485 research outputs found

    Optimal Demand Response Strategy in Electricity Markets through Bi-level Stochastic Short-Term Scheduling

    Get PDF
    Current technology in the smart monitoring including Internet of Things (IoT) enables the electricity network at both transmission and distribution levels to apply demand response (DR) programs in order to ensure the secure and economic operation of power systems. Liberalization and restructuring in the power systems industry also empowers demand-side management in an optimum way. The impacts of DR scheduling on the electricity market can be revealed through the concept of DR aggregators (DRAs), being the interface between supply side and demand side. Various markets such as day-ahead and real-time markets are studied for supply-side management and demand-side management from the Independent System Operator (ISO) viewpoint or Distribution System Operator (DSO) viewpoint. To achieve the research goals, single or bi-level optimization models can be developed. The behavior of weather-dependent renewable energy sources, such as wind and photovoltaic power generation as uncertainty sources, is modeled by the Monte-Carlo Simulation method to cope with their negative impact on the scheduling process. Moreover, two-stage stochastic programming is applied in order to minimize the operation cost. The results of this study demonstrate the importance of considering all effective players in the market, such as DRAs and customers, on the operation cost. Moreover, modeling the uncertainty helps network operators to reduce the expenses, enabling a resilient and reliable network.A tecnologia atual na monitorização inteligente, incluindo a Internet of Things (IoT), permite que a rede elétrica ao nível da transporte e distribuição faça uso de programas de demand response (DR) para garantir a operação segura e económica dos sistemas de energia. A liberalização e a reestruturação da indústria dos sistemas de energia elétrica também promovem a gestão do lado da procura de forma otimizada. Os impactes da implementação de DR no mercado elétrico podem ser expressos pelo conceito de agregadores de DR (DRAs), sendo a interface entre o lado da oferta e o lado da procura de energia elétrica. Vários mercados, como os mercados diário e em tempo real, são estudados visando a gestão otimizada do ponto de vista do Independent System Operator (ISO) ou do Distribution System Operator (DSO). Para atingir os objetivos propostos, modelos de otimização em um ou dois níveis podem ser desenvolvidos. O comportamento das fontes de energia renováveis dependentes do clima, como a produção de energia eólica e fotovoltaica que acarretam incerteza, é modelado pelo método de simulação de Monte Carlo. Ainda, two-stage stochastic programming é aplicada para minimizar o custo de operação. Os resultados deste estudo demonstram a importância de considerar todos os participantes efetivos no mercado, como DRAs e clientes finais, no custo de operação. Ainda, considerando a incerteza no modelo beneficia os operadores da rede na redução de custos, capacitando a resiliência e fiabilidade da rede

    Managing power system congestion and residential demand response considering uncertainty

    Get PDF
    Electric power grids are becoming increasingly stressed due to political and environmental difficulties in upgrading transmission capacity. This challenge receives even more interest with the paradigm change of increasing renewable energy sources and demand response (DR) programs. Among DR technologies, existing DR programs are primarily designed for industrial and commercial customers. However, household energy consumption accounts for 38% of total electricity consumption in the U.S., suggesting a significant missed opportunity. This dissertation presents an in-depth study to investigate managing power system congestion and residential DR program under uncertainty.First, an interval optimization model is presented for available transfer capability (ATC) evaluation under uncertainties. The conventional approaches of ATC assessment include deterministic and probabilistic methods. However, the proposed interval optimization model can effectively reduce the accuracy requirements on the renewable forecasting, and lead to acceptable interval results by mitigating the impacts of wind forecasting and modeling errors. Second, a distributed and scalable residential DR program is proposed for reducing the peak load at the utility level. The proposed control approach has the following features: 1) it has a distributed control scheme with limited data exchange among agents to ensure scalability and data privacy, and 2) it reduces the utility peak load and customers’ electricity bills while considering household temperature dynamics and network flow.Third, the impacts of weather and customers’ behavior uncertainties on residential DR are also studied in this dissertation. A new stochastic programming-alternating direction method of multipliers (SP-ADMM) algorithm is proposed to solve problems related to weather and uncertain customer behavior. The case study suggests that the performance of residential DR programs can be further improved by considering these stochastic parameters.Finally, a deep deterministic policy gradient-based (DDPG-based) HVAC control strategy is presented for residential DR programs. Simulation results demonstrate that the DDPG-based approach can considerably reduce system peak load, and it requires much less input information than the model-based methods. Also, it only takes each agent less than 3 seconds to make HVAC control actions. Therefore, the proposed approach is applicable to online controls or the cases where accurate building models or weather forecast information are not available

    Consumer load modeling and fair mechanisms in the efficient transactive energy market

    Get PDF
    Doctor of PhilosophyDepartment of Electrical and Computer EngineeringSanjoy DasTwo significant and closely related issues pertaining to the grid-constrained transactive distribution system market are investigated in this research. At first, the problem of spatial fairness in the allocation of energy among energy consumers is addressed, where consumer agents that are located at large distances from the substation – in terms of grid layout, are charged at higher rates than those close to it. This phenomenon, arising from the grid’s voltage and flow limits is aggravated during demand peaks. Using the Jain’s index to quantify fairness, two auction mechanisms are proposed. Both approaches are bilevel, with aggregators acting as interface agents between the consumers and the upstream distribution system operator (DSO). Furthermore, in spite of maximizing social welfare, neither mechanism makes use of the agents’ utility functions. The first mechanism is cost-setting, with the DSO determining unit costs. It implements the Jain’s index as a second term to the social welfare. Next, a power setting auction mechanism is put forth where the DSO’s role is to allocate energy in response to market equilibrium unit costs established at each aggregator from an iterative bidding process among its consumers. The Augmented Lagrangian Multigradient Approach (ALMA), which is based on vector gradient descent, is proposed in this research for implementation at the upper level. The mechanism’s lower level comprises of multiple auctions realized by the aggregators. The quasi-concavity of the Jain’s index is theoretically established, and it has been shown that ALMA converges to the Pareto front representing tradeoffs between social welfare and fairness. The effectiveness of both mechanisms is established through simulations carried out using a modified IEEE 37-bus system platform. The issue of extracting patterns of energy usage from time series energy use profiles of individual consumers is the focus of the second phase of this research. Two novel approaches for non-intrusive load disaggregation based on non-negative matrix factorization (NMF), are proposed. Both algorithms distinguish between fixed and shiftable load classes, with the latter being characterized by binary OFF and ON cycles. Fixed loads are represented as linear combinations of a set of basis vectors that are learned by NMF. One approach imposes L0 normed constraints on each shiftable load using a new method called binary load decomposition. The other approach models shiftable loads as Gaussian mixture models (GMM), therefore using expectation-maximization for unsupervised learning. This hybrid NMF-GMM algorithm enjoys the theoretical advantage of being interpretable as a maximum-likelihood procedure within a probabilistic framework. Numerical studies with real load profiles demonstrate that both algorithms can effectively disaggregate total loads into energy used by individual appliances. Using disaggregated loads, a maximum-margin regression approach to derive more elaborate, temperature-dependent utility functions of the consumers, is proposed. The research concludes by identifying the various ways gleaning such information can lead to more effective auction mechanisms for multi-period operation

    Renewable energy sources offering flexibility through electricity markets

    Get PDF

    Dynamic tariffs-based demand response in retail electricity market under uncertainty

    Full text link
    Demand response (DR) programs play a crucial role in improving system reliability and mitigating price volatility by altering the core profile of electricity consumption. This paper proposes a game-theoretical model that captures the dynamic interplay between retailers (leaders) and consumers (followers) in a tariffs-based electricity market under uncertainty. The proposed procedure offers theoretical and economic insights by analyzing demand flexibility within a hierarchical decision-making framework. In particular, two main market configurations are examined under uncertainty: i) there exists a retailer that exercises market power over consumers, and ii) the retailer and the consumers participate in a perfect competitive game. The former case is formulated as a mathematical program with equilibrium constraints (MPEC), whereas the latter case is recast as a mixed-integer linear program (MILP). These problems are solved by deriving equivalent tractable reformulations based on the Karush-Kuhn-Tucker (KKT) optimality conditions of each agent's problem. Numerical simulations based on real data from the European Energy Exchange platform are used to illustrate the performance of the proposed methodology. The results indicate that the proposed model effectively characterizes the interactions between retailers and flexible consumers in both perfect and imperfect market structures. Under perfect competition, the economic benefits extend not only to consumers but also to overall social welfare. Conversely, in an imperfect market, retailers leverage consumer flexibility to enhance their expected profits, transferring the risk of uncertainty to end-users. Additionally, the degree of consumer flexibility and their valuation of electricity consumption play significant roles in shaping market outcomes.Comment: 3
    corecore