4,211 research outputs found

    Non-Invasive Induction Link Model for Implantable Biomedical Microsystems: Pacemaker to Monitor Arrhythmic Patients in Body Area Networks

    Full text link
    In this paper, a non-invasive inductive link model for an Implantable Biomedical Microsystems (IBMs) such as, a pacemaker to monitor Arrhythmic Patients (APs) in Body Area Networks (BANs) is proposed. The model acts as a driving source to keep the batteries charged, inside a device called, pacemaker. The device monitors any drift from natural human heart beats, a condition of arrythmia and also in turn, produces electrical pulses that create forced rhythms that, matches with the original normal heart rhythms. It constantly sends a medical report to the health center to keep the medical personnel aware of the patient's conditions and let them handle any critical condition, before it actually happens. Two equivalent models are compared by carrying the simulations, based on the parameters of voltage gain and link efficiency. Results depict that the series tuned primary and parallel tuned secondary circuit achieves the best results for both the parameters, keeping in view the constraint of coupling co-efficient (k), which should be less than a value \emph{0.45} as, desirable for the safety of body tissues.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc

    A comprehensive survey of wireless body area networks on PHY, MAC, and network layers solutions

    Get PDF
    Recent advances in microelectronics and integrated circuits, system-on-chip design, wireless communication and intelligent low-power sensors have allowed the realization of a Wireless Body Area Network (WBAN). A WBAN is a collection of low-power, miniaturized, invasive/non-invasive lightweight wireless sensor nodes that monitor the human body functions and the surrounding environment. In addition, it supports a number of innovative and interesting applications such as ubiquitous healthcare, entertainment, interactive gaming, and military applications. In this paper, the fundamental mechanisms of WBAN including architecture and topology, wireless implant communication, low-power Medium Access Control (MAC) and routing protocols are reviewed. A comprehensive study of the proposed technologies for WBAN at Physical (PHY), MAC, and Network layers is presented and many useful solutions are discussed for each layer. Finally, numerous WBAN applications are highlighted

    Distance Aware Relaying Energy-efficient: DARE to Monitor Patients in Multi-hop Body Area Sensor Networks

    Full text link
    In recent years, interests in the applications of Wireless Body Area Sensor Network (WBASN) is noticeably developed. WBASN is playing a significant role to get the real time and precise data with reduced level of energy consumption. It comprises of tiny, lightweight and energy restricted sensors, placed in/on the human body, to monitor any ambiguity in body organs and measure various biomedical parameters. In this study, a protocol named Distance Aware Relaying Energy-efficient (DARE) to monitor patients in multi-hop Body Area Sensor Networks (BASNs) is proposed. The protocol operates by investigating the ward of a hospital comprising of eight patients, under different topologies by positioning the sink at different locations or making it static or mobile. Seven sensors are attached to each patient, measuring different parameters of Electrocardiogram (ECG), pulse rate, heart rate, temperature level, glucose level, toxins level and motion. To reduce the energy consumption, these sensors communicate with the sink via an on-body relay, affixed on the chest of each patient. The body relay possesses higher energy resources as compared to the body sensors as, they perform aggregation and relaying of data to the sink node. A comparison is also conducted conducted with another protocol of BAN named, Mobility-supporting Adaptive Threshold-based Thermal-aware Energy-efficient Multi-hop ProTocol (M-ATTEMPT). The simulation results show that, the proposed protocol achieves increased network lifetime and efficiently reduces the energy consumption, in relative to M-ATTEMPT protocol.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc

    Physical Multi-Layer Phantoms for Intra-Body Communications

    Full text link
    This paper presents approaches to creating tissue mimicking materials that can be used as phantoms for evaluating the performance of Body Area Networks (BAN). The main goal of the paper is to describe a methodology to create a repeatable experimental BAN platform that can be customized depending on the BAN scenario under test. Comparisons between different material compositions and percentages are shown, along with the resulting electrical properties of each mixture over the frequency range of interest for intra-body communications; 100 KHz to 100 MHz. Test results on a composite multi-layer sample are presented confirming the efficacy of the proposed methodology. To date, this is the first paper that provides guidance on how to decide on concentration levels of ingredients, depending on the exact frequency range of operation, and the desired matched electrical characteristics (conductivity vs. permittivity), to create multi-layer phantoms for intra-body communication applications

    THE-FAME: THreshold based Energy-efficient FAtigue MEasurment for Wireless Body Area Sensor Networks using Multiple Sinks

    Full text link
    Wireless Body Area Sensor Network (WBASN) is a technology employed mainly for patient health monitoring. New research is being done to take the technology to the next level i.e. player's fatigue monitoring in sports. Muscle fatigue is the main cause of player's performance degradation. This type of fatigue can be measured by sensing the accumulation of lactic acid in muscles. Excess of lactic acid makes muscles feel lethargic. Keeping this in mind we propose a protocol \underline{TH}reshold based \underline{E}nergy-efficient \underline{FA}tigue \underline{ME}asurement (THE-FAME) for soccer players using WBASN. In THE-FAME protocol, a composite parameter has been used that consists of a threshold parameter for lactic acid accumulation and a parameter for measuring distance covered by a particular player. When any parameters's value in this composite parameter shows an increase beyond threshold, the players is declared to be in a fatigue state. The size of battery and sensor should be very small for the sake of players' best performance. These sensor nodes, implanted inside player's body, are made energy efficient by using multiple sinks instead of a single sink. Matlab simulation results show the effectiveness of THE-FAME.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc

    On-Body Channel Measurement Using Wireless Sensors

    Get PDF
    © 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.This post-acceptance version of the paper is essentially complete, but may differ from the official copy of record, which can be found at the following web location (subscription required to access full paper): http://dx.doi.org/10.1109/TAP.2012.219693

    Exploring Physiological Parameters in Dynamic WBAN Channels

    Get PDF
    corecore