136 research outputs found

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Zero-gravity movement studies

    Get PDF
    The use of computer graphics to simulate the movement of articulated animals and mechanisms has a number of uses ranging over many fields. Human motion simulation systems can be useful in education, medicine, anatomy, physiology, and dance. In biomechanics, computer displays help to understand and analyze performance. Simulations can be used to help understand the effect of external or internal forces. Similarly, zero-gravity simulation systems should provide a means of designing and exploring the capabilities of hypothetical zero-gravity situations before actually carrying out such actions. The advantage of using a simulation of the motion is that one can experiment with variations of a maneuver before attempting to teach it to an individual. The zero-gravity motion simulation problem can be divided into two broad areas: human movement and behavior in zero-gravity, and simulation of articulated mechanisms

    Space experiment "Kontur-2": Applied methods and obtained results

    Get PDF
    Space experiment "Kontur-2" aboard the International Space Station is focused on the transfer of information between station and on-ground robot. Station's resources are limited, including communication ones. That is why for the space experiment “Kontur-2” it was decided to use the methods of priority traffic management. New access control mechanisms based on these methods are researched. The usage of the priority traffic processing methods allows using more efficiently the bandwidth of receiving and transmitting equipment onboard the International Space Station through the application of randomized push-out mechanism. The paper considers methods applied for traffic management and access control during international space experiment “Kontur-2” performed aboard the ISS. The obtained results are also presented

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers

    ESMD Space Grant Faculty Report

    Get PDF
    The strength of the Exploration Systems Mission Directorate ESMD Faculty Project lies in its ability to meet National Aeronautics Space Administration NASA's Strategic Educational Outcome 1 by developing a sustainable and long-term integration of student involvement at academic institutions with all NASA Centers. This outcome is achieved by a three-fold approach: 1) by collecting Senior Design projects pertaining to Constellation work performed at each of the ten NASA Centers, 2) by engaging students at Minority Serving Institutions in the art of systems engineering and systems design of technologies required for space exploration, and 3) by identifying potential internships at each Center relative to exploration that provide students who are supported by their institutional Space Grant to engage in on-going mission-level and explorative systems designs. The objectives of the ESMD Faculty Project are to: 1. Aid the Centers (both Education Offices and associated technical organizations) in providing relevant opportunities for the ESMD Space Grant Program to support student and faculty in Senior Design projects 2. Enable better matches between the ESMD work required and what the Space Grant Consortia can do to effectively contribute to NASA programs 3. Provide the Space Grant Consortia an opportunity to strengthen relations with the NASA Centers 4. Develop better collective understanding of the U.S. Space Exploration Policy by the Center, Space Grant, faculty, Education Office, and students 5. Enable Space Grant institution faculty to better prepare their students to meet current and future NASA needs 6. Enable the Center Education Offices to strengthen their ties to their technical organizations and Space Grant Consortia 7. Aid KSC in gaining a greater and more detailed understanding of each of the Center activities Senior Design projects are intended to stimulate undergraduate students on current NASA activities related to lunar, Mars, and other planetary missions and to bring out innovative and novel ideas that can be used to complement those currently under development at respective NASA Centers. Additionally, such academic involvement would better the prospects for graduating seniors to pursue graduate studies and to seek careers in the space industry with a strong sense for systems engineering and understanding of design concepts. Internships, on the other hand, are intended to provide hands-on experience to students by engaging them in diverse state-of-the-art technology development, prototype bread-boarding, computer modeling and simulations, hardware and software testing, and other activities that provide students a strong perspective of NASA's vision and mission in enhancing the knowledge of Earth and space planetary sciences. Ten faculty members, each from a Space Grant Consortium-affiliated university, worked at ten NASA Centers for five weeks between June 2 and July 3, 2008. The project objectives listed above were achieved. In addition to collecting data on Senior Design ideas and identifying possible internships that would benefit NASA/ESMD, the faculty fellows promoted and collected data when required for other ESMD-funded programs and helped the Center's Education Office, as,needed.

    National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1992, volume 1

    Get PDF
    The 1992 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, Washington, DC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers. This document is a compilation of the final reports 1 through 12

    Investigation of possible causes for human-performance degradation during microgravity flight

    Get PDF
    The results of the first year of a three year study of the effects of microgravity on human performance are given. Test results show support for the hypothesis that the effects of microgravity can be studied indirectly on Earth by measuring performance in an altered gravitational field. The hypothesis was that an altered gravitational field could disrupt performance on previously automated behaviors if gravity was a critical part of the stimulus complex controlling those behaviors. In addition, it was proposed that performance on secondary cognitive tasks would also degrade, especially if the subject was provided feedback about degradation on the previously automated task. In the initial experimental test of these hypotheses, there was little statistical support. However, when subjects were categorized as high or low in automated behavior, results for the former group supported the hypotheses. The predicted interaction between body orientation and level of workload in their joint effect on performance in the secondary cognitive task was significant for the group high in automatized behavior and receiving feedback, but no such interventions were found for the group high in automatized behavior but not receiving feedback, or the group low in automatized behavior

    NASA/ASEE Summer Faculty Fellowship Program, 1990, Volume 1

    Get PDF
    The 1990 Johnson Space Center (JSC) NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston-University Park and JSC. A compilation of the final reports on the research projects are presented. The topics covered include: the Space Station; the Space Shuttle; exobiology; cell biology; culture techniques; control systems design; laser induced fluorescence; spacecraft reliability analysis; reduced gravity; biotechnology; microgravity applications; regenerative life support systems; imaging techniques; cardiovascular system; physiological effects; extravehicular mobility units; mathematical models; bioreactors; computerized simulation; microgravity simulation; and dynamic structural analysis
    corecore