22,991 research outputs found

    Medium Access Control for Wireless Sensor Networks based on Impulse Radio Ultra Wideband

    Full text link
    This paper describes a detailed performance evaluation of distributed Medium Access Control (MAC) protocols for Wireless Sensor Networks based on Impulse Radio Ultra Wideband (IR-UWB) Physical layer (PHY). Two main classes of Medium Access Control protocol have been considered: Slotted and UnSlotted with reliability. The reliability is based on Automatic Repeat ReQuest (ARQ). The performance evaluation is performed using a complete Wireless Sensor Networks (WSN) simulator built on the Global Mobile Information System Simulator (GloMoSim). The optimal operating parameters are first discussed for IR-UWB in terms of slot size, retransmission delay and the number of retransmission, then a comparison between IR-UWB and other transmission techniques in terms of reliability latency and power efficiency

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Performance evaluation of wireless sensor networks for mobile event and mobile sink

    Get PDF
    Extending lifetime and energy efficiency are important objectives and challenges in-Wireless Sensor Networks (WSNs). In large scale WSNs, when the nodes are near to the sink they consume much more energy than the nodes far from the sink. In our previous work, we considered that the sink node was stationary and only event node was moving in the observation field. In this work, we consider both cases when the sink node and event node are moving. For the simulations, we use TwoRayGround and Shadowing radio models, lattice topology and AODV protocol. We compare the simulation results for the cases when the sink node and event node are mobile and stationary. The simulation results have shown that the goodput of TwoRayGround is better than Shadowing in case of mobile event, but the depletion of Shadowing is better than TwoRayGround in case of mobile event. The goodput in case of mobile sink is better than stationary sink when the transmission rate is lower than 10pps. For TwoRayGround radio model, the depletion in case of mobile sink is better than stationary sink when the number of nodes is increasedPeer ReviewedPostprint (published version

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    Routing efficiency in wireless sensor-actor networks considering semi-automated architecture

    Get PDF
    Wireless networks have become increasingly popular and advances in wireless communications and electronics have enabled the development of different kind of networks such as Mobile Ad-hoc Networks (MANETs), Wireless Sensor Networks (WSNs) and Wireless Sensor-Actor Networks (WSANs). These networks have different kind of characteristics, therefore new protocols that fit their features should be developed. We have developed a simulation system to test MANETs, WSNs and WSANs. In this paper, we consider the performance behavior of two protocols: AODV and DSR using TwoRayGround model and Shadowing model for lattice and random topologies. We study the routing efficiency and compare the performance of two protocols for different scenarios. By computer simulations, we found that for large number of nodes when we used TwoRayGround model and random topology, the DSR protocol has a better performance. However, when the transmission rate is higher, the routing efficiency parameter is unstable.Peer ReviewedPostprint (published version
    • …
    corecore