15,479 research outputs found

    Spectral Attention-Driven Intelligent Target Signal Identification on a Wideband Spectrum

    Full text link
    This paper presents a spectral attention-driven reinforcement learning based intelligent method for effective and efficient detection of important signals in a wideband spectrum. In the work presented in this paper, it is assumed that the modulation technique used is available as a priori knowledge of the targeted important signal. The proposed spectral attention-driven intelligent method is consists of two main components, a spectral correlation function (SCF) based spectral visualization scheme and a spectral attention-driven reinforcement learning mechanism that adaptively selects the spectrum range and implements the intelligent signal detection. Simulations illustrate that the proposed method can achieve high accuracy of signal detection while observation of spectrum is limited to few ranges via effectively selecting the spectrum ranges to be observed. Furthermore, the proposed spectral attention-driven machine learning method can lead to an efficient adaptive intelligent spectrum sensor designs in cognitive radio (CR) receivers.Comment: 6 pages, 11 figure

    Communication Subsystems for Emerging Wireless Technologies

    Get PDF
    The paper describes a multi-disciplinary design of modern communication systems. The design starts with the analysis of a system in order to define requirements on its individual components. The design exploits proper models of communication channels to adapt the systems to expected transmission conditions. Input filtering of signals both in the frequency domain and in the spatial domain is ensured by a properly designed antenna. Further signal processing (amplification and further filtering) is done by electronics circuits. Finally, signal processing techniques are applied to yield information about current properties of frequency spectrum and to distribute the transmission over free subcarrier channels

    Fixed Rank Kriging for Cellular Coverage Analysis

    Full text link
    Coverage planning and optimization is one of the most crucial tasks for a radio network operator. Efficient coverage optimization requires accurate coverage estimation. This estimation relies on geo-located field measurements which are gathered today during highly expensive drive tests (DT); and will be reported in the near future by users' mobile devices thanks to the 3GPP Minimizing Drive Tests (MDT) feature~\cite{3GPPproposal}. This feature consists in an automatic reporting of the radio measurements associated with the geographic location of the user's mobile device. Such a solution is still costly in terms of battery consumption and signaling overhead. Therefore, predicting the coverage on a location where no measurements are available remains a key and challenging task. This paper describes a powerful tool that gives an accurate coverage prediction on the whole area of interest: it builds a coverage map by spatially interpolating geo-located measurements using the Kriging technique. The paper focuses on the reduction of the computational complexity of the Kriging algorithm by applying Fixed Rank Kriging (FRK). The performance evaluation of the FRK algorithm both on simulated measurements and real field measurements shows a good trade-off between prediction efficiency and computational complexity. In order to go a step further towards the operational application of the proposed algorithm, a multicellular use-case is studied. Simulation results show a good performance in terms of coverage prediction and detection of the best serving cell

    Power vs. Spectrum 2-D Sensing in Energy Harvesting Cognitive Radio Networks

    Full text link
    Energy harvester based cognitive radio is a promising solution to address the shortage of both spectrum and energy. Since the spectrum access and power consumption patterns are interdependent, and the power value harvested from certain environmental sources are spatially correlated, the new power dimension could provide additional information to enhance the spectrum sensing accuracy. In this paper, the Markovian behavior of the primary users is considered, based on which we adopt a hidden input Markov model to specify the primary vs. secondary dynamics in the system. Accordingly, we propose a 2-D spectrum and power (harvested) sensing scheme to improve the primary user detection performance, which is also capable of estimating the primary transmit power level. Theoretical and simulated results demonstrate the effectiveness of the proposed scheme, in term of the performance gain achieved by considering the new power dimension. To the best of our knowledge, this is the first work to jointly consider the spectrum and power dimensions for the cognitive primary user detection problem
    corecore