageous in terms of finding the best set of solutions. In addition to the

preprocessing of the instances before creating the RL environment, this formulation

also reduces our action space, as mentioned in Section 4.4.5.

Figure 4.5 Two-dimensional DRL
Environment for 100 items and 100
constraints.

Figure 4.6 Two-dimensional DRL
Environment for 400 items and 400
constraints.

4.5 Experiments

4.5.1 Instance Generation and Implementation

To evaluate the computational performance of the DRL algorithm, we generate three

types of instances with different sizes. We classify the instances as small, medium,

and large based on their sizes. A small instance is composed of 100 items and 100

constraints. A medium instance has 400 items and 400 constraints. Finally, a large

instance is made up of 900 items and 900 constraints. For each size of the instance, we
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Figure 4.7 Two-dimensional DRL Environment for 900 items and 900 constraints.

generate ten testing instances. The training set of 9 instances is made up of instances

of different sizes, with three instances of each size.

We generate each of the test instances for the MKP with the following

distributions:

The parameters cj, aij, and bi are independent and identically distributed (i.i.d)

random variables sampled from the uniform distribution over {1, . . . , 10}, e.g.,

U [1, R], where R = 10. We set bi = 3
4

(∑n
j=1 aij

)
.

4.5.2 Implementation Details

We implement our DRL algorithm using Python v3.7 and CPLEX v12.71. Table

4.1 shows the values of parameters used in the heuristic, K-means, and the DRL

algorithms with its symbol, its description, and experimental value. We run our

K-means algorithm for 30 iterations. We define a different number of clusters in the

K-means for each instance size. As the instance size increases, the number of clusters

in the K-means algorithm increases as well.
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Table 4.1 DRL, K-means, and Heuristic Parameters

Parameter Description Value

n Number of items 100;400;900

m Number of constraints 100;400;900

ι Number of iterations for K-means algorithm 30

Υ Set of clusters for each instance size n/25

τ Number of DRL steps for training 100,000

θ Number of DRL steps for testing 100

Gap1 CPLEX optimality gap pre-set for solving the original
problem 0.001 %

Gap2 CPLEX optimality gap pre-set for solving the
K-means reduced problem 0.01 %

4.5.3 Results

To report computational results for each considered approach, we describe the

following abbreviations:

To report computational results for each considered approach, we describe the

following abbreviations:

- cpx: solving the original problem (4.1a)-(4.1c) using CLPEX

� ppo: training and testing our DRL algorithm using PPO

� acktr: training and testing our DRL algorithm using ACKTR

� a2c: training and testing our DRL algorithm using A2C

� dqn: training and testing our DRL algorithm using DQN

� obj: objective function value based on the best solution found for all instances
for its specific size averaged over 10 instances

� ttime: training time in CPU hours

� soltime: solution time in CPU seconds averaged over 10 instances

� ipred (%): percentage of item values correctly predicted with respect to the
optimal solution averaged over 10 instances
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� gapdiff (%): the average percentage change in the objective value compared
with CPLEX objective (rl obj−cpx obj)/cpx obj∗100 where rl obj and cpx obj
represent the objective found by DRL agent and CPLEX, respectively, averaged
over 10 instances. The gapdiff value for cpx refers to the CPLEX MIP gap.

K-means Algorithm Evaluation To evaluate the performance of our K-means

algorithm presented in Section 2, we investigate the rate of improvement and the

progress after each CPLEX loop. Starting with clustered constraints, we solve our

relaxation, namely K-means reduced problem, and check for violated constraints

and calculate the gap between the original and the reduced problem objectives, as

described in Algorithm 2. Since we start with a low number of constraints included

from the clusters, the first solution found from the relaxed problem is often infeasible

for the original problem. Figures 4.8 to 4.13 show how the percent gap between

the original and the K-means reduced the problem’s objectives, and the number

of violated constraints changes after each loop until the point where a subset of

constraints is reached to result in feasibility in the original problem. For each instance

size, we can see that this solution helps us identify a feasible solution (with a small

gap on large instances) in a timely manner.

Figures 4.8, 4.10, and 4.12 show how the gap changes between the objectives

of the original and the K-means reduced problems after each iteration for small,

medium, and large instances, respectively. For small instances, an optimal solution is

reached in most cases, but for medium and large instances, when a feasible solution is

found, its objective value has a positive gap of around 0.5% compared to the original

problem best objective value found by CPLEX.

Figures 4.9, 4.11, and 4.13 also show how the number of violated constraints

changes over each iteration of the K-means algorithm for small, medium, and large

instances, respectively. Initially, the K-means algorithm starts with violating a big

subset of the constraints but very fast, it converges to a feasible solution. We will

use the solution found by K-means to train the DRL agent. The performance of the
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agent’s learning with respect to the initial K-means solution is discussed in the next

section.

Figure 4.8 Percent gap for small
instances.

Figure 4.9 Violated constraints for
small instances.

Figure 4.10 Percent gap for medium
instances.

Figure 4.11 Violated constraints for
medium instances.

Figure 4.12 Percent gap for large
instances.

Figure 4.13 Violated constraints for
large instances.
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Instance Learning and Reward Performance To evaluate the learning process

of an agent and the performance of our reward function, we plot reward results

of the training process against respective values of the gap between DRL’s updated

objective value and the objective value of the initial solution provided by the K-means

algorithm using CPLEX. We use the initial solution and initial objective value found

by the K-means approach given in Algorithm 2 to guide the DRL agents in the

learning process. Figure 4.14 shows how the reward function reacts to the percent

gap between the DRL solution and the K-means solution. The top y-axis presents the

percent gap between the DRL and initial K-means objectives, while the down y-axis

shows the reward for each respective episode where a negative reward represents a

positive contribution to reducing the objective function. Notice in Figure 4.14 that as

the gap increases, the rewards given to the agent decrease. However, the improvement

is not completely smooth during the training episodes due to training using different

sized instances. We can still see that the model is learning to get higher rewards and,

consequently, getting close to or better than the initial objective value found by the

K-means algorithm.

Figure 4.14 Training gap and rewards for each episode where a negative reward
represents a positive contribution to reducing the minimization objective function.
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As with general applications of the DRL, the learning or training process is

the most time-consuming. To evaluate results regarding generalization, we only train

one model for each of the DRL algorithms (a2c, acktr, dqn, and ppo) where the

parameters of the MKP model are sampled using U [1, R], where R = 10. Then, each

of these DRL models will be used to predict MKP instances of different sizes and

distributions. The training time (ttime) for a2c and dqn is 39 CPU hours, while for

ppo and acktr the training takes 38 and 33 CPU hours, respectively.

Comparing Four DRL Algorithms and CPLEX Performances In this

section, we compare the performance of each DRL algorithm with that of the CPLEX

commercial solver. Each row of Table 4.2 shows results that are averaged over 10 test

instances with a specific instance size.

The agent is only trained once for each DLR algorithms (a2c, acktr, dqn, and

ppo), and then we predict small, medium, and large instances with the same respective

agent. The percentage difference (gapdiff) is calculated with respect to the best

solution found by CPLEX. For results in Table 4.2, the gap (gapdiff) and solution

time (soltime) depend on the number of iterations used in the K-means algorithm ι

and the number of DRL steps used for testing θ.

Our primary aim in this study is to benefit in solving harder instances faster,

but we present results for small instances to show a wide range of applicability of our

approach. For small instances, the DRL agents are able to find an optimal solution,

although each of the agents takes longer to solve than cpx. Also, the percentage of

item values correctly predicted with respect to the optimal solution is consistently

above 97%. For medium instances, we notice that we have small gaps with respect

to cpx, but they do come with a significant improvement in the solution time. In

terms of the solution time and gap with respect to cpx, acktr is a clear winner for

medium instances. Each DRL solution requires at least 45 times less CPU solution
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time in CPU seconds and only has a max gapdiff of 0.28 %. Despite that, acktr is

closely followed by the other algorithms with a slightly larger gap and solution time.

With respect to the number of item values correctly predicted, a2c is slightly ahead

with a small percentage.

For large instances, the trained DRL agents still show some gaps, but in the

worst-case scenario, we improve ten-fold over cpx in terms of solution time. The dqn

seems a clear winner over other DRL algorithms with respect to the solution time,

gap, and percentage of item values correctly predicted. The dqn provides a solution

predicting 97.8% of the same items as cpx using at least 14 times less time and only

having a gapdiff of 0.22%.

In this section, we address the generalization of the proposed DRL algorithms

by training each of the agents with a mix of varying sized instances and then using

that agent to predict instances with different sizes. In the next section, we show the

generalization of our DRL approach to solving instances with not only different sizes

but also different distributions.

Generalization to Different Distributions To expand the generalization further,

we want to use the same trained agents to predict instances generated from different

distributions. For this set of generalization experiments, we generate groups of 10

small, medium, and large instances with a uniform distribution U [1, R], where R = 25

and R = 100 to test the trained DRL models.

Each row of Table 4.3 shows test results for an average of 10 instances generated

with U [1, R], where R = 25, using the DRL models that are formerly trained utilizing

instances with U [1 : R], where R = 10. Thus, for these generalization experiments,

we do not perform any additional training. Our results show that for small instances,

the DRL framework finds the optimal solution using each of the four RL algorithms,

and a high percentage of the items are predicted to be the same as the solution
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Table 4.2 Comparison of DRL Algorithms and CPLEX Performances

Instance Algorithm obj soltime
(CPU sec.) gapdiff % ipred %

cpx 359.9 4 0 -

Small

a2c 359.9 7 0 98.2

acktr 359.9 8 0 97.8

dqn 359.9 5 0 97.0

ppo2 359.9 7 0 97.2

cpx 1355.1 7206 0.26 -

Medium

a2c 1358.8 159 0.27 97.6

acktr 1358.7 135 0.26 96.8

dqn 1398.9 136 0.28 96.6

ppo2 1358.8 147 0.27 96.8

cpx 2994.2 7209 0.25 -

Large

a2c 3002.9 715 0.29 97.4

acktr 3002.8 607 0.28 97.3

dqn 3002.6 494 0.22 97.8

ppo2 3002.9 680 0.29 97.2

from cpx. In medium and large instances, we notice a slight increase in the cpx

optimality gap and the solution time compared to similar results shown in Table

4.2, implying that those testing instances with R = 25 are harder than the training

instances with R = 10. Despite the change in distribution (R = 10 to R = 25),

the gap (gapdiff) and the percentage of item values correctly predicted (ipred) still

perform good. Specifically, the gapdiff (%) values provided by DRL algorithms are

improved in Table 4.3 compared to Table 4.2. This shows that the solution found

by our DRL algorithm gets closer to the CPLEX solution for those harder instances
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when evaluating the gapdiff. Thus, using a distribution for the test instances than

those used in training instances does not impact the good solution performance of

our DRL approach.

Table 4.3 Comparison of DRL Algorithms with CPLEX for Test Instances with
R = 25

Instance Algorithm obj soltime
(CPU sec.) gapdiff % ipred %

cpx 818.5 4 0 -

Small

a2c 818.5 7 0 97.2

acktr 818.5 8 0 98.6

dqn 818.5 5 0 98.6

ppo2 818.5 6 0 98.6

cpx 3157.6 7206 0.43 -

Medium

a2c 3166.5 203 0.28 95.5

acktr 3164.8 176 0.22 96.0

dqn 3163.5 177 0.18 96.0

ppo2 3163.5 173 0.18 96.3

cpx 6811.1 7209 0.33 -

Large

a2c 6826.0 727 0.22 96.9

acktr 6824.7 637 0.20 97.1

dqn 6822.7 533 0.17 97.7

ppo2 6828.5 721 0.25 97.4

Table 4.4 shows further results for our generalization to different distributions.

Again, using models trained with instances with U [1, R], where R = 10, we predict ten

instances for instances generated with U [1, R], where R = 100 and varying sizes. Once

more, our results show that the DRL framework can scale to different distributions

without any significant loss in soltime or gapdiff. Although we notice an increase
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in soltime for small instances, the percentage of the item values predicted correctly

ipred is better compared to those in Tables 4.2 and 4.3. In the case of medium and

large instances, despite a small increase in soltime, the significant improvement with

respect to cpx is still maintained. For large instances, while soltime increases, at

least a 7-fold improvement by DRL algorithms is preserved. Hence, our generalization

experiments prove that the DRL framework retains a good performance even if the

distribution of the test instances is varied.

Table 4.4 Comparison of DRL Algorithms with CPLEX for Test Instances with
R = 100

Instance Algorithm obj soltime
(CPU sec.) gapdiff % ipred %

cpx 3179.3 6 0 -

Small

a2c 3179.3 11 0 100

acktr 3179.3 12 0 100

dqn 3179.3 7 0 100

ppo2 3179.3 10 0 96.7

cpx 12209.1 7201 0.36 -

Medium

a2c 12236.6 215 0.22 96.0

acktr 12699.0 205 0.27 96.0

dqn 12324.9 192 0.24 96.0

ppo2 12691.6 201 0.21 95.0

cpx 26864.3 7209 0.35 -

Large

a2c 26937.3 1012 0.27 97.5

acktr 26945.0 978 0.30 97.6

dqn 26930.3 882 0.24 97.1

ppo2 26930.6 961 0.24 97.3
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RL Partial Prediction To search for better solutions in large instances, we

propose a partial prediction that can be used to guide CPLEX and offer a better

and more time-efficient solution. By utilizing the DRL framework properties, we can

decide on what items the framework selects and deselects with high certainty. Based

on this information, we can tailor a partial prediction guided by a threshold level

or solely based on the DRL certainty on selection. We show results for three tested

partial predictions: default, 85%, and 95%. The default partial prediction only fixes

items that the DRL agents predict with high confidence. This is done by ordering

the solution of the DRL agent according to the worthiness of items defined by the

Knapsack Transformation Heuristic given in Algorithm 1. Such a solution would have

the form 1, 1, 1, 1, 1, . . . , 0, 1, 1, 0, 0, 1, . . . , 0, 0, 0. The default prediction is defined by

selecting items starting from the left with the most rated until a deselected item is

found and starting from the right with the least rated item until a selected item is

found. Our goal is to have the DRL agent predict only a subset of all items and

let CPLEX work on the uncertainty region of the solution. Once the values of the

predicted items are fixed in the optimization model (4.1), we solve it by CPLEX at

its default settings. Due to this, for different instance sizes, the prediction percentage

changes for the default method (see, e.g., in Table 4.5, 70%, 78%, and 72% ). To

predict at the 85% and 95% levels, we still fix a set of items from the right and left of

the solution vector and then use CPLEX to solve for the remaining items. For 85%

partial prediction, we use 75% of the predictions starting from the left of the solution

vector and 10% of the predictions starting from the right of the solution vector, while

for the 95% partial prediction, we fix 80% of the items starting from the left and

15% starting from the right leaving only 5% of the total item values for CPLEX to

decide.

Table 4.5 shows results for three partial predictions for each instance size and

each algorithm used. PredPerc is the percentage of items that are predicted using
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the DRL solution. For small instances that are solved in a few seconds, cpx has a

time advantage, sometimes even two-fold. However, all the DRL agents are able to

find the optimal solution. Notice that the soltime for all partial predictions does not

increase compared to the soltime reported in Table 4.2, despite solving an additional

model where the partial predictions are fixed. This is because the additional time to

solve each of the models with partial predictions using cpx is quite small, on average

0.01 CPU seconds. For medium instances, in the case of 95% prediction, solution

time is insignificant. Therefore, no additional time is needed over the DRL algorithm

solution time. In the case of 85% prediction, a small amount of time is required for

cpx to solve it further, but a big improvement is seen with respect to the gapdiff.

Even on the default case, which takes the longest time among the partial predictions,

an average gap of 0.001% with cpx is achieved in considerably lower soltime. For

large instances, default partial prediction not only achieves an average of 0.0005%

gapdiff with cpx but also provides a slightly better solution in the case of a2c.

Larger instances take more time to solve compared to medium instances using all

methods. Among them, 85% consumes more cpx time, while 95% partial prediction

model with fixed variables uses on average around 10 CPU seconds. Based on our

results in Table 4.5, a manager would not benefit a lot from partial predictions at 95%

but would gain at least a two-fold decrease on gapdiff if they would decide to use 85%

partial prediction. Meanwhile, certain decision-makers that need a close-to-optimal

solution and would allow for more time to get a better solution might find the default

partial prediction most useful.

Partial prediction is a useful feature to serve as a trade-off between reductions of

computational time and solution gap. In situations requiring a fast solution of large

problems, a partial prediction with a high percentage of fixed items can be used, while

in situations demanding close-to-optimal solutions a default partial prediction can be

the preferable approach.
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Table 4.5 Three Levels of Partial Prediction for Four DRL Algorithms and CPLEX

Instance Algorithm PredPerc% obj soltime
(CPU sec.) * gapdiff % ipred%

cpx - 359.9 4 0 -

70% 359.9 7 0 98.0

85% 359.9 7 0 98.0a2c

95% 359.9 7 0 98.0

70% 359.9 8 0 97.4

85% 359.9 8 0 97.0acktr

95% 359.9 8 0 97.0

72% 359.9 5 0 99.0

85% 359.9 5 0 98.0

Small

dqn

95% 359.9 5 0 98.0

70% 359.9 7 0 97.6

85% 359.9 7 0 97.6ppo2

95% 359.9 7 0 97.6

cpx - 1355.1 7206 0.26 -

78% 1355.5 2284 0.02 97.0

85% 1356.4 416 0.09 96.0a2c

95% 1358.8 159 0.27 97.0

81% 1355.9 657 0.05 97.4

85% 1357.9 145 0.2 96.5acktr

95% 1358.7 135 0.26 96.8

75% 1355.2 2112 0.007 97.2

85% 1356.4 373 0.11 96.6

Medium

dqn

95% 1358.9 136 0.28 97.0

73% 1355.4 1235 0.02 96.7

85% 1357.2 389 0.15 96.0ppo2

95% 1358.8 147 0.27 96.7

cpx - 2994.2 7209 0.25 -

72% 2994.1 5570 -0.003 98.1

85% 2995.2 2583 0.03 98.0a2c

95% 2997.1 716.2 0.09 97.4

81% 2994.6 2823 0.01 97.6

85% 2997.1 1730 0.09 97.3acktr

95% 3002.8 615 0.28 97.3

64% 2994.3 2710 0.003 98.1

85% 2997 1617 0.09 97.6

Large

dqn

95% 3002.6 504 0.22 97.6

72% 2995.2 2896 0.03 97.5

85% 2996.5 1803 0.07 97.2ppo2

95% 3002.9 688 0.29 97.6

* Solution time is calculated by summing up the time needed to find a solution with a
DRL algorithm and the model solution with fixed predictions using CPLEX.
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4.6 Discussion and Future Work

We present a DRL framework to solve MKP instances of different sizes and

distributions. The framework consists of a heuristic to analyze and generalize MKP

properties to estimate item worthiness and an unsupervised clustering algorithm

based on K-means to reduce problem size and get an initial feasible solution.

Four different state-of-the-art RL algorithms are used to learn patterns in a

two-dimensional environment where items can be selected or deselected. Our design

is based on a lot of testing while identifying fast and efficient ways to feed the main

RL learning process.

Our results show that COPs can highly benefit from the power of deep learning

methodologies. Specifically, reformulating hard problems into convenient general

deep learning environments allows one to generalize over the solution of a broad

class of problems, such as MKP. Based on our experiments, DRL agents can learn

and generalize solution strategies for the MKP. Furthermore, commercial solvers can

benefit from the computational power of deep learning and form hybrid frameworks

that reflect the best side of each methodology.

As a general framework, future work can include improvements anywhere on

the framework. For example, another way can be found to gain an initial solution

and objective value faster. A more accurate representation of the MKP, rather than

using the heuristic, could lead to an improvement in time and accuracy. Future

improvements could be introduced to the RL parts. The reward function is a key

point in training; therefore, a multi-objective reward function could be designed to

look at different aspects of a solution, such as a gap, feasibility, or small violations.

A new DRL algorithm designed specifically for the MKP environment can improve

sequential decision-making and contribute to faster and more accurate prediction as

well. Lastly, the developed MKP environment can be further extended to incorporate

stochasticity in sequential decision-making.
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CHAPTER 5

A SIMULATION-DEEP REINFORCEMENT LEARNING (SIRL)
APPROACH FOR EPIDEMIC OPTIMIZATION AND

CONTROL

5.1 Introduction

Coronavirus disease of 2019 (COVID-19) epidemic very quickly paralyzed the world

as we know it. After starting as a local epidemic, in a short time, it reached across

the world and was declared a pandemic by World Health Organization (WHO). As

of June 29, 2021, 33,640,572 individuals have been infected, and 604,115 died from

the COVID-19 in the U.S. alone. No government had it easy to come up with the

regulations and interventions. Apart from the loss of human lives, COVID-19 also

caused an economic recession in the world economy. The global stock market has

experienced the worst crash since 1987. Jones et al. [2021] and the International

Labor Organization [McKeever, 2020] estimated a loss of 400 million full-time jobs

across the world. COVID-19 economic impact is also felt in agriculture [Poudel et al.,

2020, Gray and Torshizi, 2021], manufacturing [Tareq et al., 2021, Cai and Luo,

2020], arts and sports [BBC, 2020, Committee, 2020], and tourism [Tounta, 2020].

Even the U.S. was hit hard by the disruption of supply chains [Goel et al., 2021,

Nikolopoulos et al., 2021], change of lifestyle [Giuntella et al., 2021], and limited

resources [Galanakis et al., 2021]. This disruption was accompanied by a huge job

loss [Bell and Blanchflower, 2020, Soucheray, 2020]. With COVID-19 effects the

economy, many controversies began. On March 11, 2020, WHO declared COVID-19 a

pandemic. Former U.S. President Trump declared a national emergency and accepted

that they have ”played it down” not to cause panic in public. On March 16, the Trump

government puts in place the first interventions stopping gatherings of more than ten

people and canceling nonessential trips for the next 15 days. In fear of an economic

failure, this is the closest thing to a nationwide shutdown. What is worse, a tentative
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reopening provoked a harsher spread of infections, spiking up the debates regarding

how the government handled the pandemic [Chaudhry et al., 2020, Ashraf, 2020]

At the end of a dark year, hope arose when the first vaccines were introduced.

On December 11, 2020, Food and Drug Administration (FDA) authorized the

Pfizer-BioNTech vaccine for emergency use, and just a week later, on December

18, Moderna was authorized as well. The government started vaccination using age

and comorbidity-based strategies aiming to protect individuals more prone to critical

effects. Another discussion arose whether a strategy where the super-spreaders,

individuals contributing the most to the spread of the virus, were targeted first or

at least were allowed to get vaccinated could have higher benefits. Moghadas et al.

[2021] study a vaccination strategy with a delayed second dose. Their experiments

show that a delay of 9 weeks for the second dose could avert at least an additional

17.3% infections and reduce deaths by 0.34 per 10,000 population compared to the

four-week interval between the two doses. Gupta and Morain [2021] investigate

different prioritization approaches and assess the likeliness of those approaches to

reduce morbidity and mortality.

We aim to develop an approach incorporating two components: an evaluation

mechanism and a decision-maker. An agent-based simulation is a very suitable

approach to mimic epidemic spread and population movements and quantify inter-

ventions [Shamil et al., 2021, Li et al., 2021, de Mooij et al., 2021]. Hence, we use an

agent-based model as an evaluation of the interventions. Kerr et al. [2020] provide an

interesting approach of an agent-based model involving interventions and different

contact layers for each individual in the population. Considering high usability

and advance of reinforcement learning (RL) (see, e.g., Bushaj and Büyüktahtakın

[2021], Delarue et al. [2020], Kong et al. [2018] ) and the disability of state-of-the-art

mathematical optimization models to deal with large populations, we consider using

a DRL agent as governing decision-maker that has the ability to intervene in the
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simulation and apply available measures. To do this, we propose a simulation

reinforcement learning (SiRL) where an agent-based simulation model is integrated

inside a reinforcement learning environment.

The structure of the rest of this chapter includes the related work in Section 5.2,

followed by agent-based model (ABM) simulation and deep reinforcement learning

(DRL) environment details in Sections 5.3 and 5.4, respectively. Further, in Section

5.5, we integrate the ABM and DRL approaches. Finally, we show our experiments

and results in Section 5.6.

5.2 Related Work

In many real-world problems, it is difficult to obtain necessary data and reproduce

situations. Hence, simulation has always been a very useful methodology to express

the environment with its all variables and dynamics. The choice of modeling is

highly dependent on the type of the problem, complexity, and the decision makers’

requirements. Among simulation methods used in literature are System Dynamics

(SD) [Borshchev and Filippov, 2004], Agent-Based Modelling (ABM)[Macal and

North, 2009, Epstein, 2009, Macal and North, 2005], Discrete Event Simulation (DES)

[Goldsman et al., 2010, Fishman, 2013], and Hybrid Simulation (HS) [Brailsford et al.,

2019, Mustafee et al., 2017].

Agent-based simulation has emerged and matured over the last 20 years,

expanding both its realm of applications and its sophistication as technology and

computing have improved. Agent-based simulation can be utilized to predict

epidemic trends and dynamics [Müller et al., 2021, Kieu et al., 2020], evaluate

containment strategies and intervention decisions [Kerr et al., 2020, Shamil et al.,

2021, Gharakhanlou and Hooshangi, 2020, Hinch et al., 2020, Alzu’bi et al., 2021],

and mitigate risks of reopening [D’Orazio et al., 2020, Li et al., 2021].
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Agent-based modeling can be very useful to represent real-world interactions

of populations and offer a decision-maker the chance to intervene and evaluate the

outcomes of each decision. Epstein [2009] suggests that ABM is perfectly suitable

for modeling the dynamics of an epidemic across a population. In the context of

COVID-19, agent-based modeling has the potential to assist public health officials in

responding to outbreaks with an appropriate level of intervention while minimizing

the economic impact of those restrictions.

Among recent ABM simulations, Covasim (COVID-19 Agent-based Simulation)

[Kerr et al., 2020] models the dynamics of COVID-19 spread in a population by

considering demographics based on age, different transmissions among contact layers,

and specific viral properties of the disease itself. Covasim is very useful in simulating

disease spread and comparing the simulation with other offered non-pharmaceutical

interventions such as social distancing, reducing contacts, testing, contact tracing,

and quarantining. Li et al. [2021] extend the above study by also implementing

a vaccination strategy and performing simulations according to Operation Warp

Speed (an intervention proposed by the former Trump administration) to facilitate

and accelerate the development, manufacturing, and distribution of vaccines and

diagnostics and the plan of one million vaccines per day, proposed by the Biden

administration. During the current pandemic, different countries have tried to

implement measures to deal with the epidemics having scarce medical resources and

aiming to lower the spread and damages, those in human lives and economic aspects

as well. Most countries have tried to keep a balance and optimize decision-making

based on their available resources.

In addition to simulation studies that approximate the dynamics of an epidemic,

mathematical optimization has often been used for decision-making to control

epidemic outbreaks. In an epidemic situation, proper resource allocation contributes

to a lot of saved lives as well as to a healthier economy. Different mathematical
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programming methodologies are presented to tackle the resource allocation challenges

in a pandemic, such as mixed-integer programming [Büyüktahtakın et al., 2018a],

multi-stage stochastic programs [Yin and Büyüktahtakin, 2021a, Bushaj et al.,

2021b,a, Yin and Büyüktahtakin, 2021b, Kıbış et al., 2021], and stochastic programs

[Coşgun and Büyüktahtakın, 2018, Tanner et al., 2008, Mehrotra et al., 2020].

Dasaklis et al. [2012] critically review the roles of logistics operations and their

management on epidemic control and identify possible literature gaps. They claim

that the issue of epidemic control in the supply chain literature is fragmented. Most

of the available frameworks have very little correlation to the real-case scenarios,

and the applicability of the modeling approaches is limited. Queiroz et al. [2020]

prepare a detailed review on the impacts of epidemic outbreaks in supply chains and

present a series of open research questions to frame a research agenda for scholars

and practitioners. In addition, they identify multiple suitable approaches to support

supply chain responsiveness, adaptation, and sustainability. Among others, they

claim that a combination of simulation theory with dynamic capabilities, could make

up for complex scenarios to cope with resource sparsity and sequential decisions

throughout the pandemic.

Büyüktahtakın et al. [2018a] propose a mixed-integer programming formulation

that integrates epidemic dynamics into a logistics model to project the disease growth

while minimizing the total number of infections and fatalities from the Ebola outbreak

in West Africa. They provide insights regarding the intervention timing and intensity

for each region in Guinea, Liberia, and Sierra Leone. Yin and Büyüktahtakin

[2021a] present a multi-stage stochastic programming compartmental model to tackle

the uncertain disease progression and resource allocation in an infectious outbreak.

They introduce equity constraints in their model and apply them to Ebola disease

spread in West Africa. Yin et al. [2021] present a risk-averse multi-stage stochastic

epidemics-ventilator-logistics compartmental model addressing the resource allocation
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changes of COVID-19. Their results show that the short term migration significantly

influences disease transmission. Ventilator allocation depends on multiple factors,

including initial infections, ICU capacity, the population of a geographic location,

and the availability of the ventilators.

Optimization models that oversee the impact of all possible interventions and

budget allocation scenarios on the growth of the disease simultaneously (see, e.g.,

Büyüktahtakın et al. [2018a], Yin and Büyüktahtakin [2021a], Bushaj et al. [2021b,a],

Yin and Büyüktahtakin [2021b]) are powerful tools to model epidemic logistics and

optimize decision strategies for resource allocation. Such operations research (OR)

approaches focus on modeling disease dynamics on a large-scale population over

multiple regions and time periods. However, optimization models in combination

with agent-based simulations can be extremely difficult to solve. When we focus

on a specific population and heterogeneity among disease compartments such as

age-specific transmission rates, agent-based models could capture individual-level

interactions and detailed disease dynamics better than mathematical programming

models. In that case, agent-based models should be supported by a powerful

optimization tool.

Deep Reinforcement Learning (DRL) has lately been very attractive to evaluate

optimal policies based on a situation. In the last decade, Reinforcement Learning

(RL) shifted from the use of tabular formats of actions and states [Watkins and

Dayan, 1992, Hasselt, 2010] to the usage of Deep Neural Networks (DNN) due to

their immense benefits. The use of DNN in RL has led to advances, such as Deep

Q-Learning [Schaul et al., 2015], Double Deep Q-Learning [Van Hasselt et al., 2016],

Actor-Critic Methods [Mnih et al., 2016, Wu et al., 2017]. DRL has proven its strength

in various applications such as games [Mnih et al., 2015, 2013, Silver et al., 2018],

combinatorial optimization [Bushaj and Büyüktahtakın, 2021, Delarue et al., 2020,

Li and Hu, 2019], healthcare [Mahmud et al., 2018, Johnson et al., 2016], financial
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and business management Hu and Lin [2019], Zhang et al. [2017], autonomous driving

[Sallab et al., 2017, Chen et al., 2019].

Due to the devastating COVID-19 pandemic, recent studies have already looked

up at DRL to help on different applications related to COVID-19 [Kompella et al.,

2020, Wan et al., 2020, Bednarski et al., 2020, Awasthi et al., 2020]. Kompella

et al. [2020] aim to use RL to optimize decisions during the pandemic in a way

that minimizes the economic impact and keeps the hospitals in a normal capacity.

Bednarski et al. [2020] investigate the use of deep learning models to provide

near-optimal distribution of healthcare equipment to better deal with public response

crises similar to COVID-19. Awasthi et al. [2020] tackle the problem of distributing

a limited vaccine supply by using a sequential decision strategy based on RL.

They propose VacSIM that formulates sequential decision-making into a Contextual

Bandits approach to optimize the distribution of the COVID-19 vaccine. They claim

that up to 9,039 additional lives could be saved when evaluating their policy against

a naive distribution policy. Ohi et al. [2020] implement a DRL agent based on a

short-term memory DDQN to learn an optimal policy for maintaining a balance

between mitigating epidemic spread and economic cost.

In essence, Simulation Optimization (SO) is the optimization of an objective

subject so some constraints while being evaluated using a simulation. Gillisa et al.

[2021] propose a simulation-optimization framework that combines an age-based SEIR

compartmental simulation model and a genetic algorithm to discover good strategies

and optimize intervention strategies. They extract insights from the COVID-19

pandemic to aid policymakers in the closure, protection, and travel decisions by

minimizing the total number of infections under a limited budget. Their results

highlight that social distancing and wearing masks are of the highest importance,

while closures and travel restrictions are more flexible policy restrictions. Onal et al.

[2021] present a simulation-optimization framework that searches and treats invasive
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species under a limited budget. The simulation is responsible for representing the

growth of the invader spatially for up to 25 years, and then the optimization model

finds an optimal search and path such that it minimizes the economic damage caused

by the invader.

Simulation-optimization studies using agent-based modeling can be very effective

but often suffer from the dimensionality curse. Specifically, applying those models

to a large population not only simulation becomes more challenging, but also the

optimization might be impossible. To overcome this challenge, recent studies have

used RL-based techniques to utilize the information obtained from the agent-based

simulation. Several studies present distinct frameworks combining agent-based

models with DRL tools to explore decision-making options. Ohi et al. [2020]

implement a simulation model which serves as a virtual environment for training

a DRL agent to take non-pharmaceutical decisions based on a specific situation

of the epidemic. They demonstrate how agents select possible available actions

to reduce the spread of the disease while still considering the economic factors.

They present different lockdown strategies that the DRL agent undertakes to halt

the resurgence of the disease. Kompella et al. [2020] present a pandemic simulator

that models the epidemic spread, including the interactions between individuals in

a community, testing with false positive/negative rates, imperfect public adherence

to social distancing measures, and contact tracing. They then use an RL-based

methodology to optimize mitigation policies within the pandemic simulator.

Inspired by these achievements of DRL, we aim to develop a self-sufficient

framework that fully represents the relationship between the evolution of a disease

in a population with individual-level interactions and the government’s intervention

actions to control an outbreak. We propose a Simulation-Deep Reinforcement

Learning (SiRL) approach to epidemic disease modeling and decision-making where

the simulation is agent-based and optimization is handled by a DRL agent on
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environment compartmental data. The Covasim methodology of Kerr et al. [2020]

has been very successfully used to represent the realism of the COVID-19 pandemic.

Hence, we extend the open-source simulation to better fit with the simulation strategy

inside our SiRL framework.

5.2.1 Key Contributions

Simulation. In Covasim, all the details for each intervention are defined upfront at

the start of the simulation. We extend the Covasim simulation to be flexible towards

incorporating interventions in real-time and over multiple time periods. We modify

Covasim to incorporate an online intervention at a current time step by feeding the

Covasim model with an action from the DRL agent, who represents the decision-

maker, at a preset frequency and enforcing the intervention internally based on the

details defined. This way, Covasim becomes more flexible, and new interventions can

be enforced up to a defined time period. The preset frequency serves as a simulation

step size. This step size is set based on a manager’s decision-making schedule. If a

manager wants to intervene daily, the step size is set as 1, while we can also set the

step size to any number.

Another extension to the Covasim model is the incorporation of vaccination

strategies. In addition to Covasim’s disease progression mechanism, we add vacci-

nation strategies that can be used for any two-shot or single-shot vaccine. Currently,

we introduce only vaccines approved under the Emergency Use Authorization (EUA)

of the FDA, but an extension to other single-shot or two-shot vaccines can easily

be done. An individual can be exposed to other infected individuals at any point

during the vaccination process. Depending on the state at which an individual is, we

calculate the likeliness to get infected based on the type of the vaccine and how many

shots they got. In addition to the age and comorbidity-based vaccination strategy, we

also develop a random vaccination strategy where no priorities are set. In the random
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vaccination strategy, any individual from each group has the same chance of being

selected for vaccination, given that they belong to either susceptible or recovered

compartments.

Reinforcement Learning. We introduce a Simulation - Reinforcement Learning

(SiRL) platform where a governing agent (DRL Agent) evaluates the available

information for the epidemic and then takes an action. The action is then applied to

the Covasim simulation environment, the state of the population under each health

compartment is computed, and the action outcome is quantified as a reward returned

to the governing agent. We formulate a multi-objective reward function to provide

insights based on a shifted focus of the decision-maker. The multi-objective reward

function enables to achieve a trade-off between infections, deaths, and economic

stability during an epidemic outbreak.

5.3 Simulation Environment

Throughout the chapter, we refer to some notations and abbreviations, which are

defined in Section C.1. To simulate the Covid-19 pandemic in a population of around

9 million people, who reside in New Jersey, we enhance the Covasim model developed

by Kerr et al. [2020] (Version 2.1.2, 2021-03-31) and adapt it to our needs and purpose.

Kerr et al. [2020] propose an open-source ABM developed to project epidemic trends

and explore intervention scenarios. Covasim ABM has many useful features, such

as age-structured agents, transmission networks with different social layers such as

households, schools, workplaces, and communities. Covasim further includes intrahost

viral dynamics with viral-load-based transmissibility. Covasim also supports a wide

range of already built interventions such as physical distance, protective equipment,

testing, and quarantine, as well as the capability to extend and make custom

interventions. Covasim is used extensively in literature for spatio-temporal simulation

[Gharakhanlou and Hooshangi, 2020], to derive strategies for non-pharmaceutical
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interventions [Contreras et al., 2021, Chiu et al., 2020], and to evaluate reopening

strategies [Bilinski et al., 2021, Li et al., 2021]

Kerr et al. [2020] also implement a process of calibration calculating the loss

using a normalized absolute error. They formulate an equation to find parameters

that minimize the function that measures the difference between the observed data

and the model predictions. In their calibration module, most of the parameters are

fixed based on the values available from literature and only parameter allowed to

vary is β, which is the probability of virus transmission when a susceptible individual

comes in contact with an infectious individual.

Figure 5.1 Covasim disease progression, compartments, and final outcomes [Kerr
et al., 2020].

Figure 5.1 shows the compartmental model structure of Covasim. The yellow

shading shows the states at which an individual is infectious and transmits the

disease. The susceptible compartment includes all healthy individuals. Once a healthy

individual is exposed, they get infected but not yet contagious. As the incubation
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days are over, an individual either has no symptoms (Asymptomatic) and is recovered,

or symptoms start to manifest (Presymptomatic). An individual might experience

mild symptoms (Mild) and then transition to the recovered compartment. If the

symptoms become severe (Severe), then there is still a chance that the individual

will recover, but medical attention might be needed. If symptoms become critical

(Critical), then the individual still has a slim chance of recovering, but if not, the

individual will be transitioned to the death compartment (Dead). We extend the

agent-based simulation in Figure 5.1 to the one in Figure 5.2, where V1 and V2

represent the individuals who get the first and second shot vaccination, respectively.

In our model, susceptible individuals are eligible to be vaccinated for the first dose.

As susceptible individuals wait for available vaccines, they might get exposed to the

virus, and depending on the contact, they might get infected. A similar situation is

possible for individuals who got the first and second dose of the vaccine. However,

the probability of getting infected is way lower due to the protection from the vaccine

doses. Some infected individuals might not show symptoms (Asymptomatic), while

others (Symptomatic) may show mild symptoms (Mild), but they might also become

sicker and need hospitalization (Hospital) or critical (Intensive Care Unit [ICU]).

Asymptomatic cases will automatically transition to Recovered after some time.

Other symptomatic individuals might worsen and eventually die, but with some

probability, those individuals might recover as well. After eight months, antibodies

of recovered individuals cannot protect them anymore, so that they will transition to

susceptible again [Dan et al., 2021].

In their study, Kerr et al. [2020] portray Covasim as a simulation tool with

intervention strategies for the whole simulation predefined at the start of it. And

using the multi-simulation feature, they can compare how each intervention affects

the disease spread. In our study, we are interested in defining the best intervention

strategy for a certain situation of the pandemic periodically over multiple time stages.
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Hence, we extend Covasim to be more flexible where an action can be defined at

any point in time, and a new intervention will be enforced up to a defined time

period. Furthermore, we extend the Covasim interventions by implementing two

additional vaccine interventions to perform single-shot or double-shot vaccines. While

one of the vaccination strategies considers vaccination with equal probability for

each individual, random vaccination model (RVM), the other considers people with

comorbidities and older in age with a higher likelihood to get vaccinated than young

and healthy individuals, age-based vaccination model (AVM). With this, we aim

to provide insights to the discussion regarding the priority to vaccinate for critical

individuals or super-spreaders.

Figure 5.2 Covasim disease progression, compartments, and final outcomes in the
extended model.
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5.4 DRL Environment

Counting on simulation to describe the compartmental situation of the population,

we need to model a DRL environment where the current state of the simulation is

represented. We define a state in simulation as the population statistics (percentage

of the population on each compartment) in each disease compartment on a particular

day during the pandemic. This information is also used to express the state of the

RL environment. A state is composed of the following information: the ratio of the

susceptible population (S), the ratio of the population who got only the first shot

of the vaccine (V1), the ratio of the population who got both shots of the vaccine

(V2), the ratio of total infections (I), the ratio of hospitalized cases (H), the ratio of

individuals in an ICU (C), the ratio of the tested population (T ), the ratio of the

quarantined population (Q), the ratio of the recovered individuals (R), and the ratio

of the dead individuals (D) over all the population.

5.4.1 Episode and States

Episode. We define an episode as the full cycle of simulation and DRL agent

intervention decisions-making. Before starting the framework, we define the step

size and the full length of the simulation. For example, assuming that we want to

simulate for a year and our step size is a month, at the beginning of each month,

the DRL agent would enforce interventions in the simulation. Then simulation is run

for a month based on the intervention given by the DRL agent. The episode starts

with the first intervention of the first month and ends after the simulation for the last

month of the year.

States. In our RL environment, we formulate our state as a one-dimensional array

containing information for the current compartmental situation of the epidemic and

denote it as θ := [Et, S, I,H,C,D,R, V1, V2, T,Q]. A state represents the proportion
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of the population in each disease compartment defined on Figure 5.2. A state is

generated after one simulation run.

5.4.2 Multi-Objective Reward Function

At first, due to the fast spread of the COVID-19 pandemic, many governments were

faced with tough choices. COVID-19 started taking lives daily, but most of the

governments were slow to enforce closures since they feared the economic collapse

Rocha [2020]. In such situations, a government or a decision-maker needs a tool

to do a sensitivity analysis and find trade-offs between different objectives, such as

reducing the overall disease spread, keeping the economy performing, and protecting

people’s health, or decreasing the death toll. Particularly, during the COVID-19

pandemic, a full closure would threaten the economy, while no interventions result in

more infections, deaths, and a side economic cost related degradation of the quality

of human life or loss of lives, workforce reduction, and hospital expenses. A multi-

objective analysis could be helpful to evaluate various dimensions of the epidemic’s

impact simultaneously [Hasan et al., 2019, Cobuloglu and Büyüktahtakın, 2015b, Yin

and Büyüktahtakin, 2021a]. We formulate a multi-objective reward function to offer

the decision-maker the option of shifting between a strategy to keep the economy

flowing to another where they would like to reduce the total death toll. Hence,

economic stability and well-being are two main dimensions that make dealing with

an epidemic a more difficult challenge. Without considering the epidemic’s impact

on the economy, which we call the economic index, decision-making would not be

complete. Hence, we quantify a contribution for each individual to the economy.

Specifically, the health condition of a person defines the level of their contribution

to the economy. Quarantining, and work school and business closures come at a

high cost. We assume that every healthy individual contributes to the economy a

value of 1. In our validation, this contribution is given from susceptible, recovered,
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and vaccinated individuals. Individuals who get infected will not be able to fully

contribute to the economy. Depending on the severity of the infection, it might also

become a cost to the economy. Finally, deaths of infected people result in the worst

economic loss because the economic contribution of an individual is completely lost.

Economic Index. To quantify the economic situation of a particular day during the

pandemic, we formulate Equation (5.1).

Et = S + V1 + V2 +R− α× I − β ×H − γ × C −D (5.1)

where α, β, and γ can also serve as tuning parameters of the economic index

at a time t, and I represents the percentage of infected individuals of all severity

including individuals in mild, severe, and critical compartments, D is the percentage

of dead individuals, and S, V1, V2 are percentages of susceptible, vaccinated with the

first shot, and vaccinated with the second shot, respectively.

Multi-Objective Reward Function. Using the formulation of Et above, we define

our multi-objective reward function as:

R(θ) = λ× Et − µ× I − ρ×D + π × (S + V1 + V2) (5.2)

where Et is the economic contribution at time t, and state

θ := [Et, S, I,H,C,D,R, V1, V2, T,Q]. Tuning parameters λ, µ, π and ρ are

determined based on which part of the objective we want to emphasize more.

5.4.3 Actions or Intervention Measures

Actions. For the learning of our DRL agent, we investigate different possible actions

that are realistic but not necessarily exclusive. In practice, we can combine different

non-pharmaceutical interventions and vaccines with social distancing measures. In
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total, we define nine possible actions that our agent can choose from. At the start

of the pandemic, we will only include six of these actions as vaccines might not be

available at that point. Once the vaccines are available, all nine actions can be

applied. The various actions considered are defined below:

0 Do Nothing: We allow the agent to not enforce any restriction on the population.

1 Testing, Contact Tracing, and Quarantine: This action performs tests and
traces contacts of positive tests and quarantines them. Usually, these actions go
together as the traced contacts are notified and they either get tested too, or they
are ordered to remain in quarantine.

2 Close Schools and Non-Essential Workplaces: Governments might decide to
close schools and non-essential workplaces and limit gatherings up to a certain number
to reduce contacts between the individuals in a population, thus reducing infections
and keeping the COVID-19 curve under control.

3 Mandatory Mask: A mandatory mask can be enforced in a population.

4 Testing, Contact Tracing, Quarantine, Close Schools, and Non-Essential
Workplaces: Because actions one and two are not exclusive, governments can choose
to enforce them at the same time to have a higher impact on slowing the disease
spread.

5 Testing, Contact Tracing, Quarantine, and Mandatory Mask: Action one
can also be enforced in combination with action three. This action does not close
schools or businesses, but it enforces mandatory mask usage to control the spread.

6 Vaccination: When vaccines become available, it is a form of action that can
be combined with any non-pharmaceutical measure. This action considers only
vaccination, in case governments decide to only use vaccination and reopen without
any other enforced intervention.

7 Vaccination and Mandatory Mask: This action consists of a combination of
actions three and six. It is seen as a probable reopening strategy as with vaccines
the population will become more protected, and masks will reduce transmission of
disease.

8 Total Lockdown: In an extreme situation, where the healthcare system has failed,
and the government did not intervene timely, a full lockdown might be applied,
which enforces all non-pharmaceutical interventions together with vaccination. This
measure can result in economic hardships and failures due to the closure of workplaces
and businesses.
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5.5 Integrated Simulation-RL

Using the ABM simulation and DRL environment presented in Sections 5.3 and 5.4,

respectively, we create an Integrated Simulation - RL (SiRL) framework. Figure 5.3

shows how Covasim agent-based simulation interacts with the DRL procedure. We

start by creating an RL and an agent-based model environment where compartmental

statistics for the population are stored. At the first step, we have an initial information

about the compartments. So, the DRL agent takes an action based on the initial

proportion of the population in each health compartment. Once the simulation starts,

it picks up the decision from the DRL agent, applies the respective intervention,

and runs for s days, where s is the step size of the simulation. After s days, the

compartmental statistics from the simulation are used to formulate the DRL state

and feed it to the DRL agent. Based on the DRL state, we calculate a reward using

Equation (5.2). This reward is the evaluation of the last intervention applied by the

DRL agent. At this point, we check if the end date of the simulation is reached and

based on that the execution of the SiRL framework ends or the DRL agent will take

another decision to be applied in the next s days on the simulation environment and

follow the same cycle until the end date. When the end date is reached, the episode

terminates. Note that the take action in green and dashed yellow box in Figure 5.3

represent the same compartment. The difference is that the action compartment in

yellow is executed once in the beginning and then called inside the cycle until the

SiRL episode is terminated.

Figure 5.4 describes how the agent-based simulation and the DRL agent interact

and exchange information. At time t = 1 after we have started the environments (RL

and agent-based simulation) and taken the first action, we declare the initial data

and start the agent-based simulation incorporating the first action. The simulation

will run for s = 15 days (our defined step size) and, at the end of the simulation step,

will feed compartmental statistics and the economic index to the DRL agent. Based
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Figure 5.3 The SiRL Framework, which is an agent-based simulation integrated at
the heart of a DRL framework.

on the state, the DRL agent takes decision x1 which enforces interventions on the

simulation for the next simulation period. In turn, after this simulation period ends,

it will again give the new compartmental statistics after the intervention where the

agent’s action is evaluated according to the reward function. This process continues

until the entire simulation ends.

5.5.1 Training Algorithm

Algorithm 4 describes the general steps and data used to train an agent. First, we

create the respective simulation and RL environments. At the start of a simulation,

we decide on the total population, the total length of the simulation, and the step size

at which we enforce interventions. At the start of the RL environment, we initialize
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Figure 5.4 Agent-based simulation and DRL agent information exchange between
simulation periods.

the agent and define the weights of the reward function. Then for each simulation

period, we extract the compartmental statistics from the simulation and feed them to

the DRL agent. Compartmental statistics include the percentage of the population

in each compartment and the economic index at the end of the simulation period.

Having this information, the DRL agent will decide on an action xj ∈ X at simulation

run j. Based on this action, the simulation is run for one-step size, and then a reward

is generated to quantify how good the action of the agent was.

167



Algorithm 4 Simulation DRL Training Algorithm

1: Procedure: SiRL
2: Input: ∆, s, σ,Θ0, θ0 {We start with the total population, step size,

simulation periods, initial compartmental statistics, and initial state.}
3: Output: Ω {Trained Deep Q-Network (DQN) Model.}
4: Initiate SiRL with ∆, s, σ {Create DRL and simulation environments.}
5: Take an initial action x0 {First interventions.}
6: for j ∈ J do {for each simulation period}
7: θj ←− Θj {Update state with compartmental statistics}
8: Take action xj ∈ X
9: R(θj, xj)←− {Calculate reward.}

10: end for

5.6 Experiments

In our experiments, we want to be flexible and generalize over different possible

epidemics. Therefore, we test different models: one without a vaccine available (no-

vaccination model as NVM), another after the vaccine is discovered and an age-based

vaccination is applied (age-based vaccination AVM), and another after the vaccine

is discovered but everyone is eligible to be vaccinated above the age of 12 (random

vaccination RVM). We gather data for the COVID-19 epidemic in New Jersey and

address the management of the disease.

5.6.1 Data Gathering

We collect bi-weekly compartmental data from the start of the Covid-19 epidemic until

the beginning of our project ( March 1, 2020, to April 15, 2021). The compartments

we consider are Susceptible (S), Infected (I), Hospitalized (H), ICU (C), Dead (D),

Recovered (R), Tested (T ), Vaccinated with 1st shot (V1), and Vaccinated with the

2nd shot (V2) obtained from CDC database and crosschecked with the NJ COVID-19

dashboard [NJ, 2021]. In addition, to compare and understand decision-making at

any point of the pandemic, we also collect government decisions to identify what

interventions are active and a specific date. We collect these data for the whole U.S.

and the state of NJ in particular.
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Figure 5.5 presents a decision timeline for the U.S. during the beginning period

of the COVID-19 (March 1, 2020, to June 30, 2020). This timeline also corresponds

in close dates with the responses that each state has taken to control the spread.

Figure 5.5 COVID-19 timeline from April 1, 2020, to June 30, 2020, created based
on the information provided in Thebault et al. [2021].

To provide a robust framework, SiRL can be used to extract control measures

for different epidemics. In our case, we want to draw conclusions at any point during

the COVID-19 pandemic. That is why we calibrate our model and train our DRL

agent in different stages of the pandemic. We consider the start of the COVID-19

pandemic where a vaccine is not available, and we refer to this model as the no-

vaccination model, NVM. We also investigate the COVID-19 dynamics after the

vaccines are introduced. With the vaccination models, to be consistent with the

reality, we calibrate our model using age and comorbidity-based vaccination strategy,

AVM. We then use these calibrated actions to implement also a random vaccination

strategy, RVM.
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Intervention Effect Calibration for NVM We use our simulation to measure

the effect of non-pharmaceutic risk measures on the COVID-19 progress. Thus, we can

use these quantified effects to train our agents. To calibrate between Covasim and New

Jersey environments we calibrate each no-vaccination model action by reproducing

the COVID-19 spread during its first four months where vaccines were not available.

In these four months, we mimic governmental actions in the same period that they

were enforced.

During the first four months (March 1 to June 30), the government suffered

from resources and not many effective interventions were implemented. On March 3,

Vice President Pence announced that CDC would lift federal restrictions on testing

for COVID-19. Despite that, until April 12, 2020, it was not easy to get tested. On

March 11, 2020, WHO declared COVID-19 a global pandemic. Two days later, on

March 13, 2020, President Trump declared a national emergency and promised to

increase efforts to make testing available and accessible for Americans. On March

16, 2020, the Trump government also announced social distancing guidelines to be in

place for two weeks initially.

Around the same time, on March 18, 2020, Governor Murphy of New Jersey, in

an attempt to slow down the spread of the disease, ordered the closure of all pre-K,

K-12, higher education institutions, casinos, theaters, gyms, and non-essential retail,

recreational and entertainment businesses also banning gatherings of people more

than 50.

Figure 5.6 shows the validation of the NVM model where we exclude

vaccination as an intervention. We present the absolute value of the difference for each

compartment between our simulation and the CDC data. The y-axis represents the

absolute value of the difference in percentage between the value of each compartment

of CDC data and the respective value of the compartment in the simulation. Notice

that we are 0.01% away from the real data on a four-month simulation based on
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the |T − Ts| metric, which refers to the absolute difference between the real treated

proportion of the population (T ) and simulated treated proportion of the population

(Ts) in the worst case. In the best case, the percent difference between the final

compartmental statistics of the SiRL at the end of each simulation period and the

real data based on the |C − Cs| metric is 0.001%.

Figure 5.6 Comparison of the Covasim agent-based simulation data and CDC data
for the state of New Jersey for the period from March 1, 2020, to June 30, 2020.
The x-axis shows the timeline where each dot on the trend lines corresponds to a
decision. The y-axis shows the absolute value of the difference between the real
number of individuals in each compartment (S, I,H,C,D,R, T ) at a point in time
and the number of individuals estimated from the simulation in that compartment
(Ss, Is, Hs, Cs, Ds, Rs, Ts). For example, trend line |S − Ss| represents the absolute
difference between the real susceptible proportion of the population (S) and simulated
susceptible proportion (Ss) at bi-weekly dates starting March 1 to June 30. Similarly,
the trend lines for each compartment are plotted.

In addition, we apply the paired t-test to investigate the difference between the

mean of the bi-weekly compartmental values of the simulation and the mean actual

values provided by the CDC. According to the statistical analysis shown in Table 5.1,

our validation is statistically similar to the actual data reported by the CDC.

Intervention Effect Calibration for AVM To model vaccination intervention

in our model, we study the period when vaccines became available. On December 11,

2020, The Food and Drug Administration authorized the Pfizer-BioNTech vaccine

for emergency use. A week later, on December 18, the Moderna vaccine was also
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Table 5.1 Paired T-Test Analysis Comparing the Bi-Weekly Compartmental Data
from the NVM Simulation with the Actual Data from the CDC

Compartment

Mean Two-tailed paired t-test

Actual Predicted t-stat t-critical p-value

Infected 107,650 107,569 0.72 2.2 0.49

Hospitalized 22,523 20,890 0.76 2.1 0.46

ICU 966 964 0.73 2.2 0.48

Dead 9,251 9,242 0.67 2.3 0.51

authorized with the same status. Despite this, for the rest of the year 2020, the

vaccination campaign is off to a chaotic, confused, and slower-than-expected start,

ending up with less than the planned 20 million doses. We model our vaccination

models based on the vaccine availability data provided by CDC for Pfizer-BioNTech,

Moderna, and Johnson & Johnson vaccines and their respective protection levels

by does as research shows. Figure 5.7 shows the validation for the age-based

vaccination strategy (AVM) compared to the real compartmental data for NJ. Each

line represents the absolute value of the difference between the agent-based simulation

model and the real NJ CDC Data reported from CDC, including vaccination. We

simulate for four months starting from December 15, 2020, to April 15, 2021.

During this period, vaccinations were done according to age and comorbidity-based

priority. Our validation is off only 0.12 % during the whole four-month simulation

period. The actions calibrated using the agent-based simulation for the age-based

vaccination strategy (AVM) will also be used to run a simulation regarding the

random vaccination strategy RVM.

Further, we apply the paired t-test to investigate the difference between the

mean of the bi-weekly compartmental values of the simulation, including one-shot and

two-shot vaccinated individuals, and the mean actual values provided by the CDC.

According to the statistical analysis shown in Table 5.2, our validation is statistically

similar to the actual data reported by the CDC.
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Figure 5.7 Comparison of the Covasim agent-based simulation data and CDC date
for the state of New Jersey for the period from December 15, 2020, to April 15,
2021. The x-axis shows the timeline where each dot on the trend lines corresponds
to a decision. The y-axis shows the absolute value of the difference between the
real number of individuals in a compartment at a point in time and the number of
individuals estimated in that compartment from the simulation. For example, trend
line |H −Hs| represents the absolute value of the difference between the hospitalized
individuals in New Jersey and the hospitalized individuals estimated by the simulation
at bi-weekly dates starting December 15, to April 15. Similarly, the trend lines for
each compartment are plotted.

The paired t-test for the simulated data using the AVM strategy proves further

that the

Table 5.2 Paired T-Test Analysis Comparing the Bi-Weekly Compartmental Data
from the AVM Simulation with the Actual Data from the CDC

Compartment

Mean Two-tailed paired t-test

Actual Predicted t-stat t-critical p-value

Infected 677,437 6667,457 0.03 2.3 0.97

Hospitalized 556,169 556,452 0.36 2.3 0.72

ICU 124,795 125,920 1.01 2.3 0.40

Dead 21,525 21,510 0.27 2.3 0.79

Vaccinated 1 1,373,739 1,368,578 1.04 2.3 0.35

Vaccinated 2 631,651 630,619 0.31 2.3 0.75
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5.6.2 Results

We show results for different periods of the pandemic in the state of New Jersey. We

emphasize the usability and flexibility of the framework by a comparative study of

different strategies for decision-making during the pandemic.

No-Vaccination Model Training.

Figure 5.8 shows the reward agent gets during training. We train by simulating

around 30k episodes, where each is a four-month simulation (March 1 to June 30,

2020). The approximate training time was 30.2 hours. As the agent goes through

more episodes, we can notice that it is building a behavior. The learning trend in

Figure 5.8 is calculated using a moving average of 15 periods.

Figure 5.8 Reward for each training epoch for the NVM model.

Age-Based Vaccination Model.

Figure 5.9 shows the progress of the training agent for around 30k episodes. An

episode is done once a four-month simulation is run (December 15, 2020, to April 15,

2021). The approximate consumed time to train for the AVM is 32.7 hours. The

trend calculated using a moving average shows an increase as the agent trains in more

episodes. This signifies that the agent is learning to win higher rewards, therefore,

building knowledge to what action is good in a certain state.

Comparison to Government Actions
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Figure 5.9 Reward for each training epoch for the AVM model.

In Section 5.6.1, we calibrate the government decisions during the first four

months of the pandemic. After we train, we allocate our DRL agent the same

resources and actions to observe what the agent deems optimal. Based on the agent’s

response, the government closes schools and non-essential workplaces and uses tests

to identify infected individuals and then trace their contacts and quarantine them

for the first 45 days from March 1 to April 15, 2020. After that is done in the

first months, our agent suggests a reopening but enforcing mandatory masks. It is

even more interesting that this strategy is very similar to what the government did,

but there is a shift in time. Our model suggests contact tracing and stay-at-home

orders must have been enforced exactly at the beginning of March and then start

reopening around mid-April. This result implies that the government was late in any

of the actions except the reopening date. Since measures were not executed timely

and sufficiently to control the outbreak, reopening backfired in more cases after the

April reopening, which still kept most education institutions closed for the rest of the

year. Figure 5.10 compares the decisions taken by the government with the decisions

suggested by the trained DRL agent for the NVM model. Above the x-axis, we map

the government decision. Notice that there is a delay in action. Testing is announced

that it will be available in the first week of March but it was made widely available for
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symptomatic people around mid-April. Below the x-axis, we describe the suggested

actions from the DRL agent. Notice that during the first months testing and contact

tracing is important, while also schools and workplaces are temporarily closed to slow

the spread down. After that, a reopening is suggested by only enforcing masks.

Figure 5.10 Comparison of government actions and DRL agent actions during the
first four months of the COVID-19 pandemic in the U.S. Above the x-axis we describe
the government actions and below the x-axis the DRL agent suggestions are shown.

Figure 5.11 illustrates the comparison between the NJ and Federal government

interventions enforced during the first four months after vaccines were introduced,

specifically from December 15, 2020, to April 15, 2021, with the interventions

suggested from the DRL agent trained using the age-based vaccination model.

Above x-axis notice that the government implemented all available interventions in

combination with vaccination. During this period, the government gave priority to

older people and those with preexisting conditions. Month after month, the age

bar for vaccination was reduced, allowing more younger people to get vaccinated.

On April 19, 2021, all individuals older than 16 became eligible for vaccination in

New Jersey. In our age-based vaccination strategy, we follow a similar pattern. We

give a higher probability to the older ages while reducing it after each month. Our

model suggests that testing, contact tracing, and mandatory mask be enforced for

the second half of December 2020 and the first half of January 2021. It is interesting

that the model does not suggest an immediate vaccination. This happens at the

beginning when the vaccine supply was small. So, the DRL agent does not see it
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as highly beneficial since the number of vaccine doses available was very low when

vaccines were first offered. When equal weights are assigned to each sub-objective

in the reward function in Equation (5.2), the DRL agent cannot capture that even

a very small number of vaccines should be used. From the second half of January

2021, the agent suggests the enforcement of all measures while vaccination should also

be applied with those interventions. After only a month, in mid-February, the DRL

agent suggests lifting the closures but recommends a continued vaccination while also

enforcing the use of masks.

Figure 5.11 Comparison of government and DRL agent actions for the first 4
months after vaccine was introduced for COVID-19 using an age group vaccination
strategy. Above the x-axis, we describe the government actions, and below x-axis,
the DRL agent suggestions are shown.

Figure 5.12 compares decisions suggested by the DRL agent trained with random

vaccination strategy towards those enforced by the government. Differently also from

the AVM strategy, RVM suggests only 15 days of mandatory mask, testing, and

contact tracing followed by full closures with vaccination for the next month up until

January 31. A reopening is suggested at the beginning of February, combining the

mandatory mask with vaccination, which is earlier than that suggested by the AVM.

Economic Standing To compare the economic situation in different simulations

we use the formula in Equation (5.1). We calculate the economic index by assigning

a weight to each of the compartments. Figure 5.13 compares the economic situation

between the simulation with the no-vaccination model (NVM) and the CDC data for
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Figure 5.12 COVID-19 timeline allowing all age groups access to vaccination.
Above the x-axis, we describe the government actions and below x-axis, the DRL
agent suggestions are shown.

the state of New Jersey. Notice that NVM simulation allows for a weaker economic

situation since we use equal weights for each sub-objective in the reward function

in Equation (5.2). Based on our comparison, our model did decide on reopening,

but it is doing slightly worse from the economic point of view. This is due to the

multi-objective function as we give equal weight to each of the sub-objectives. If a

manager wants to focus more on a flowing economy, a larger weight can be given to

the economic sub-objective of the reward function in Equation (5.2).

Figure 5.13 Comparison of the economic index between NJ CDC Data and
simulation data using NVM.

We also compare the economic situation between the CDC-reported data and

our vaccination strategies based on the SiRL framework. Figure 5.14 compares the
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economic standing at 15-day intervals. We notice that the age-based vaccination

maintains slightly the same economy as the CDC data. That is because our results

for using an age-based vaccination strategy provide a very good estimation of the real

situation. Surprisingly, a better economic standing would be achieved using a model

with available vaccination for all individuals older than 12 years old, corresponding

to the random vaccination strategy.

Figure 5.14 Comparison of the economic index between NJ CDC Data and
simulation data using AVM and RVM.

Multi-Objective Analysis In this section, we consider modifying the reward

function shown in Equation (5.2). Tuning this function will shift importance and

suggest decisions to reduce the worst outcomes of different situations. For example,

if a government wants to prevent the infection rate and severity of the epidemic, it

can give more weight to the µ parameter. To analyze how each tuning parameter

affects the compartmental statistics, we consider four formulations with respect to

the reward function: economy, death toll, total infections, and healthy individual.

For each of these models, we modify the reward function by increasing the respective

tuning parameter five times and retrain the model to perform tests. For example, in

our experiments, we give a value of one to each of the tuning parameters. When we
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want to emphasize the economy, we use λ = 5, while other tuning parameters are still

one.

Table 5.3 compares how the number of individuals in each compartment changes

with a different focus on the reward multi-objective function. Parameters below the

headers in Table 5.3 show the respective values for each tuning parameter of the

multi-objective reward function shown in Equation (5.2). Each specific objective also

affects decisions taken. For example, emphasizing the economy would shift decisions

from a full closure to reopen and vaccinate while everyone can move freely. When

the economy is emphasized, we notice a massive disease spread. If a government

only aims to maintain a healthy economy, then the number of individuals, who are

hospitalized, in critical condition, and dead sharply increases. Among each part of the

reward function, although emphasizing the total infections or the death toll reduces

the spread in each compartment, emphasizing the portion of healthy and vaccinated

individuals seems to show the best situation with respect to the total infections

and death toll. Between the total infections and the death toll, emphasizing the

total infections seems to be more beneficial because of the transmission mechanism.

Emphasizing the death rate does not directly affect infections; therefore, the higher

spread still contributes to more deaths.

Table 5.3 Comparison of different tuning parameters in the reward function for
age-based vaccination.

Compartment Economy Total Infections Death Toll Healthy or
Vaccinated

(λ, µ, ρ, π) (5,1,1,1) (1,5,1,1) (1,1,5,1) (1,1,1,5)
Infected 6,762,388 2,078,877 2,348,258 1,057,088
Hospitalized 385,494 102,179 127,259 66,881
ICU 119,828 28,796 37,156 21,365
Dead 39,014 10,218 11,147 8,360

Vaccine Decisions and Distributions Vaccination restrictions have been among

important discussions during the pandemic. There is definitely good in giving
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priority to individuals with preexisting conditions or older people who might be more

endangered from the pandemic. But older ages are among individuals who have the

least amount of contact during the day. Therefore, their contribution to the spread is

generally low. Hence, we want to analyze the trade-off between age-based vaccination

and random vaccination. In random vaccination, we do not prioritize super-spreaders

to vaccinate, but we allow them and the riskier categories to get vaccinated with the

same probability. Comparing our AVM and RVM models can give us insight into

the benefits of each. We notice from comparing Figures 5.11 and 5.12 that the RVM

strategy offers a faster closure, and earlier vaccination start, hence also improving

the economy. In another situation where a government tends to be cautious toward

the total number of deaths, they can give higher weight to the ρ parameter, which

represents the weight of the death toll. This would cause lower rewards when death

rates increase; thus, the DRL agent will optimize the decision while focusing on

minimizing the death rates. In addition, Figure 5.14 shows a comparison between

the age-based and random models. Allowing super-spreaders to get vaccinated as

early as possible during an outbreak reduces infections in general, hence explains the

suggested faster reopening and better economic performance.

Table 5.4 Comparison of Vaccine Distribution Among Different Age Groups and
Compartmental Values for Each Model

Subgroup NJ CDC
Data RVM AVM pdiff1 pdif2

Vaccination under 50 (%) 45 67 55 -18 -33

Vaccination 50 to 75 (%) 79 66 94 42 20

Vaccination over 75 (%) 78 63 96 51 22

Infected 851,485 675,310 892,672 32 26

Hospitalized 668,201 652,431 665,185 2 2

ICU 153,657 142,122 153,268 8 8

Recovered 828,283 845,298 898,803 6 -2

Dead 24,702 25,080 24,151 -4 -2
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Table 4.1 compares the vaccination percentage and compartmental statistics

for random vaccination and age-based vaccination strategies, and real data. To

clarify, the NJ CDC Data and AVM columns do not report data from the validation

experiments. The NJ CDC Data is obtained from the CDC and AVM represents

the results obtained from the DRL agent suggestions. Column pdiff1 represents

the percentage difference between the random vaccination and age-based vaccination

models, while pdiff2 calculates the percentage difference between the random

vaccination data and CDC reported data for NJ. Notice that the vaccine distribution

for the age groups differs between the two methods. Random vaccination slightly

suggests that some portion of the younger people should get vaccinated as soon

as vaccines are available, while the age-based model vaccinates almost all older

age groups first. Compartmental data shows that the total number of infected

individuals reduces by 32% when using a random vaccination strategy over the

age-based vaccination strategy. Due to this, the number of the hospitalized and

critical cases and recovered individuals slightly reduces as well. The total number

of dead individuals though is slightly increased by 4%. This shows that random

vaccination strategy can offer earlier reopening and slower spread, but fast reopening

and not focusing on age-based vaccination strategy comes with a cost. Figure 4.1

also compares the random vaccination strategy with the real data reported from the

CDC for NJ. We notice a similar trend to that of the age-based vaccination. The

experiments show that random vaccination could reduce the number of infections but

still reports a 2% higher death rate than that of the CDC statistics for NJ.

5.7 Discussion and Future Work

We present a Simulation-Deep Reinforcement Learning (SiRL) framework for epidemic

decision-making. Our study shows that an agent can be trained to take actions based

on different available interventions and epidemic infection situations. Our results
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show that more could be done in handling the COVID-19 pandemic spread in the

US. Our DRL agent identifies situations that government agencies should have acted

faster toward slowing the spread of the virus. In addition, we compare different

vaccination strategies and provide insights on the trade-off between random and

age-based vaccination strategies.

Future directions can include extensions from the DRL and agent-based

simulation as well. Further experiments could tell us more if we consider racial or

geographical data. The simulation model can be extended to account for additional

costs or an economic value of a current infestation, including the interventions active

at a point in time. Another DRL algorithm could be used to study how that changes

agent performance. Finally, to study the flexibility of the framework other epidemic

data in different regions of the U.S. and the world can be validated.
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CHAPTER 6

SUMMARY AND FUTURE RESEARCH DIRECTIONS

6.1 Summary of Contributions

In this dissertation, we tackle the problem of biological infections in the forest

and human species. We present novel methodologies, improvements to solution

approaches, and recommendations to resource managers and decision-makers.

In Chapter 2, we presented an MSS-MIP formulation covering 472 km2.

We introduced history-dependent realization probabilities and a distance-dependent

estimation spread covering an area of four 1-km distances from a specific site.

We support decision-makers by visualizing where to treat, survey, and remove ash

trees. In addition, we also provide insight to resource managers for different survey

methods and their effectiveness. In Chapter 3, we derived a nested risk measure for

a maximization problem and integrated it into a scenario-based formulation of an

MSS-MIP problem. As a solution methodology, we adapted the scenario dominance

cutting planes to a case of decision-dependent uncertainty. We support resource

managers with a solution where they can observe the trade-off between following a

risk-averse or risk-neutral approach.

In Chapter 4, we present a novel methodology to tackle zero-one integer

problems with resource constraints. Our methodology is particularly applied using

the multi-dimensional knapsack problem, which is at the root of many practical

problems. Our framework is data-driven, where preprocessing is done first, and

then the information extracted is feed to a deep reinforcement learning agent. For

preprocessing, we develop a heuristic that reduces the dimensionality of the problem

and estimates an item’s worthiness value which is later used to sort items. To simplify

the problem at hand and define training objectives, we develop an unsupervised
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learning algorithm using K-means to find a reasonable starting solution. Then, we

formulate a 2D DRL environment to hold instance information about the selected

and not selected items where the agent travels and decides which items to select by

considering constraints and the objective. Finally, we tailor an algorithm ensuring

collaboration between our DRL solution and CPLEX solver resulting in a powerful

combination.

In Chapter 5, extend further our DRL framework to be used in epidemic control

planning. To do so, we extend the agent-based simulation introduced in Kerr et al.

[2020] with vaccinations of different strategies, the flexibility of a periodic active

intervention definition, and other vaccination compartments. We introduce an age-

based vaccination strategy for vaccines approved in the U.S. under the EUA by the

FDA. We provide an external decision-maker to change the interventions measure

in a preset frequency. At the end of every decision period, the simulation feeds

compartmental statistics to the training network. We introduce a multi-objective

reward objective where a decision-maker can make a trade-off between improving

the economy and reducing the total infections and the death toll, or keeping people

healthy for as long as possible.

6.2 Future Research Directions

Each of the studies presented in this dissertation can be further advanced by

improving the proposed methodology and extending it to tackle similar applications.

For example, a possible extension of the invasive species management model is

the application to other invasive species that share similar age-structured biological

properties. From the methodological point of view, deciding which cuts are more

effective in the scenario dominance cutting planes is critical. Randomly selecting

cutting planes or including all cuts in the problem solution might not be very effective.

Other methods can be developed to select and add cutting planes more efficiently.

185



To better express the biological properties of the invaders, the long-distance dispersal

mechanism could be extended.

Our DLR formulation can be extended to solve other classes of combinatorial

optimization problems. Methodologically, improvements and more tuning can be

made at any point of the DRL framework. For example, another way can be used

to estimate the item’s worthiness. A more accurate or faster method can be used

to get an initial solution for the instances. Any improvements in both of the above

suggestions will lead to an improvement in solution time and its accuracy. Focusing on

the DRL environment, other formulations can also be useful. For example, extending

to a 3D environment and increasing the action space as well could be a better way

as the agent at each decision point will have more available actions. A new DRL

algorithm tailored specifically for COPs would definitely improve the framework.

Future directions with respect to epidemic control using deep reinforcement

include extensions of the agent-based simulation, deep reinforcement learning algorithm,

and epidemic application. The agent-based simulation can be extended to involve

more characteristics of the population, such as racial or geographical data. Other

DRL algorithms can be tested or developed to study whether agents are trained

faster or provide more accurate suggestions. Finally, other epidemic diseases can be

validated and then tested using our agent-based simulation DRL framework.
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APPENDIX A

FURTHER NOTES CHAPTER 2

Infestation Layer: surrounding neighbors with the same distance from a

site

Infestation Level: classification of the severity of host infestation

Realization: a specific outcome regarding the degree of uncertain

infestation after surveillance

Scenario: a combination of realizations for each time period and

surveillance decisions

Site: a 1-km2 area populated by ash trees

Surveillance Efficiency: the proportion of infested trees that are identified after

surveillance

Stage: a time period in the stochastic scenario tree

Transition: change of the host infestation levels from one time period

into another

Transition Population: estimated population of host trees without taking the

maximum host population into account

A.1 Two-Stage Example of Possible Scenarios

Table A.1 presents all possible scenarios for a 2-stage problem. As an example of

a two-stage problem, at period t = 1, we can decide whether to survey or not. If

the site is surveyed, two possible infestation levels can be uncovered - a higher than

expected (H) or lower than expected infestation (L). If no survey is applied, we

assume a default medium infestation level (M) and use this value to compute the

probabilities of spread. Thus, at period t = 1, three possible realizations are possible,

as demonstrated by red, green, and yellow arcs (Table 2.3). In period 2, each square
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node generated at the end of the first period depicts the decisions to survey a site in

that period. Similarly, if the site is surveyed, high or low infestation levels can be

detected. If no surveillance is performed, we assume a default medium infestation

level and use this value to update the probabilities of infestation at the next time

period and so on.

Table A.1 All Possible Scenarios for a Two-Stage Formulation

Scenario Number Realization Surveillance Regime

1 H-H Survey-Survey

2 H-L Survey-Survey

3 H-M Survey-Do Not Survey

4 L-H Survey-Survey

5 L-L Survey-Survey

6 L-M Survey-Do Not Survey

7 M-H Do Not Survey-Survey

8 M-L Do Not Survey-Survey

9 M-M Do Not Survey-Do Not Survey

A.2 Scenario Probability Algorithm

Algorithm 5 dynamically updates infestation realization probabilities in each period.

We start by defining scnProb, which is an array that will hold the probability

of encountering a certain infestation realization for a scenario ω at time t, where

pH holding the probability of encountering a high infestation realization and pL

representing a low infestation realization probability. Each realization will be

represented by the variable Real, which is either equal to High(H) or Low(L) or

Medium(M). We keep track of the probabilities for different infestation realizations
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at each time stage using variables pH and pL. We assign an equal probability

for both high and low infestation realizations in the initial time stage. We

update the probabilities as we traverse through all the time periods under each

scenario. Whenever we encounter a pattern of repeating realizations, we update the

probabilities of uncertain outcomes in the favor of the repeating event. At the end of

the procedure, we obtain a two-dimensional set that lists the occurrence probabilities

of infestation realizations at time t for each scenario ω (a scnProb array). We then use

the function multiplyList(ωi) to multiply all probabilities in array ωi, which gives the

realizations of the infestation for each time t under a specific scenario ω with index

i = 1, . . . , 3t. Therefore, after we multiply the probabilities in ωi returning only

one probability value for each scenario ω, we use the normalizeProb(ωi) method to

normalize the probability of each scenario ω.
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Algorithm 5 Calculate probabilities for each scenario

1: Procedure: Probability Distribution

2: DEFINE sncProb, pH , pL
3: INITIALIZE scnProb = ∅, pH = 0.5, pL = 0.5

4: for each scenario ω ∈ Ω do

5: if Realt is High or Low or Medium then

6: append pH , pL or 1 , respectively

7: end if

8: for each Real in time period t ∈ T do

9: if Realt = Realt+1 and Realt+1 = High then

10: pH+ = 0.1

11: pL− = 0.1

12: if Realt is High or Low or Medium then

13: append pH , pL or 1 , respectively

14: end if

15: else if Realt = Realt+1 and Realt+1 = Low then

16: pH− = 0.1

17: pL+ = 0.1

18: if Realt is High or Low or Medium then

19: append pH , pL or 1 , respectively

20: end if

21: else

22: if Realt is High or Low or Medium then

23: append pH , pL or 1 , respectively

24: end if

25: end if

26: end for

27: Procedure: Scenario Probability

28: for each scenario array ωi, i = 1, . . . , 3t do

29: return multiplyList(ωi)

30: end for

31: for each scenario probability ωi, i = 1, . . . , 3t do

32: return normalizeProbability(ωi)

33: end for

34: end for
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APPENDIX B

FURTHER NOTES CHAPTER 3

B.1 Model Description and Assumptions

This section presents a verbal description of the risk-averse multi-stage stochastic

mixed integer programming model of the surveillance, treatment, and removal

planning for the EAB infestation, and the assumptions made in the mathematical

model. The formulation is described in detail in a companion paper [Bushaj et al.,

2021b].

The risk-averse multi-stage stochastic MIP in Equations [(3.22)–(3.44)] is

applied in a spatial setting and includes the spatial dynamics of EAB and its

host population. We divide the study area into sites or neighborhoods. The

ash tree population in each site is divided into healthy trees that are susceptible

to infestation and infested trees belonging to three classes (levels): asymptomatic

trees, symptomatic trees, and dead trees. Asymptomatic trees represent the lowest

infestation (level 1), followed by symptomatic trees with visible signs of infestation

(level 2), and if no treatment or removal is applied, trees die (level 3). Infested trees

are the source of EAB spread to susceptible trees in the same site and surrounding

sites. Each year, infested trees transition to the next, more severe infestation level,

and susceptible trees may become infested through EAB spread within and between

neighboring sites. Management decisions, including insecticide treatment and tree

removal, are prescribed for each site depending on the outcome of surveillance, which

reports the number of trees by infestation class in each site. We assume that decisions

to treat the infested trees can be only effective when applied to asymptomatic trees

while symptomatic and dead trees may be removed.
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The number of healthy trees that may be infested at a site is uncertain, and we

used a probabilistic depiction of spread. In our case, the number of newly infested

trees at a site is a random variable that depends on the number of EAB adults

produced at a given site and neighboring sites. Surveillance is critical because it

provides information about the actual infestation, which allows making decisions

about ash treatment and removal. The realization of the uncertain infestation variable

depends on the binary surveillance actions that are integrated into a multi-stage

scenario tree [Kıbış et al., 2021]. To simplify our model, we make two key assumptions

about surveillance: 1) if surveillance is undertaken in a given time period, all of the

sites are surveyed, and the number of susceptible and infested trees in each level

become known; and 2) treatment and removal decisions for infested trees in levels 1

and 2 can be made only in the periods in which surveillance is made, and the number

of infested trees is known. Dead trees (infestation level 3) are known and may be

removed depending on the budget at each period.

We choose to formulate a multi-stage stochastic MIP to capture the stochastic

spatial dynamics of EAB, its host population, and the efficacy of surveillance and

insecticide treatment. Features of this spatial-dynamic system are: 1) infested ash

trees are asymptomatic in the early stage of infestation (i.e., one cannot tell they

are infested without inspection); 2) the realization of the uncertainty depends on

the surveillance (decision-dependent uncertainty); 3) infestation of susceptible ash

trees in a given site is a stochastic process that depends on the infested status

of trees in a site and neighboring sites; 4) chemical treatment is effective only on

asymptomatic ash trees, which have low levels of infestation; and 5) surveillance is

needed to identify asymptomatic trees. These features do not fit into the two-stage

modeling formulations.
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B.1.1 Scenario Tree Generation

The uncertainty in our case-study model is exogenous, which is also known as decision-

dependent uncertainty, because the realization of the uncertain infestation depends

on the binary surveillance actions that are integrated into a multi-stage scenario tree

Kıbış et al. [2021]. Given the assumptions described above, a scenario tree is formed

based on the surveillance decisions and the stochastic infestation outcomes. Each

scenario depicts a sequence of possible surveillance decisions and infestation outcomes.

The set of scenarios includes all possible sequences of surveys, and an optimal solution

is found for each scenario (sequence of surveys and infestation outcomes). The optimal

solution for a given scenario includes the optimal treatment and removal decisions

in each site in each period in which surveillance takes place and contingent on the

infestation outcome, which is revealed in the survey. Comparing the optimal solutions

among all the scenarios, we can identify the best sequence of surveillance decisions

over the horizon and compare alternative sequences.

Figure B.1 depicts an example scenario tree with the sequences of possible

surveillance decisions and the stochastic infestation outcomes over time and is based

on the model of Kıbış et al. [2021]. The scenario tree starts in period one and at

each branch through time shows a realization of the uncertain infestation levels. Two

types of nodes in the scenario tree indicate the surveillance (black circles) and no

surveillance (empty circles) conditions. Square nodes represent treatment or removal

decisions. Given the uncertainty about EAB spread, each decision has two possible

outcomes: high or low realization of the uncertain level of infestation. The outcome

without surveillance (identified by empty circles) yields the expected value of the

uncertain infestation level. The notation on each arc pHt , pLt and pMt , stands for the

probability of detecting the infestation at a high (H) or low (L) level, or the expected

infestation level (M) in the absence of surveillance in period t, producing 3t scenarios.

We assume a medium infestation level as an expected outcome without surveillance
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Figure B.1 Multi-stage scenario tree. Terms pHt and pLt denote the realization
probabilities of high (H) and low (L) levels of infestation after surveillance; pMt denotes
a default realization of medium infestation level (M) without surveillance. Black
circles represent nodes with decisions after the surveillance; white circles depict nodes
without surveillance; arcs leaving black and white circles depict possible realizations
of the estimated beliefs about the number of susceptible and infested trees; red
arrows depict realizations of high infestation levels; green arrows depict realizations
of low infestation levels; yellow arrows depict anticipated levels of infestation without
surveillance based on the initial belief. Squares Dt,s depict treatment and removal
decisions.
Source: Adapted from Kıbış et al. [2021], Bushaj et al. [2021b].

and use this level to update the number of infested trees at a given site without

surveillance. We obtain an expected level of infestation by explicitly formulating a

4-km radius spread of infestation and spread probabilities from the infested site in

the mathematical model. Thus, pMt represents this expected infestation level, while

pHt and pLt represent an outcome of surveillance, which is higher or lower than the

expected value, respectively. Terms π1 − π3t denote the conditional probabilities of

a scenario ω, ω ∈ [1, 2, . . . , 3t]. This probability is calculated by multiplying the

probability of each realization through the whole scenario path and normalizing it

over all scenarios, so the sum of the probabilities over all scenarios is equal to 1.
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B.2 Time-Consistent Mean-Risk MSS-MIP

The general E−CV aR optimization problem that is formulated using the CV aR
[ξt]
αt

and linearization constraints (3.13) can be represented as a dynamic program shown

below [Guo and Ryan, 2017]: For t = 1:

ZE−CV aR = max
x1,η2


f 1(x1) + η2 + Eξ2

[
Q2(x1, η2, ξ[2])

]
A1x1 ≤ b1

(B.1)

For t = 2, . . . , T − 1:

Qt(xt−1, ηt, ξ[t]) = max
xt,ηt+1,vt



ηt+1 − 1
αt
vt + Eξt+1

[
Qt+1(xt, ηt+1, ξ[t+1])

]
At
(
ξ[t−1]

)
xt−1

(
ξ[t−1]

)
+W t

(
ξ[t]
)
xt
(
ξ[t]
)
≤ bt

(
ξ[t]
)

ηt −
∑t

t′=1 f
t′(xt

′
ω, ξ

t′
ω ) ≤ vt

vt ≥ 0

For t = T :

QT (xT−1, ηT , ξ[T ]) = max
xT ,vT



− 1
αT
vT

AT
(
ξ[T−1]

)
xT−1

(
ξ[T−1]

)
+W T

(
ξ[T ]
)
xT
(
ξ[T ]
)
≤ bT

(
ξ[T ]
)

ηT −
∑T

t′=1 f
t′(xt

′
ω, ξ

t′
ω ) ≤ vT

vT ≥ 0

Considering a case with finitely many realizations ξ and corresponding probabilities

pξ and replicating ηt and vt for each ξ, the equivalent scenario formulation of the
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E−CV aR optimization problem (B.1) can be written as:

ZE−CV aRα = max
x1,...,xT

η2,...,ηT

v2,...,vT

∑
pξ∈Ξ

p(ξ)

[
f 1x1 + η2(ξ)− 1

α2
v2(ξ) + . . .+ ηT (ξ)− 1

αT
vT (ξ)

]

(B.2)

subject to:

A1x1 ≤ b1,

At(ξ)xt−1(ξ) +W t(ξ)xt(ξ) ≤ bt(ξ) ∀ ξ ∈ Ξ ∀ t = 2, . . . , T

ηt(ξ)−
t∑

t′=1

f t
′
(xt
′

ω, ξ
t′

ω ) ≤ vt(ξ) ∀ ξ ∈ Ξ ∀ t = 2, . . . , T

xt(ξ)− x̂t(ξ[t]) & vt(ξ)− v̂t(ξ[t]) = 0 ∀ ξ ∈ Ξ ∀ t = 1, . . . , T

xt(ξ), x̂t(ξ[t]), vt(ξ), v̂t(ξ[t]) ∈ Rnt−qt
+ × Zq

t

+ ∀ ξ ∈ Ξ ∀ t = 1, . . . , T.

where x̂t(ξ[t]) is the non-anticipative decision made at scenario realization ξ up to

time t.

B.3 Case Study Data

We apply our risk-averse model to the case of EAB management in the state of New

Jersey. We describe the economic and EAB-related biological data as well as the

generation of test instances for the state of New Jersey in this section.

To obtain test cases as close as possible to the real infestation situation of New

Jersey, we refer to the currently available infestation information from New Jersey

(N.J.) Forest Services [Wilson et al., 2013] and enhance it based on some assumptions.

Combining this data with the official detection year of each county provided from N.J.

Forest Services [USDA, 2018], we run a four-nearest neighbor dispersal algorithm

assuming two initial infestation cases, 1% and 2.5% of the total trees in a site, are
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infested. For each initial infestation, we consider three EAB dispersal rates. The base

dispersal rate is inherited from Bushaj et al. [2021b], where the dispersal rates are

calculated based on the observed data from experts. As the symptomatic trees are

usually more infested with EAB galleries, we assume that they contribute more to

the new infestation of susceptible trees [Knight et al., 2012]. In addition, we assume

that dead trees do not have an impact on new infestations. To account for the effect

of environmental and climate change in the EAB spread of N.J., we also assume

infestation dispersal rates of 20% less and 20% more than the base case. We run a

dispersal algorithm to simulate the dispersal of the EAB from the year an infestation

was noticed until the current year (2020). We run the algorithm for each combined

pair of data values for the initial infestation and the dispersal rate. In addition to the

initial infestation and infestation dispersal assumptions, we use five different budgets

for each data set. The budget levels are set based on the initial infestation. For

the lower initial infestation, budgets vary from $120,000 to $300,000. For the higher

initial infestation, the budget range from $600,000 to $2M. Combining two initial

infestations, three infestation dispersal rates, and five budgets, we have a data set

with 30 distinct instances. These data files represent the number of trees in each

infestation level upon which we will run our model for the next five years to provide

managerial insights.

Management activities to slow the spread of EAB include surveillance to detect

the presence of EAB in ash trees, insecticide treatment of ash trees that are healthy

or in the earliest stage of infestation, and removal of infested trees. Based on our

discussion with N.J. Forest Service, we assume a surveillance method using traps

followed by either treatment or removal of ash trees in the area of EAB detection. In

our experiments, we assume the use of sticky traps, which have a likelihood to detect

EAB if it is present on a tree of 0.5 [Ryall, 2015]. The surveillance cost for each sticky

trap is estimated to be $140, which is a 60% increase in the surveillance cost estimated

197



in Bushaj et al. [2021b] for a case study of EAB management in Canada. Following

surveillance, insecticide treatment of healthy or newly infested ash trees kills any EAB

larvae present and prevents further infestation of those trees for two years. Removing

infested ash trees prevents the spread of EAB adults but also reduces ash tree cover

and associated benefits. We estimate the costs of insecticide treatment and removal

using a survey of firms that provide treatment and removal services for ash trees in

N.J. Treatment cost varies from $13 to $15 per diameter inch of the tree. On the

information gathered from Wilson et al. [2013], we deduce that the average diameter

is 14 inches. Therefore, on average, the treatment cost is estimated to be $200 per

tree. Removal cost varies a lot more because it does not depend solely on the tree

diameter but also other factors, such as the location, difficulty to reach, and the height

of the tree. Based on the surveys, the average cost to remove a tree is $1280, which

is about 60% more than the removal cost in the Canadian case considered in Bushaj

et al. [2021b]. In accordance with the increase in removal cost, the monetary value

of the benefits provided by an ash tree is estimated to be $120 per tree compared to

$72 per tree in Bushaj et al. [2021b].

Figure B.2 shows a color map of each site’s total population based on the data

gathered in Wilson et al. [2013]. This color map refers only to the counties in the

N.J. map that are not in gray shown in Figure B.3.

Figure B.3 shows the initial map with data provided by the U.S. Department

of Agriculture (USDA) for the state of New Jersey. They report the year of initial

detection for each county. For example, a data file is compromised of the ash tree

population given in Figure B.2 and the infestation detection information presented

in Figure B.3 with the initial infestation calculated by a 4-level dispersal algorithm

executed for the number of years passed from the first detection.
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Figure B.2 New Jersey ash tree
population

Figure B.3 New Jersey EAB
detection data [USDA, 2018]

B.4 Gap Improvement Calculation for Sdc and Ssdc Cuts

In this section, we present linear programming relaxation solutions and integrality

gap improvements of sdc and ssdc with respect to cplex (cpx). Table B.1 provides the

following information for each column representing a particular instance defined by

II (initial infestation size of the area [small (s) at 1% or large (l) at 2.5% infestation

of the total ash trees]) and DR (infestation dispersal rate [slow (s), medium (m), fast

(f)]), and the average in each row:

� Obj: Best objective value by default cpx;

� ObjLP1 : Objective value of the initial problem relaxation before adding cuts;

� ObjLP2 : Objective value of the relaxation after adding sdc cuts;

� ObjLP3 : Objective value of the relaxation after adding ssdc cuts;

� TimeLP: CPU time required to solve the relaxation problem for cpx;

� InitGap(%):Percentage integrality gap of the formulation before inequalities
are added (InitGap = 100 × (Obj − relaxObj)/Obj), where relaxObj and
bestObj are objective function values of the initial cpx LP relaxation and the
best feasible solution, respectively;
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� RootGap1(%): Percentage integrality gap of the formulation after sdc
inequalities are added (RootGap = 100× (Obj−rootObj)/Obj), where rootObj
is the objective function value of the LP relaxation after the sdc cuts are added;

� RootGap2(%): Percentage integrality gap of the formulation after ssdc
inequalities are added (RootGap = 100× (Obj−rootObj)/Obj), where rootObj
is the objective function value of the LP relaxation after the ssdc cuts are
added;

� GapImp1(%): Percentage improvement in the integrality gap at the root node
for sdc (GapImp = 100× (1− rootObj/relaxObj); and

� GapImp2(%): Percentage improvement in the integrality gap at the root node
for ssdc (GapImp = 100× (1− rootObj/relaxObj).

Table B.1 Calculations for Integrality Gap Improvement by SDC and SSDC

(II,DR) (s,s) (s,m) (s,f) (l,s) (l,m) (l,f) Average

Obj 2,150,592 1,192,578 265,106 420,554 196,576 -490,969 622,406

ObjLP1

2,162,000 1,201,871 267,656 423,139 198,471 -486,972 627,694

ObjLP2

2,159,862 1,199,208 267,224 422,946 198,122 -488,023 626,556

ObjLP3

2,157,869 1,197,958 267,132 422,755 198,221 -488,132 625,967

TimeLP 88.2 102 235.6 91.7 533.2 550.3 266.8

InitGap(%) 0.53 0.78 0.96 0.61 0.97 0.81 0.78

RootGap1(%) 0.43 0.56 0.80 0.57 0.79 0.60 0.62

RootGap2(%) 0.34 0.45 0.76 0.52 0.83 0.58 0.58

GapImp1(%) 18.74 28.66 16.94 7.47 18.38 26.29 19.78

GapImp2(%) 36.21 42.11 20.55 14.85 13.69 29.02 25.24

As seen in Table B.1, both sdc and ssdc help to improve the LP relaxation

solution, the root gap, and the optimality gap compared to cpx.
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Table B.2 Calculations for Integrality Gap Improvement by SDC and SSDC

(II,DR) Obj TimeLP InitGap
RootGap1 RootGap2 GapImp1(%) GapImp2(%)

(s,s) 2,150,592 88.2 0.53 0.43 0.34 18.74 36.21

(s,m) 1,192,578 102 0.78 0.56 0.45 28.66 42.11

(s,f) 265,106 235.6 0.96 0.8 0.76 16.94 20.55

(l,s) 420,554 91.7 0.61 0.57 0.52 7.47 14.85

(l,m) 196,576 533.2 0.97 0.79 0.83 18.38 13.69

(l,f) -490,969 550.3 0.81 0.6 0.58 26.29 29.02

Average 622,406 266.8 0.78 0.62 0.58 19.78 25.24

B.5 Effect of Risk Parameters on Time Complexity

To study the impact of the risk parameter in the time complexity of the model, we

provide results for a combination of three distinct α values and five distinct levels of

λ. Table B.3 shows the CPU time required to solve each instance with a different

combination of risk parameters. The data is averaged over five runs done for each

budget level on three different data files [the data files with (1,1), (2,1), and (2,3) as

presented on Table 3.1]. Here, we observe how the sdc and ssdc perform compared to

cpx for the risk-neutral model and the risk-averse models with different combinations

of risk parameters. In general, we notice a pattern of time increase from risk-neutral

to risk-averse models. In the risk-averse models, on average, we notice that solution

time changes slightly as we change α and λ, but the change is not uniform. Instances

solved for α = 0.25 prove to be the hardest for all risk-averse models, while for α = 0.5

and α = 0.05, the solution time does not differ much.

The increase in solution times regarding cpx from risk-neutral to risk-averse is

obvious. However, when solving the sdc and ssdc models, the solution time is quite

close to the risk-neutral formulation. This shows that the sdc and ssdc cuts still
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improve on risk-averse models for various values of the risk parameters with a similar

solution time as the risk-neutral model.

Table B.3 Time Complexity of Risk-Neutral, CPX, SDC, and SSDC Models for
Different Risk Parameters

λ\α
Risk-Neutral 0.05 0.25 0.5

cpx sdc ssdc cpx sdc ssdc cpx sdc ssdc cpx sdc ssdc

0.001 218 144 146 249 129 127 286 132 141 275 138 131

0.1 218 144 146 255 131 147 269 145 135 280 143 131

1 218 144 146 273 136 144 305 147 148 276 139 149

10 218 144 146 352 230 238 393 246 254 355 199 229

1000 218 144 146 153 112 123 153 111 119 159 116 111

Total 1090 720 730 1283 738 780 1407 783 799 1345 736 752

Average 218 144 146 257 147 156 282 156 159 269 147 150

202



APPENDIX C

FURTHER NOTES ON CHAPTER 5

C.1 Notations and Abbreviations

Compartments

S Susceptible (Healthy) individuals

V1 Individuals vaccinated with the first shot

V2 Individuals vaccinated with the second shot

E Exposed but not yet infections

M Infected individuals with mild symptoms

H Infected individuals who were hospitalized

C Infected individuals who were admitted in an Intensive Care Unit

I Infected individuals of all severity (Mild + Hospitalized + ICU)

R Recovered individuals

T Tested individuals

Q Quarantined individuals

D Individuals who lost their life due to COVID-19
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Notations

X Set of all actions X = 0, 1, . . . , 9

J Set of all simulation period in a simulation J = 1, 2, . . . , J

s Step size of the simulation (in days)

α Weight of I in Equation 5.1

β Weight of H in Equation 5.1

γ Weight of C in Equation 5.1

λ Weight of Et in Equation 5.2

µ Weight of I in Equation 5.2

ρ Weight of D in Equation 5.2

π Weight of S + V 1 + V 2 in Equation 5.2

∆ Total population used in the simulation

σ Total simulation periods

Θ Compartmental statistics

θ A state made up of compartmental statistics

Ω Trained DQN Model
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|S − Ss|: Absolute difference between the real healthy proportion of the population

(S) and simulated healthy proportion of the population (Ss)

|I − Is|: Absolute difference between the real total infected proportion of the

population (I) and simulated total infected proportion of the population

(Is)

|H −Hs|: Absolute difference between the real hospitalized proportion of the

population (H) and simulated hospitalized proportion of the population

(Hs)

|C − Cs|: Absolute difference between the real ICU proportion of the population

(C) and simulated ICU proportion of the population (Cs)

|D −Ds|: Absolute difference between the real dead proportion of the population

(D) and simulated dead proportion of the population (Ds)

|R−Rs|: Absolute difference between the real recovered proportion of the

population (R) and simulated recovered proportion of the population

(Rs)

|T − Ts|: Absolute difference between the real treated proportion of the population

(T ) and simulated treated proportion of the population (Ts)

|V1 − V1s|: Absolute difference between the real first-shot vaccinated proportion of

the population (V1) and simulated first-shot vaccinated proportion of the

population (V1s)

|V2 − V2s|: Absolute difference between the real two-shot vaccinated proportion of

the population (V2) and simulated two-shot vaccinated proportion of the

population (V2s)
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Marc Etheve, Zacharie Alès, Côme Bissuel, Olivier Juan, and Safia Kedad-Sidhoum.
Reinforcement learning for variable selection in a branch and bound algorithm.
In International Conference on Integration of Constraint Programming,
Artificial Intelligence, and Operations Research, pages 176–185, Vienna, AT,
2020. Springer.

Kyle Eyvindson and Zhuo Cheng. Implementing the conditional value at risk
approach for even-flow forest management planning. Canadian Journal of
Forest Research, 46(5):637–644, 2016.

212



George S Fishman. Discrete-event simulation: modeling, programming, and analysis.
Springer Science and Business Media, Chester, UK, 2013.

Charles E Flower, Kathleen S Knight, Joanne Rebbeck, and Miquel A Gonzalez-
Meler. The relationship between the emerald ash borer (agrilus planipennis)
and ash (fraxinus spp.) tree decline: Using visual canopy condition assessments
and leaf isotope measurements to assess pest damage. Forest Ecology and
Management, 303:143–147, 2013.

G Edward Fox and Gary D Scudder. A heuristic with tie breaking for certain 0–
1 integer programming models. Naval Research Logistics Quarterly, 32(4):
613–623, 1985.
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Eyyüb Y Kıbış and İ Esra Büyüktahtakın. Optimizing multi-modal cancer treatment
under 3D spatio-temporal tumor growth. Mathematical Biosciences, 307:53–
69, 2019.
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