81 research outputs found

    RGB-D datasets using microsoft kinect or similar sensors: a survey

    Get PDF
    RGB-D data has turned out to be a very useful representation of an indoor scene for solving fundamental computer vision problems. It takes the advantages of the color image that provides appearance information of an object and also the depth image that is immune to the variations in color, illumination, rotation angle and scale. With the invention of the low-cost Microsoft Kinect sensor, which was initially used for gaming and later became a popular device for computer vision, high quality RGB-D data can be acquired easily. In recent years, more and more RGB-D image/video datasets dedicated to various applications have become available, which are of great importance to benchmark the state-of-the-art. In this paper, we systematically survey popular RGB-D datasets for different applications including object recognition, scene classification, hand gesture recognition, 3D-simultaneous localization and mapping, and pose estimation. We provide the insights into the characteristics of each important dataset, and compare the popularity and the difficulty of those datasets. Overall, the main goal of this survey is to give a comprehensive description about the available RGB-D datasets and thus to guide researchers in the selection of suitable datasets for evaluating their algorithms

    Deep Attention Models for Human Tracking Using RGBD

    Get PDF
    Visual tracking performance has long been limited by the lack of better appearance models. These models fail either where they tend to change rapidly, like in motion-based tracking, or where accurate information of the object may not be available, like in color camouflage (where background and foreground colors are similar). This paper proposes a robust, adaptive appearance model which works accurately in situations of color camouflage, even in the presence of complex natural objects. The proposed model includes depth as an additional feature in a hierarchical modular neural framework for online object tracking. The model adapts to the confusing appearance by identifying the stable property of depth between the target and the surrounding object(s). The depth complements the existing RGB features in scenarios when RGB features fail to adapt, hence becoming unstable over a long duration of time. The parameters of the model are learned efficiently in the Deep network, which consists of three modules: (1) The spatial attention layer, which discards the majority of the background by selecting a region containing the object of interest; (2) the appearance attention layer, which extracts appearance and spatial information about the tracked object; and (3) the state estimation layer, which enables the framework to predict future object appearance and location. Three different models were trained and tested to analyze the effect of depth along with RGB information. Also, a model is proposed to utilize only depth as a standalone input for tracking purposes. The proposed models were also evaluated in real-time using KinectV2 and showed very promising results. The results of our proposed network structures and their comparison with the state-of-the-art RGB tracking model demonstrate that adding depth significantly improves the accuracy of tracking in a more challenging environment (i.e., cluttered and camouflaged environments). Furthermore, the results of depth-based models showed that depth data can provide enough information for accurate tracking, even without RGB information

    Context-driven Object Detection and Segmentation with Auxiliary Information

    No full text
    One fundamental problem in computer vision and robotics is to localize objects of interest in an image. The task can either be formulated as an object detection problem if the objects are described by a set of pose parameters, or an object segmentation one if we recover object boundary precisely. A key issue in object detection and segmentation concerns exploiting the spatial context, as local evidence is often insufficient to determine object pose in the presence of heavy occlusions or large object appearance variations. This thesis addresses the object detection and segmentation problem in such adverse conditions with auxiliary depth data provided by RGBD cameras. We focus on four main issues in context-aware object detection and segmentation: 1) what are the effective context representations? 2) how can we work with limited and imperfect depth data? 3) how to design depth-aware features and integrate depth cues into conventional visual inference tasks? 4) how to make use of unlabeled data to relax the labeling requirements for training data? We discuss three object detection and segmentation scenarios based on varying amounts of available auxiliary information. In the first case, depth data are available for model training but not available for testing. We propose a structured Hough voting method for detecting objects with heavy occlusion in indoor environments, in which we extend the Hough hypothesis space to include both the object's location, and its visibility pattern. We design a new score function that accumulates votes for object detection and occlusion prediction. In addition, we explore the correlation between objects and their environment, building a depth-encoded object-context model based on RGBD data. In the second case, we address the problem of localizing glass objects with noisy and incomplete depth data. Our method integrates the intensity and depth information from a single view point, and builds a Markov Random Field that predicts glass boundary and region jointly. In addition, we propose a nonparametric, data-driven label transfer scheme for local glass boundary estimation. A weighted voting scheme based on a joint feature manifold is adopted to integrate depth and appearance cues, and we learn a distance metric on the depth-encoded feature manifold. In the third case, we make use of unlabeled data to relax the annotation requirements for object detection and segmentation, and propose a novel data-dependent margin distribution learning criterion for boosting, which utilizes the intrinsic geometric structure of datasets. One key aspect of this method is that it can seamlessly incorporate unlabeled data by including a graph Laplacian regularizer. We demonstrate the performance of our models and compare with baseline methods on several real-world object detection and segmentation tasks, including indoor object detection, glass object segmentation and foreground segmentation in video

    ImageSpirit: Verbal Guided Image Parsing

    Get PDF
    Humans describe images in terms of nouns and adjectives while algorithms operate on images represented as sets of pixels. Bridging this gap between how humans would like to access images versus their typical representation is the goal of image parsing, which involves assigning object and attribute labels to pixel. In this paper we propose treating nouns as object labels and adjectives as visual attribute labels. This allows us to formulate the image parsing problem as one of jointly estimating per-pixel object and attribute labels from a set of training images. We propose an efficient (interactive time) solution. Using the extracted labels as handles, our system empowers a user to verbally refine the results. This enables hands-free parsing of an image into pixel-wise object/attribute labels that correspond to human semantics. Verbally selecting objects of interests enables a novel and natural interaction modality that can possibly be used to interact with new generation devices (e.g. smart phones, Google Glass, living room devices). We demonstrate our system on a large number of real-world images with varying complexity. To help understand the tradeoffs compared to traditional mouse based interactions, results are reported for both a large scale quantitative evaluation and a user study.Comment: http://mmcheng.net/imagespirit
    • …
    corecore