2,307 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Resource allocation for transmit hybrid beamforming in decoupled millimeter wave multiuser-MIMO downlink

    Get PDF
    This paper presents a study on joint radio resource allocation and hybrid precoding in multicarrier massive multiple-input multiple-output communications for 5G cellular networks. In this paper, we present the resource allocation algorithm to maximize the proportional fairness (PF) spectral efficiency under the per subchannel power and the beamforming rank constraints. Two heuristic algorithms are designed. The proportional fairness hybrid beamforming algorithm provides the transmit precoder with a proportional fair spectral efficiency among users for the desired number of radio-frequency (RF) chains. Then, we transform the number of RF chains or rank constrained optimization problem into convex semidefinite programming (SDP) problem, which can be solved by standard techniques. Inspired by the formulated convex SDP problem, a low-complexity, two-step, PF-relaxed optimization algorithm has been provided for the formulated convex optimization problem. Simulation results show that the proposed suboptimal solution to the relaxed optimization problem is near-optimal for the signal-to-noise ratio SNR <= 10 dB and has a performance gap not greater than 2.33 b/s/Hz within the SNR range 0-25 dB. It also outperforms the maximum throughput and PF-based hybrid beamforming schemes for sum spectral efficiency, individual spectral efficiency, and fairness index

    Modeling and Analysis of Energy Efficiency in Wireless Handset Transceiver Systems

    Get PDF
    As wireless communication devices are taking a significant part in our daily life, research steps toward making these devices even faster and smarter are accelerating rapidly. The main limiting factors are energy and power consumption. Many techniques are utilized to increase the battery’s capacity (Ampere per Hour), but that comes with a cost of raising the safety concerns. The other way to increase the battery’s life is to decrease the energy consumption of the devices. In this work, we analyze energy-efficient communications for wireless devices based on an advanced energy consumption model that takes into account a broad range of parameters. The developed model captures relationships between transmission power, transceiver distance, modulation order, channel fading, power amplifier (PA) effects, power control, multiple antennas, as well as other circuit components in the radio frequency (RF) transceiver. Based on the developed model, we are able to identify the optimal modulation order in terms of energy efficiency under different situations (e.g., different transceiver distance, different PA classes and efficiencies, different pulse shape, etc). Furthermore, we capture the impact of system level and network level parameters on the PA energy via peak to average ratio (PAR) and power control. We are also able to identify the impact of multiple antennas at the handset on the energy consumption and the transmitted bit rate for few and many antennas (conventional multiple-input-multiple-output (MIMO) and massive MIMO) at the base station. This work provides an important framework for analyzing energy-efficient communications for different wireless systems ranging from cellular networks to wireless internet of things

    Visible Light Communication (VLC)

    Get PDF
    Visible light communication (VLC) using light-emitting diodes (LEDs) or laser diodes (LDs) has been envisioned as one of the key enabling technologies for 6G and Internet of Things (IoT) systems, owing to its appealing advantages, including abundant and unregulated spectrum resources, no electromagnetic interference (EMI) radiation and high security. However, despite its many advantages, VLC faces several technical challenges, such as the limited bandwidth and severe nonlinearity of opto-electronic devices, link blockage and user mobility. Therefore, significant efforts are needed from the global VLC community to develop VLC technology further. This Special Issue, “Visible Light Communication (VLC)”, provides an opportunity for global researchers to share their new ideas and cutting-edge techniques to address the above-mentioned challenges. The 16 papers published in this Special Issue represent the fascinating progress of VLC in various contexts, including general indoor and underwater scenarios, and the emerging application of machine learning/artificial intelligence (ML/AI) techniques in VLC
    • …
    corecore