7,156 research outputs found

    European White Book on Real-Time Power Hardware in the Loop Testing : DERlab Report No. R- 005.0

    Get PDF
    The European White Book on Real-Time-Powerhardware-in-the-Loop testing is intended to serve as a reference document on the future of testing of electrical power equipment, with specifi c focus on the emerging hardware-in-the-loop activities and application thereof within testing facilities and procedures. It will provide an outlook of how this powerful tool can be utilised to support the development, testing and validation of specifi cally DER equipment. It aims to report on international experience gained thus far and provides case studies on developments and specifi c technical issues, such as the hardware/software interface. This white book compliments the already existing series of DERlab European white books, covering topics such as grid-inverters and grid-connected storag

    Architecture of a network-in-the-Loop environment for characterizing AC power system behavior

    Get PDF
    This paper describes the method by which a large hardware-in-the-loop environment has been realized for three-phase ac power systems. The environment allows an entire laboratory power-network topology (generators, loads, controls, protection devices, and switches) to be placed in the loop of a large power-network simulation. The system is realized by using a realtime power-network simulator, which interacts with the hardware via the indirect control of a large synchronous generator and by measuring currents flowing from its terminals. These measured currents are injected into the simulation via current sources to close the loop. This paper describes the system architecture and, most importantly, the calibration methodologies which have been developed to overcome measurement and loop latencies. In particular, a new "phase advance" calibration removes the requirement to add unwanted components into the simulated network to compensate for loop delay. The results of early commissioning experiments are demonstrated. The present system performance limits under transient conditions (approximately 0.25 Hz/s and 30 V/s to contain peak phase-and voltage-tracking errors within 5. and 1%) are defined mainly by the controllability of the synchronous generator

    Advanced manned space flight simulation and training: An investigation of simulation host computer system concepts

    Get PDF
    The findings of a preliminary investigation by Southwest Research Institute (SwRI) in simulation host computer concepts is presented. It is designed to aid NASA in evaluating simulation technologies for use in spaceflight training. The focus of the investigation is on the next generation of space simulation systems that will be utilized in training personnel for Space Station Freedom operations. SwRI concludes that NASA should pursue a distributed simulation host computer system architecture for the Space Station Training Facility (SSTF) rather than a centralized mainframe based arrangement. A distributed system offers many advantages and is seen by SwRI as the only architecture that will allow NASA to achieve established functional goals and operational objectives over the life of the Space Station Freedom program. Several distributed, parallel computing systems are available today that offer real-time capabilities for time critical, man-in-the-loop simulation. These systems are flexible in terms of connectivity and configurability, and are easily scaled to meet increasing demands for more computing power

    A Real-Time, 3-D Musculoskeletal Model for Dynamic Simulation of Arm Movements

    Get PDF
    Neuroprostheses can be used to restore movement of the upper limb in individuals with high-level spinal cord injury. Development and evaluation of command and control schemes for such devices typically require real-time, ldquopatient-in-the-looprdquo experimentation. A real-time, 3-D, musculoskeletal model of the upper limb has been developed for use in a simulation environment to allow such testing to be carried out noninvasively. The model provides real-time feedback of human arm dynamics that can be displayed to the user in a virtual reality environment. The model has a 3-DOF glenohumeral joint as well as elbow flexion/extension and pronation/supination and contains 22 muscles of the shoulder and elbow divided into multiple elements. The model is able to run in real time on modest desktop hardware and demonstrates that a large-scale, 3-D model can be made to run in real time. This is a prerequisite for a real-time, whole-arm model that will form part of a dynamic arm simulator for use in the development, testing, and user training of neural prosthesis systems

    Real-time optical manipulation of cardiac conduction in intact hearts

    Get PDF
    Optogenetics has provided new insights in cardiovascular research, leading to new methods for cardiac pacing, resynchronization therapy and cardioversion. Although these interventions have clearly demonstrated the feasibility of cardiac manipulation, current optical stimulation strategies do not take into account cardiac wave dynamics in real time. Here, we developed an all‐optical platform complemented by integrated, newly developed software to monitor and control electrical activity in intact mouse hearts. The system combined a wide‐field mesoscope with a digital projector for optogenetic activation. Cardiac functionality could be manipulated either in free‐run mode with submillisecond temporal resolution or in a closed‐loop fashion: a tailored hardware and software platform allowed real‐time intervention capable of reacting within 2 ms. The methodology was applied to restore normal electrical activity after atrioventricular block, by triggering the ventricle in response to optically mapped atrial activity with appropriate timing. Real‐time intraventricular manipulation of the propagating electrical wavefront was also demonstrated, opening the prospect for real‐time resynchronization therapy and cardiac defibrillation. Furthermore, the closed‐loop approach was applied to simulate a re‐entrant circuit across the ventricle demonstrating the capability of our system to manipulate heart conduction with high versatility even in arrhythmogenic conditions. The development of this innovative optical methodology provides the first proof‐of‐concept that a real‐time optically based stimulation can control cardiac rhythm in normal and abnormal conditions, promising a new approach for the investigation of the (patho)physiology of the heart

    The 1990 Johnson Space Center bibliography of scientific and technical papers

    Get PDF
    Abstracts are presented of scientific and technical papers written and/or presented by L. B. Johnson Space Center (JSC) authors, including civil servants, contractors, and grantees, during the calendar year of 1990. Citations include conference and symposium presentations, papers published in proceedings or other collective works, seminars, and workshop results, NASA formal report series (including contractually required final reports), and articles published in professional journals

    Six networks on a universal neuromorphic computing substrate

    Get PDF
    In this study, we present a highly configurable neuromorphic computing substrate and use it for emulating several types of neural networks. At the heart of this system lies a mixed-signal chip, with analog implementations of neurons and synapses and digital transmission of action potentials. Major advantages of this emulation device, which has been explicitly designed as a universal neural network emulator, are its inherent parallelism and high acceleration factor compared to conventional computers. Its configurability allows the realization of almost arbitrary network topologies and the use of widely varied neuronal and synaptic parameters. Fixed-pattern noise inherent to analog circuitry is reduced by calibration routines. An integrated development environment allows neuroscientists to operate the device without any prior knowledge of neuromorphic circuit design. As a showcase for the capabilities of the system, we describe the successful emulation of six different neural networks which cover a broad spectrum of both structure and functionality
    corecore