4 research outputs found

    Towards pre-emptive resilience in military supply chains: a compromise decision support model-based approach

    Get PDF
    The complex and dynamic nature of military supply chains (MSC) requires constant vigilance to sense potential vulnerabilities. Several studies have employed decision support models for the optimization of their operations. These models are often limited to a best single-point solution unsuitable for complex MSC constellations. In this article, the authors present a novel approach based on decision support models to explore a range of satisficing solutions against disruptions in MSCs using a compromise Decision Support Problem (cDSP) construct and Decision Support in the Design of Engineered Systems (DSIDES). Two cases were evaluated: (1) a baseline scenario with no disruption and (2) with disruption to achieve target values of three goals: (1) minimizing lead time, (2) maximizing demand fulfilment and (3) maximizing vehicle utilization. The results obtained in Case 1 identified a more stable solution space with minimal deviations from the target value, while in Case 2 the solution space was unstable with deviations from the target values

    SIMULATING CONSUMABLE ORDER FULFILLMENT VIA ADDITIVE MANUFACTURING TECHNOLOGIES

    Get PDF
    Operational availability of naval aircraft through material readiness is critical to ensuring combat power. Supportability of aircraft is a crucial aspect of readiness, influenced by several factors including access to 9B Cognizance Code (COG) aviation consumable repair parts at various supply echelons. Rapidly evolving additive manufacturing (AM) technologies are transforming supply chain dynamics and the traditional aircraft supportability construct. As of June 2022, there are 595 AM assets within the Navy’s inventory—all for research and development purposes. This report simulates 9B COG aviation consumable fulfillment strategies within the U.S. Indo-Pacific sustainment network for a three-year span, inclusive of traditional supply support avenues and a developed set of user-variable capability inputs. Simulated probabilistic demand configurations are modeled from historical trends that exploit a heuristic methodology to assign a “printability” score to each 9B COG requirement, accounting for uncertainty, machine failure rates, and other continuous characteristics of the simulated orders. The results measure simulated lead time across diverse planning horizons in both current and varied operationalized AM sustainment network configurations. This research indicates a measurable lead time reduction of approximately 10% across all 9B order lead times when AM is employed as an order fulfillment source for only 0.5% of orders.NPS Naval Research ProgramThis project was funded in part by the NPS Naval Research Program.Lieutenant Commander, United States NavyApproved for public release. Distribution is unlimited

    Modeling and Simulation for Effectiveness Evaluation of Dynamic Discrete Military Supply Chain Networks

    No full text
    The effectiveness of military supply chain networks is an important reference for logistics decision-making, and it is crucial to evaluate it scientifically and accurately. This paper highlights the problem from the perspective of dynamic and discrete networks. A topological structure model with the characteristics of dynamic and discreteness is used to describe the structure of military supply chain networks (MSCNs). In order to provide a platform for evaluating the effectiveness, simulation algorithms based on topological structure models for MSCNs are presented. Considering military and economic factors, evaluation metrics including supply capability and supply efficiency are proposed. By applying the model and algorithms to a POL supply network in a theater, we obtain the values of supply capability and efficiency metrics in a dynamic environment. We also identify an optimal solution from multiple feasible solutions to help decision-makers to make scientific and rational decisions by using exploratory analysis method. The results show that new evaluation metrics can capture important effectiveness requirements for military supply networks positively. We also find the proposed method in this paper can solve the problem of evaluating the effectiveness of dynamic and discrete network effectiveness evaluation in a feasible and effective manner

    Implementation Strategies for Modeling and Simulation in Military Organizations

    Get PDF
    Some IT project managers working for U.S. military organizations are struggling to implement modern modeling and simulation (M&S) technology. Implementation strategies are needed to help IT practitioners deliver meaningful simulations and models that ultimately help senior leaders make logical and science-based decisions. Grounded in the extended technology acceptance model, the purpose of this qualitative multiple-case study was to explore strategies some IT project managers supporting U.S. military organizations use to implement modern M&S technology. The participants included 10 civil servants who successfully implemented modeling and simulation technology for military organizations located in the United States eastern region. Data was collected from one-on-one semistructured interviews (n = 10) and internal and external organizational documents (n = 12) provided by the participants. Data were analyzed using thematic analysis. Three major themes emerged: understand the true M&S requirements, incorporate subject matter experts throughout implementation, and anticipate and overcome persistent challenges. One recommendation is for practitioners to develop tasks and milestones to address these challenges at the beginning of implementation and add them to the project schedule. The implications for positive social change include the potential for successful implementation of models and military organizations\u27 simulations to safeguard human lives
    corecore