16 research outputs found

    Modeling and Dimensioning of a Virtualized MME for 5G Mobile Networks

    Get PDF
    Network function virtualization is considered one of the key technologies for developing future mobile networks. In this paper, we propose a theoretical framework to evaluate the performance of a Long-Term Evolution (LTE) virtualized mobility management entity (vMME) hosted in a data center. This theoretical framework consists of 1) a queuing network to model the vMME in a data center and 2) analytic expressions to estimate the overall mean system delay and the signaling workload to be processed by the vMME. We validate our mathematical model by simulation. One direct use of the proposed model is vMME dimensioning, i.e., to compute the number of vMME processing instances to provide a target system delay given the number of users in the system. Additionally, the paper includes a scalability analysis of the system. In our study, we consider the billing model and a data center setup of Amazon Elastic Compute Cloud service and estimate the processing time of MME processing instances for different LTE control procedures experimentally. For the considered setup, our results show that the vMME is scalable for signaling workloads up to 37 000 LTE control procedures per second for a target mean system delay of 1 ms. The system design and database performance assumed imposes this limit in the system scalability.This work was supported in part by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (project TIN2013-46223-P) and in part by the Spanish Ministry of Education, Culture, and Sport under FPU Grant 13/04833

    Vehicular Data Cloud Services

    Get PDF
    The advance cloud computing has provided an opportunity to resolve the challenges which effects by increasing transportation issues. Two methods of cloud services are available these are parking and mining. Mobile cloud computing has improved the storage capacity, stand by time of mobile terminals by migrating data processing to the remote cloud. The introduction of smart phones, cloud computing the automotive system is shifting toward the internet of vehicles

    SDN - Architectural Enabler for Reliable Communication over Millimeter-Wave 5G Networks

    Get PDF
    Millimeter-wave (mmWave) frequency bands offer a new frontier for next-generation wireless networks, popularly known as 5G, to enable multi-gigabit communication; however, the availability and reliability of mmWave signals are significantly limited due to its unfavorable propagation characteristics. Thus, mmWave networks rely on directional narrow-beam transmissions to overcome severe path-loss. To mitigate the impact of transmission-reception directionality and provide uninterrupted network services, ensuring the availability of mmWave transmission links is important. In this paper, we proposed a new flexible network architecture to provide efficient resource coordination among serving basestations during user mobility. The key idea of this holistic architecture is to exploit the software-defined networking (SDN) technology with mmWave communication to provide a flexible and resilient network architecture. Besides, this paper presents an efficient and seamless uncoordinated network operation to support reliable communication in highly-dynamic environments characterized by high density and mobility of wireless devices. To warrant high-reliability and guard against the potential radio link failure, we introduce a new transmission framework to ensure that there is at least one basestation is connected to the UE at all times. We validate the proposed transmission scheme through simulations.Comment: This article has been accepted for publication at the IEEE GLOBECOM 2018 Workshops, Abu Dhabi, UAE, 9-13 December 201

    An adaptive scaling mechanism for managing performance variations in network functions virtualization: A case study in an NFV-based EPC

    Get PDF
    The scaling is a fundamental task that allows addressing performance variations in Network Functions Virtualization (NFV). In the literature, several approaches propose scaling mechanisms that differ in the utilized technique (e.g., reactive, predictive and machine learning-based). The scaling in NFV must be accurate both at the time and the number of instances to be scaled, aiming at avoiding unnecessary procedures of provisioning and releasing of resources; however, achieving a high accuracy is a non-trivial task. In this paper, we propose for NFV an adaptive scaling mechanism based on Q-Learning and Gaussian Processes that are utilized by an agent to carry out an improvement strategy of a scaling policy, and therefore, to make better decisions for managing performance variations. We evaluate our mechanism by simulations, in a case study in a virtualized Evolved Packet Core, corroborating that it is more accurate than approaches based on static threshold rules and Q-Learning without a policy improvement strategy

    An Optimization-enhanced MANO for Energy-efficient 5G Networks

    Get PDF
    5G network nodes, fronthaul and backhaul alike, will have both forwarding and computational capabilities. This makes energy-efficient network management more challenging, as decisions such as activating or deactivating a node impact on both the ability of the network to route traffic and the amount of processing it can perform. To this end, we formulate an optimization problem accounting for the main features of 5G nodes and the traffic they serve, allowing joint decisions about (i) the nodes to activate, (ii) the network functions they run, and (iii) the traffic routing. Our optimization module is integrated within the management and orchestration framework of 5G, thus enabling swift and high-quality decisions. We test our scheme with both a real-world testbed based on OpenStack and OpenDaylight, and a large-scale emulated network whose topology and traffic come from a real-world mobile operator, finding it to consistently outperform state-of-the art alternatives and closely match the optimum

    Characterizing Delay and Control Traffic of the Cellular MME with IoT Support

    Get PDF
    One of the main use cases for advanced cellular networks is represented by massive Internet-of-things (MIoT), i.e., an enormous number of IoT devices that transmit data toward the cellular network infrastructure. To make cellular MIoT a reality, data transfer and control procedures specifically designed for the support of IoT are needed. For this reason, 3GPP has introduced the Control Plane Cellular IoT optimization, which foresees a simplified bearer instantiation, with the Mobility Management Entity (MME) handling both control and data traffic. The performance of the MME has therefore become critical, and properly scaling its computational capability can determine the ability of the whole network to tackle MIoT effectively. In particular, considering virtualized networks and the need for an efficient allocation of computing resources, it is paramount to characterize the MME performance as the MIoT traffic load changes. We address this need by presenting compact, closed-form expressions linking the number of IoT sources with the rate at which bearers are requested, and such a rate with the delay incurred by the IoT data. We show that our analysis, supported by testbed experiments and verified through large-scale simulations, represents a valuable tool to make effective scaling decisions in virtualized cellular core networks
    corecore