2 research outputs found

    Modeling, simulation, and stability of a hydraulic load-sensing pump system with investigation of a hard nonlinearity in the pump displacement control system

    Get PDF
    Certain types of Load-Sensing (LS) pumps utilize a hydro-mechanical control system designed to regulate the pressure difference, or margin pressure, between the inlet and outlet of a flow control valve. With a constant margin pressure, predictable flow control and improved efficiency can be achieved by controlling the orifice area of the flow control valve. Instability due to limit cycles (sustained oscillations) that stem from nonlinearities within the system is a common issue related to hydraulic LS systems. In this work, the stability of the pressure control system was investigated using describing function analysis. Describing function analysis is a method used to approximate a nonlinearity within a nonlinear system and was conducted to predict the existence and stability of limit cycles that occur due to saturation nonlinearities within the mechanical components of the LS system. A combination of linear and nonlinear analysis and modeling was employed to assess the stability of a particular LS pump system. Among many nonlinearities present in the hydro-mechanical LS system, of particular interest was the saturation inherent in the actuator that is used to displace the pump swash plate and the saturation within the 3-way spool valve that permits flow to reach the actuator. This saturation nonlinearity was believed to be a problematic source for limit cycles that tend to appear in LS systems. A comprehensive nonlinear model was developed as the foundation for this research as it was used for validation in direct comparison to experimentally acquired data. The nonlinear model proved to be precise and accurate in matching to the experimental test bed response based on the data that was gathered. The acquired data was compared to the NL model simulation through a root mean squared error evaluation and frequency response analysis. The nonlinear model was then used to generate a linearized model necessary for stability analysis. The saturation nonlinearities for two separate mechanical systems were isolated from

    On Increasing the Automation Level of Heavy-Duty Hydraulic Manipulators with Condition Monitoring of the Hydraulic System and Energy-Optimised Redundancy Resolution

    Get PDF
    Hydraulic manipulators on mobile machines are predominantly used for excavation and lifting applications at construction sites and for heavy-duty material handling in the forest industry due to their superior power-density and rugged nature. These manipulators are conventionally open-loop controlled by human operators who are sufficiently skilled to operate the machines. However, in the footsteps of pioneering original equipment manufacturers (OEMs) and to keep up with the intensifying demand for innovation, more and more mobile machine OEMs have a major interest in significantly increasing the automation level of their hydraulic manipulators and improving the operation of manipulators. In this thesis, robotic software-based functionalities in the form of modelbased condition monitoring and energy-optimal redundancy resolution which facilitate increased automation level of hydraulic manipulators are proposed.A condition monitoring system generally consists of software modules and sensors which co-operate harmonically and monitor the hydraulic system’s health in real-time based on an indirect measure of this system’s health. The premise is that when this condition monitoring system recognises that the system’s health has deteriorated past a given threshold (in other words, when a minor fault is detected, such as a slowly increasing internal leakage of the hydraulic cylinder), the condition monitoring module issues an alarm to warn the system operator of the malfunction, and the module could ideally diagnose the fault cause. In addition, when faced with severe faults, such as an external leakage or an abruptly increasing internal leakage in the hydraulic system, an alarm from the condition monitoring system ensures that the machine is quickly halted to prevent any further damage to the machine or its surroundings.The basic requirement in the design of such a condition monitoring system is to make sure that this system is robust and fault-sensitive. These properties are difficult to achieve in complex mobile hydraulic systems on hydraulic manipulators due to the modelling uncertainties affecting these systems. The modelling uncertainties affecting mobile hydraulic systems are specific compared with many other types of systems and are large because of the hydraulic system complexities, nonlinearities, discontinuities and inherently time-varying parameters. A feasible solution to this modelling uncertainty problem would be to either attenuate the effect of modelling errors on the performance of model-based condition monitoring or to develop improved non-model-based methods with increased fault-sensitivity. In this research work, the former model-based approach is taken. Adaptation of the model residual thresholds based on system operating points and reliable, load-independent system models are proposed as integral parts of the condition monitoring solution to the modelling uncertainty problem. These proposed solutions make the realisation of condition monitoring solutions more difficult on heavy-duty hydraulic manipulators compared with fixed-load manipulators, for example. These solutions are covered in detail in a subset of the research publications appended to this thesis.There is wide-spread interest from hydraulic manipulator OEMs in increasing the automation level of their hydraulic manipulators. Most often, this interest is related to semi-automation of repetitive work cycles to improve work productivity and operator workload circumstances. This robotic semi-automated approach involves resolving the kinematic redundancy of hydraulic manipulators to obtain motion references for the joint controller to enable desirable closed-loop controlled motions. Because conventional redundancy resolutions are usually sub-optimal at the hydraulic system level, a hydraulic energy-optimised, global redundancy resolution is proposed in this thesis for the first time. Kinematic redundancy is resolved energy optimally from the standpoint of the hydraulic system along a prescribed path for a typical 3-degrees-of-freedom (3-DOF) and 4-DOF hydraulic manipulator. Joint motions are also constrained based on the actuators’ position, velocity and acceleration bounds in hydraulic manipulators in the proposed solution. This kinematic redundancy resolution topic is discussed in the last two research papers. Overall, both designed manipulator features, condition monitoring and energy-optimised redundancy resolution, are believed to be essential for increasing the automation of hydraulic manipulators
    corecore