9 research outputs found

    Optical Imaging of Visual Cortical Responses Evoked by Transcorneal Electrical Stimulation With Different Parameters

    Get PDF
    Citation: Ma Z, Cao P, Sun P, et al. Optical imaging of visual cortical responses evoked by transcorneal electrical stimulation with different parameters. Invest Ophthalmol Vis Sci. 2014;55:5320-5331. DOI: 10.1167/iovs.14-14600 PURPOSE. The use of phosphenes evoked by transcorneal electrical stimulation (TcES) has been proposed as a means of residual visual function evaluation and candidate selection before implantation of retinal prostheses. Compared to the subjective measures, measurement of neuronal activity in visual cortex can objectively and quantitatively explore their response properties to electrical stimulation. The purpose of this study was to investigate systematically the properties of cortical responses evoked by TcES. METHODS. The visual cortical responses were recorded using a multiwavelength optical imaging of intrinsic signals (OIS) combining with electrophysiological recording by a multichannel electrode array. The effects of different parameters of TcES on cortical responses, including the changes of hemoglobin oxygenation and cerebral blood volume, were examined. RESULTS. We found consistent OIS activation regions in visual cortex after TcES, which also showed strong evoked field potentials according to electrophysiological results. The OIS response regions were located mainly in cortical areas representing peripheral visual field. The extent of activation areas and strength of intrinsic signals were increased with higher current intensities and longer pulse widths, and the largest responses were acquired in the frequency range 10 to 20 Hz. CONCLUSIONS. Use of TcES through the ERG-jet corneal electrode may preferentially activate peripheral retina. Revealing the hemodynamic changes in visual cortex occurred after electrical stimulation can contribute to comprehension of neurophysiological underpinnings underlying prosthetic vision. This study provided an objective foundation for optimizing parameters of TcES and would bring considerable benefits in the application of TcES for assessment and screening in patients

    Physiological Bases of Electric Stimulation as a New Approach to Glaucoma IOP Control

    Get PDF
    This Chapter focuses in the electrophysiological bases to support Trans Palpebral Electrical Stimulation TPES as a new alternative to control Intraocular Pressure IOP. Primary open Angle Glaucoma POAG is described in our approach as a dysfunction of the membrane potential of TM cells due to the dysfunction of the Maxi potassium depended Calcium Channels BKCa2+ of the Trabecular Mesh TM. We review through the paper the main contributions about Trabecular mesh dysfunction related with Voltage dependent ionic channels. We also present in this paper new results in controlling intra ocular pressure IOP during one year of trans palpebral Electric stimulation in patients with Primary open-angle glaucoma (POAG)

    Safety Aspects, Tolerability and Modeling of Retinofugal Alternating Current Stimulation

    Get PDF
    Background While alternating current stimulation (ACS) is gaining relevance as a tool in research and approaching clinical applications, its mechanisms of action remain unclear. A review by Schutter and colleagues argues for a retinal origin of transcranial ACS’ neuromodulatory effects. Interestingly, there is an alternative application form of ACS specifically targeting α-oscillations in the visual cortex via periorbital electrodes (retinofugal alternating current stimulation, rACS). To further compare these two methods and investigate retinal effects of ACS, we first aim to establish the safety and tolerability of rACS. ObjectiveThe goal of our research was to evaluate the safety of rACS via finite-element modeling, theoretical safety limits and subjective report. Methods20 healthy subjects were stimulated with rACS as well as photic stimulation and reported adverse events following stimulation. We analyzed stimulation parameters at electrode level as well as distributed metric estimates from an ultra-high spatial resolution magnetic resonance imaging (MRI)-derived finite element human head model and compared them to existing safety limits. ResultsTopographical modeling revealed the highest current densities in the anterior visual pathway, particularly retina and optic nerve. Stimulation parameters and finite element modeling estimates of rACS were found to be well below existing safety limits. No serious adverse events occurred. ConclusionOur findings are in line with existing safety guidelines for retinal and neural damage and establish the tolerability and feasibility of rACS. In comparison to tACS, retinofugal stimulation of the visual cortex provides an anatomically circumscribed model to systematically study the mechanisms of action of ACS

    Doctor of Philosophy

    Get PDF
    dissertationThe goal of this work is to construct a simulation toolset for studying and improving neuroprosthetic devices for restoring neural functionality to patients with neural disorders or diseases. This involves the construction and validation of coupled electromagnetic-neural computational models of retina and hippocampus, compiling knowledge from a broad multidisciplinary background into a single computational platform, with features specific to implant electronics, bulk tissue, cellular and neural network behavior, and diseased tissue. The application of a retina prosthetic device for restoring partial vision to patients blinded by degenerative diseases was first considered. This began with the conceptualization of the retina model, translating features of a connectome, implant electronics, and medical images into a computational model that was "degenerated." It was then applied to the design of novel electrode geometries towards increasing the resolution of induced visual percept, and of stimulation waveform shapes for increasing control of induced neural activity in diseased retina. Throughout this process, features of the simulation toolset itself were modified to increase the precision of the results, leading to a novel method for computing effective bulk resistivity for use in such multiscale modeling. This simulation strategy was then extended to the application of a hippocampus prosthetic device, which has been proposed to restore and/or enhance memory in patients with memory disorders such as Alzheimer's disease or dementia. Using this multiscale modeling approach, we are able to provide recommendations for electrode geometry, placement, and stimulation magnitude for increased safety and efficacy in future experimental trials. In attempt to model neural activity in dense hippocampal tissue, a simulation platform for considering the effects the electrical activity of neural networks have on the extracellular electric field, and therefore have on their neighboring cells, was constructed, further increasing the predictive ability of the proposed methodology for modeling electrical stimulation of neural tissue

    Preserved retinotopic brain connectivity in macular degeneration

    Get PDF

    Effet de la stimulation cholinergique sur la perception visuelle chez le rat et l'humain : Ă©tudes comportementales et Ă©lectrophysiologiques

    Get PDF
    Le système cholinergique joue un rôle important dans de nombreuses fonctions cognitives telles que l'attention et l'apprentissage perceptuel. La stimulation pharmacologique du système cholinergique par le donépézil, un inhibiteur de l’acétylcholinestérase, est un moyen efficace pour améliorer les fonctions cognitives et le traitement cortical via les récepteurs muscariniques et nicotiniques. En effet, le donépézil permet l'accumulation d'acétylcholine dans la fente synaptique. Toutefois, l’effet de la stimulation pharmacologique du système cholinergique sur le traitement visuel complexe et l’apprentissage perceptuel n’est pas encore bien défini. L'objectif de cette thèse est d'étudier, d'une part, l'effet de la combinaison d’un entrainement visuel répétitif avec une stimulation cholinergique sur les capacités visuelles chez le rat et l’humain et, d'autre part, l’effet de la stimulation pharmacologique du système cholinergique sur la restauration des capacités visuelles dans un modèle de déficit visuel chez les rats. Nos résultats ont montré qu’un entrainement visuel/cholinergique entraînait : 1) une potentialisation à long terme de la réponse visuelle corticale chez le rat, 2) une récupération plus rapide des capacités visuelles chez la rat suite un écrasement du nerf optique 3) une amélioration de la performance dans une tâche perceptivo-cognitive de haut niveau plus rapide et conservée dans le temps chez les jeunes sujets sains. Le patron d’électroencéphalographie chez le sujet humain pratiquant une tâche d’attention visuelle n’est cependant pas modifié par l’administration d’une dose unique de donépézil. Ensembles, ces résultats soulignent le bénéfice considérable de la combinaison d’une stimulation du système cholinergique lors de l’entrainement visuel répétitif afin d'obtenir des améliorations de la perception visuelle. Cela présente une avenue très intéressante pour la réhabilitation chez les humains.The cholinergic system plays an important role in many cognitive functions such as attention and perceptual learning. Pharmacological stimulation of the cholinergic system via donepezil, an acetylcholinesterase inhibitor, is an efficient tool for enhancing cognitive functions and cortical processing via muscarinic and nicotinic receptors. In fact, donepezil allows the build-up of acetylcholine in the synaptic cleft. However, whether pharmacological manipulation of the cholinergic system has an effect on complex visual processing and perceptual learning remains unclear. The goal of this thesis is to investigate on the one hand the effect of combining repetitive visual training with cholinergic enhancement on visual capacities in rats and humans and on the other hand the effect of the pharmacological stimulation of the cholinergic system on visual restoration in a model of visual deficit in rats. Our results showed that cholinergic potentiation induces 1) a long-term potentiation of visual cortical response following repetitive visual stimulation, 2) a faster recovery of brightness discrimination in rats with an optic nerve crush, 3) a faster progression of and a sustained performance in a highly demanding perceptual-cognitive task for healthy young humans. However, the EEG pattern for subjects performing a visual attention task is not modified by a single administration of donepezil. Together these results underline the substantial benefice of combining cholinergic enhancement with visual training in order to obtain visual perception improvements, which presents an interesting avenue for visual rehabilitation paradigm in humans

    Modulation of neural oscillations and associated behaviour by transcranial Alternating Current Stimulation (tACS)

    Get PDF
    Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation method that involves the application of weak electric currents to the scalp. tACS has the potential to be an inexpensive, easily administrable, and well-tolerated multi-purpose tool for cognitive and clinical neuroscience as it could be applied to establish the functional role of rhythmic brain activity, and to treat neural disorders, in particular those where these rhythms have gone awry. However, the mechanisms by which tACS produces both "online" and "offline" effects (that is, those that manifest during stimulation and those that last beyond stimulation offset) are to date still poorly understood. If the potential of tACS is to be harnessed effectively to alter brain activity in a controlled manner, it is fundamental to have a good understanding of how tACS interacts with neuronal dynamics, and of the conditions that promote its effect. This thesis describes three experiments that were conducted to elucidate the mechanisms by which tACS interacts with underlying neural network activity. Experiments 1 and 2 investigated the mechanism by which tACS at alpha frequencies (8 12 Hz, α-tACS) over occipital cortex induces the lasting aftereffects on posterior α power that were previously described in the literature. Two mechanisms have been suggested to underlie alpha power enhancement after α tACS: entrainment of endogenous brain oscillations and/or changes in oscillatory neural networks through spike timing-dependent plasticity (STDP). In Experiment 1, we tested to what extent plasticity can account for tACS-aftereffects when controlling for entrainment characteristics. To this end, we used a novel, intermittent α-tACS protocol and investigated the strength of the aftereffect as a function of phase continuity between successive tACS episodes, as well as the match between stimulation frequency and individual alpha frequency (IAF). Alpha aftereffects were successfully replicated with enhanced α power after intermittent stimulation compared to sham. These aftereffects did not exhibit any of the expected characteristics of prolonged entrainment in that they were independent of tACS phase-continuity and did not show stable phase alignment or synchronisation to the stimulation frequency. These results indicate that prolonged entrainment is insufficient to explain the aftereffects and suggest that the latter emerge through some form of network plasticity. To clarify the nature of these plasticity mechanisms, we then aimed to assess whether STDP could explain the α power increase. We developed a conceptual STDP model that predicted bi-directional changes in α power depending on the relative mismatch between the tACS frequency and IAF. After observing in Experiment 1 that tACS at frequencies slightly lower than the IAF produced α enhancement, Experiment 2 used a similar intermittent protocol that manipulated tACS frequency to be either slightly lower or higher than IAF to respectively enhance or suppress α activity. In addition, a control condition with continuous stimulation aimed to replicate previous results from other groups. However, we did not observe a systematic α power change in any of the active conditions. The lack of consistency between the two experiments raises concerns regarding the reproducibility and effect size of tACS aftereffects. The third experiment investigated the mechanism of online effects and tested predictions that were based on the assumption that entrainment is the underlying process mediating behavioural changes during tACS. We capitalised on two well-described phenomena: firstly, the association between α power lateralisation and visuospatial attention, and secondly, the fluctuation of perceptual performance with α phase. Specifically, the experiment tested whether event-related α-tACS applied over right parieto-occipital cortex can induce a visuospatial bias in a peripheral dot detection task that would reflect α power lateralisation, and whether detection performance depends on the phase of the tACS waveform. In control trials either no tACS or 40 Hz-tACS (gamma) was applied to make use of the putative opposing roles of alpha and gamma oscillations in visual processing. As expected from lateralised enhancement of alpha oscillations, visual detection accuracy was weakly impaired for targets presented in the left visual field, contralateral to tACS. However, this effect was neither frequency specific nor waveform phase-dependent. Therefore, it is unlikely that the negative effect of tACS on visuospatial performance reflects entrainment. Overall, the results of these experiments only partially met our hypotheses. Experiment 1 produced the α enhancement that was expected based on the literature while the follow-up experiment failed to reproduce these results under similar conditions. This outcome demonstrates at best that tACS aftereffects on α activity are not robust, may vary widely across individuals, and might be extremely sensitive to small changes in experimental parameters and state variables. The results of the third experiment call into question the assumption of online entrainment as basis for the observed behavioural effect. These findings point to the need for improved methodology, for more systematic and exhaustive exploration of the relative effects of tACS across different parameter settings, tasks, and individuals; and for the replication of promising but thus far often anecdotal results. They also inspire guidelines for more informative experimental designs

    THE SOUND OF SCOTOMA: A multisensory integration approach for individuals with Macular Degeneration

    Get PDF
    openAudio-spatial representation reorganizes in the absence of visual inputs, as in the case of blind individuals. However, it is not clear how this spatial reorganization works. Although blindness is an ideal condition to understand how other sensory modalities react in absence of vision, there are some limits in using it as a modal. The main limit is that blindness can be considered a stable model of cortical organization and it does not allow to understand the mechanisms which cause this reorganization. To understand this process, we have studied a unique group of individuals suffering from Macular Degeneration (MD) for whom loss of visual inputs due to a progressive scotoma is an ongoing process. In this dissertation I decided to focus on understanding auditory spatial representation in MD individuals and to develop technnological solutions for them incorporating multisensory integration. First, we developed a device called ARENA which is an audio-tactile matrix of speakers to study audio-spatial localization in MD individuals. Our findings show that visual loss brings an immediate change in the processing of audio-spatial percept by attracting the lateral sounds towards scotoma positions in the center, producing a strong auditory spatial perception bias. To recaliberate this audio-spatial bias and to give MD individuals an understanding of their own scotoma to develop an effective pseudo fovea, we have designed a rehabilitation protocol called Intelligent Audio Visual Thumble Training (IVATT). A multisensory feedback device Audio Visual Thumble (AVT) is developed for this training. Our findings show that this technique is effective to overcome the audio-spatial bias and can improve the precision towards visual stimuli in peripheral visual field. This work concludes that development of scotoma alters the audio-spatial representation and hence focus of rehabilitation techniques can be extended to bring-in multisensory modalities in order to utilize residual vision of MD individuals.embargoed_20210317XXXII CICLO - BIOINGEGNERIA E ROBOTICA - BIOENGINEERING AND ROBOTICS - Cognitive robotics, interaction and rehabilitation technologies09/C2 - FISICA TECNICA E INGEGNERIA NUCLEAREAhmad, Hafsa

    Refined electrophysiological recording and processing of neural signals from the retina and ascending visual pathways

    Get PDF
    The purpose of this thesis was the development of refined methods for recording and processing of neural signals of the retina and ascending visual pathways. The first chapter describes briefly the fundamentals of the human visual system and the basics of the functional testing of the retina and the visual pathways. The second and third chapters are dedicated to the processing of visual electrophysiological data using the newly developed software ERG Explorer, and present a proposal for an open and standardized data format, ElVisML, for future proof storage of visual electrophysiological data. The fourth chapter describes the development and application of two novel electrodes: First a contact lens electrode for the recording of electrical potentials of the ciliary muscle during accommodation, and second, the marble electrode, which is made of a super-absorbant polymer and allows for a preparation-free recording of visual evoked potentials. Results obtained in studies using the both electrodes are presented. The fifths and last chapter of the thesis presents the results from four studies within the field of visual electrophysiology. The first study examines the ophthalmological assessment of cannabis-induced perception disorder using electrophysiological methods. The second study presents a refined method for the objective assessment of the visual acuity using visual evoked potentials and introduces therefore, a refined stimulus paradigm and a novel method for the analysis of the sweep VEP. The third study presents the results of a newly developed stimulus design for full-field electrophysiology, which allows to assess previously non-recordable electroretinograms. The last study describes a relation of the spatial frequency of a visual stimulus to the amplitudes of visual evoked potentials in comparison to the BOLD response obtained using functional near-infrared spectroscopy and functional magnetic resonance imaging
    corecore