50 research outputs found

    X-band synthetic aperture radar methods

    Get PDF
    Spaceborne Synthetic Aperture Radars (SARs), operating at L-band and above, offer microwave observations of the Earth at very high spatial resolution in almost all-weather conditions. Nevertheless, precipitating clouds can significantly affect the signal backscattered from the ground surface in both amplitude and phase, especially at X band and beyond. This evidence has been assessed by numerous recent efforts analyzing data collected by COSMO-SkyMed (CSK) and TerraSAR-X (TSX) missions at X band. This sensitivity can be exploited to detect and quantify precipitations from SARs at the spatial resolution of a few hundred meters, a very appealing feature considering the current resolution of precipitation products from space. Forward models of SAR response in the presence of precipitation have been developed for analyzing SAR signature sensitivity and developing rainfall retrieval algorithms. Precipitation retrieval algorithms from SARs have also been proposed on a semi-empirical basis. This chapter will review experimental evidences, modelling approaches, retrieval methods and recent applications of X-band SAR data to rainfall estimation

    Initial assessment of an airborne Ku-band polarimetric SAR.

    Full text link

    Potential of X-Band Images from High-Resolution Satellite SAR Sensors to Assess Growth and Yield in Paddy Rice

    Get PDF
    The comprehensive relationship of backscattering coefficient (σ0) values from two current X-band SAR sensors (COSMO-SkyMed and TerraSAR-X) with canopy biophysical variables were investigated using the SAR images acquired at VV polarization and shallow incidence angles. The difference and consistency of the two sensors were also examined. The chrono-sequential change of σ0 in rice paddies during the transplanting season revealed that σ0 reached the value of nearby water surfaces a day before transplanting, and increased significantly just after transplanting event (3 dB). Despite a clear systematic shift (6.6 dB) between the two sensors, the differences in σ0 between target surfaces and water surfaces in each image were comparable in both sensors. Accordingly, an image-based approach using the “water-point” was proposed. It would be useful especially when absolute σ0 values are not consistent between sensors and/or images. Among the various canopy variables, the panicle biomass was found to be best correlated with X-band σ0. X-band SAR would be promising for direct assessments of rice grain yields at regional scales from space, whereas it would have limited capability to assess the whole-canopy variables only during the very early growth stages. The results provide a clear insight on the potential capability of X-band SAR sensors for rice monitoring

    Theoretical modeling of dual-frequency scatterometer response: improving ocean wind and rainfall effects

    Get PDF
    Ocean surface wind is a key parameter of the Earth’s climate system. Occurring at the interface between the ocean and the atmosphere, ocean winds modulate fluxes of heat, moisture and gas exchanges. They reflect the lower branch of the atmospheric circulation and represent a major driver of the ocean circulation. Studying the long-term trends and variability of the ocean surface winds is of key importance in our effort to understand the Earth’s climate system and the causes of its changes. More than three decades of surface wind data are available from spaceborne scatterometer/radiometer missions and there is an ongoing effort to inter-calibrate all these measurements with the aim of building a complete and continuous picture of the ocean wind variability. Currently, spaceborne scatterometer wind retrievals are obtained by inversion algorithms of empirical Geophysical Model Functions (GMFs), which represent the relationship between ocean surface backscattering coefficient and the wind parameters. However, by being measurement-dependent, the GMFs are sensor-specific and, in addition, they may be not properly defined in all weather conditions. This may reduce the accuracy of the wind retrievals in presence of rain and it may also lead to inconsistencies amongst winds retrieved by different sensors. Theoretical models of ocean backscatter have the big potential of providing a more general and understandable relation between the measured microwave backscatter and the surface wind field than empirical models. Therefore, the goal of our research is to understand and address the limitations of the theoretical modeling, in order to propose a new strategy towards the definition of a unified theoretical model able to account for the effects of both wind and rain. In this work, it is described our approach to improve the theoretical modeling of the ocean response, starting from the Ku-band (13.4 GHz) frequency and then broadening the analysis at C-band (5.3 GHz) frequency. This research has revealed the need for new understanding of the frequency-dependent modeling of the surface backscatter in response to the wind-forced surface wave spectrum. Moreover, our ocean wave spectrum modification introduced to include the influences of the surface rain, allows the interpretation/investigation of the scatterometer observations in terms not only of the surface winds but also of the surface rain, defining an additional step needed to improve the wind retrievals algorithms as well as the possibility to jointly estimate wind and rain from scatterometer observations

    Global Precipitation Measurement Cold Season Precipitation Experiment (GCPEx): For Measurement Sake Let it Snow

    Get PDF
    As a component of the Earth's hydrologic cycle, and especially at higher latitudes,falling snow creates snow pack accumulation that in turn provides a large proportion of the fresh water resources required by many communities throughout the world. To assess the relationships between remotely sensed snow measurements with in situ measurements, a winter field project, termed the Global Precipitation Measurement (GPM) mission Cold Season Precipitation Experiment (GCPEx), was carried out in the winter of 2011-2012 in Ontario, Canada. Its goal was to provide information on the precipitation microphysics and processes associated with cold season precipitation to support GPM snowfall retrieval algorithms that make use of a dual-frequency precipitation radar and a passive microwave imager on board the GPM core satellite,and radiometers on constellation member satellites. Multi-parameter methods are required to be able to relate changes in the microphysical character of the snow to measureable parameters from which precipitation detection and estimation can be based. The data collection strategy was coordinated, stacked, high-altitude and in-situ cloud aircraft missions with three research aircraft sampling within a broader surface network of five ground sites taking in-situ and volumetric observations. During the field campaign 25 events were identified and classified according to their varied precipitation type, synoptic context, and precipitation amount. Herein, the GCPEx fieldcampaign is described and three illustrative cases detailed

    Earth Resources: A continuing bibliography with indexes, issue 33

    Get PDF
    This bibliography list 436 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution sytems, instrumentation and sensors, and economic analysis

    Monitoring permafrost environments with Synthetic Aperture Radar (SAR) sensors

    Get PDF
    Permafrost occupies approximately 24% of the exposed land area in the Northern Hemisphere. It is an important element of the cryosphere and has strong impacts on hydrology, biological processes, land surface energy budget, and infrastructure. For several decades, surface air temperatures in the high northern latitudes have warmed at approximately twice the global rate. Permafrost temperatures have increased in most regions since the early 1980s, the averaged warming north of 60°N has been 1-2°C. In-situ measurements are essential to understanding physical processes in permafrost terrain, but they have several limitations, ranging from difficulties in drilling to the representativeness of limited single point measurements. Remote sensing is urgently needed to supplement ground-based measurements and extend the point observations to a broader spatial domain. This thesis concentrates on the sub-arctic permafrost environment monitoring with SAR datasets. The study site is selected in a typical discontinuous permafrost region in the eastern Canadian sub-Arctic. Inuit communities in Nunavik and Nunatsiavut in the Canadian eastern sub-arctic are amongst the groups most affected by the impacts of climate change and permafrost degradation. Synthetic Aperture Radar (SAR) datasets have advantages for permafrost monitoring in the Arctic and sub-arctic regions because of its high resolution and independence of cloud cover and solar illumination. To date, permafrost environment monitoring methods and strategies with SAR datasets are still under development. The variability of active layer thickness is a direct indication of permafrost thermal state changes. The Differential SAR Interferometry (D-InSAR) technique is applied in the study site to derive ground deformation, which is introduced by the thawing/freezing depth of active layer and underlying permafrost. The D-InSAR technique has been used for the mapping of ground surface deformation over large areas by interpreting the phase difference between two signals acquired at different times as ground motion information. It shows the ability to detect freeze/thaw-related ground motion over permafrost regions. However, to date, accuracy and value assessments of D-InSAR applications have focused mostly on the continuous permafrost region where the vegetation is less developed and causes fewer complicating factors for the D-InSAR application, less attention is laid on the discontinuous permafrost terrain. In this thesis, the influencing factors and application conditions for D-InSAR in the discontinuous permafrost environment are evaluated by using X- band and L-band data. Then, benefit from by the high-temporal resolution of C-band Sentinel-1 time series, the seasonal displacement is derived from small baseline subsets (SBAS)-InSAR. Landforms are indicative of permafrost presence, with their changes inferring modifications to permafrost conditions. A permafrost landscape mapping method was developed which uses multi-temporal TerraSAR-X backscatter intensity and interferometric coherence information. The land cover map is generated through the combined use of object-based image analysis (OBIA) and classification and regression tree analysis (CART). An overall accuracy of 98% is achieved when classifying rock and water bodies, and an accuracy of 79% is achieved when discriminating between different vegetation types with one year of single-polarized acquisitions. This classification strategy can be transferred to other time-series SAR datasets, e.g., Sentinel-1, and other heterogeneous environments. One predominant change in the landscape tied to the thaw of permafrost is the dynamics of thermokarst lakes. Dynamics of thermokarst lakes are developed through their lateral extent and vertical depth changes. Due to different water depth, ice cover over shallow thermokarst ponds/lakes can freeze completely to the lake bed in winter, resulting in grounded ice; while ice cover over deep thermokarst ponds/lakes cannot, which have liquid water persisting under the ice cover all winter, resulting in floating ice. Winter ice cover regimes are related to water depths and ice thickness. In the lakes having floating ice, the liquid water induces additional heat in the remaining permafrost underneath and surroundings, which contributes to further intensified permafrost thawing. SAR datasets are utilized to detect winter ice cover regimes based on the character that liquid water has a remarkably high dielectric constant, whereas pure ice has a low value. Patterns in the spatial distribution of ice-cover regimes of thermokarst ponds in a typical discontinuous permafrost region are first revealed. Then, the correlations of these ice-cover regimes with the permafrost degradation states and thermokarst pond development in two historical phases (Sheldrake catchment in the year 1957 and 2009, Tasiapik Valley 1994 and 2010) were explored. The results indicate that the ice-cover regimes of thermokarst ponds are affected by soil texture, permafrost degradation stage and permafrost depth. Permafrost degradation is difficult to directly assess from the coverage area of floating-ice ponds and the percentage of all thermokarst ponds consisting of such floating-ice ponds in a single year. Continuous monitoring of ice-cover regimes and surface areas is recommended to elucidate the hydrological trajectory of the thermokarst process. Several operational monitoring methods have been developed in this thesis work. In the meanwhile, the spatial distribution of seasonal ground thaw subsidence, permafrost landscape, thermokarst ponds and their winter ice cover regimes are first revealed in the study area. The outcomes help understand the state and dynamics of permafrost environment.Der Permafrostboden bedeckt etwa 24% der exponierten LandflĂ€che in der nördlichen HemisphĂ€re. Es ist ein wichtiges Element der KryosphĂ€re und hat starke Auswirkungen auf die Hydrologie, die biologischen Prozesse, das Energie-Budget der LandoberflĂ€che und die Infrastruktur. Seit mehreren Jahrzehnten erhöhen sich die OberflĂ€chenlufttemperaturen in den nördlichen hohen Breitengraden etwa doppelt so stark wie die globale Rate. Die Temperaturen der Permafrostböden sind in den meisten Regionen seit den frĂŒhen 1980er Jahren gestiegen. Die durchschnittliche ErwĂ€rmung nördlich von 60° N betrĂ€gt 1-2°C. In-situ-Messungen sind essentiell fĂŒr das VerstĂ€ndnis der physischen Prozesse im PermafrostgelĂ€nde. Es gibt jedoch mehrere EinschrĂ€nkungen, die von Schwierigkeiten beim Bohren bis hin zur ReprĂ€sentativitĂ€t begrenzter Einzelpunktmessungen reichen. Fernerkundung ist dringend benötigt, um bodenbasierte Messungen zu ergĂ€nzen und punktuelle Beobachtungen auf einen breiteren rĂ€umlichen Bereich auszudehnen. Diese Dissertation konzentriert sich auf die Umweltbeobachtung der subarktischen Permafrostböden mit SAR-DatensĂ€tzen. Das Untersuchungsgebiet wurde in einer typischen diskontinuierlichen Permafrostzone in der kanadischen östlichen Sub-Arktis ausgewĂ€hlt. Die Inuit-Gemeinschaften in den Regionen Nunavik und Nunatsiavut in der kanadischen östlichen Sub-Arktis gehören zu den Gruppen, die am stĂ€rksten von den Auswirkungen des Klimawandels und Permafrostdegradation betroffen sind. Synthetische Apertur Radar (SAR) DatensĂ€tze haben Vorteile fĂŒr das Permafrostmonitoring in den arktischen und subarktischen Regionen aufgrund der hohen Auflösung und der UnabhĂ€ngigkeit von Wolkendeckung und Sonnenstrahlung. Bis heute sind die Methoden und Strategien mit SAR-DatensĂ€tzen fĂŒr Umweltbeobachtung der Permafrostböden noch in der Entwicklung. Die VariabilitĂ€t der Auftautiefe der aktiven Schicht ist eine direkte Indikation der VerĂ€nderung des thermischen Zustands der Permafrostböden. Die Differential-SAR-Interferometrie(D-Insar)-Technik wird im Untersuchungsgebiet zur Ableitung der Bodendeformation, die durch Auftau- / und Gefriertiefe der aktiven Schicht und des unterliegenden Permafrostbodens eingefĂŒhrt wird, eingesetzt. Die D-InSAR-Technik wurde fĂŒr Kartierung der LandoberflĂ€chendeformation ĂŒber große FlĂ€chen verwendet, indem der Phasenunterschied zwischen zwei zu verschiedenen Zeitpunkten als Bodenbewegungsinformation erfassten Signalen interpretiert wurde. Es zeigt die FĂ€higkeit, tau- und gefrierprozessbedingte Bodenbewegungen ĂŒber Permafrostregionen zu detektieren. Jedoch fokussiert sich die Genauigkeit und WertschĂ€tzung der D-InSAR-Anwendung bis heute hauptsĂ€chlich auf kontinuierliche Permafrostregion, wo die Vegetation wenig entwickelt ist und weniger komplizierte Faktoren fĂŒr D-InSAR-Anwendung verursacht. Das diskontinuierliche PermafrostgelĂ€nde wurde nur weniger berĂŒcksichtigt. In dieser Dissertation wurden die Einflussfaktoren und Anwendungsbedingungen fĂŒr D-InSAR im diskontinuierlichen Permafrostgebiet mittels X-Band und L-Band Daten ausgewertet. Dann wurde die saisonale Verschiebung dank der hohen Auflösung der C-Band Sentinel-1 Zeitreihe von „Small Baseline Subsets (SBAS)-InSAR“ abgeleitet. Landformen weisen auf die PrĂ€senz des Permafrosts hin, wobei deren VerĂ€nderungen auf die Modifikation der Permafrostbedingungen schließen. Eine Kartierungsmethode der Permafrostlandschaft wurde entwickelt, dabei wurde Multi-temporal TerraSAR-X RĂŒckstreuungsintensitĂ€t und interferometrische KohĂ€renzinformationen verwendet. Die Landbedeckungskarte wurde durch kombinierte Anwendung objektbasierter Bildanalyse (OBIA) und Klassifikations- und Regressionsbaum Analyse (CART) generiert. Eine Gesamtgenauigkeit in Höhe von 98% wurde bei Klassifikation der Gesteine und Wasserkörper erreicht. Bei Unterscheidung zwischen verschiedenen Vegetationstypen mit einem Jahr einzelpolarisierte Akquisitionen wurde eine Genauigkeit von 79% erreicht. Diese Klassifikationsstrategie kann auf andere Zeitreihen der SAR-DatensĂ€tzen, z.B. Sentinel-1, und auch anderen heterogenen Umwelten ĂŒbertragen werden. Eine vorherrschende VerĂ€nderung in der Landschaft, die mit dem Auftauen des Permafrosts verbunden ist, ist die Dynamik der Thermokarstseen. Die Dynamik der Thermokarstseen ist durch VerĂ€nderungen der seitlichen Ausdehnung und der vertikalen Tiefe entwickelt. Aufgrund der unterschiedlichen Wassertiefen kann die Eisdecke ĂŒber den flachen Thermokarstteichen/-seen im Winter bis auf den Wasserboden vollstĂ€ndig gefroren sein, was zum geerdeten Eis fĂŒhrt, wĂ€hrend die Eisdecke ĂŒber den tiefen Thermokarstteichen/-seen es nicht kann. In den tiefen Thermokarstteichen/-seen bleibt den ganzen Winter flĂŒssiges Wasser unter der Eisdecke bestehen, was zum Treibeis fĂŒhrt. Das Wintereisdeckenregime bezieht sich auf die Wassertiefe und die Eisdicke. In den Seen mit Treibeis leitet das flĂŒssige Wasser zusĂ€tzliche WĂ€rme in den restlichen Permafrost darunter oder in der Umgebung, was zur weiteren VerstĂ€rkung des Permafrostauftauen beitrĂ€gt. Basiert auf den Charakter, dass das flĂŒssige Wasser eine bemerkenswert hohe DielektrizitĂ€tskonstante besitzt, wĂ€hrend reines Eis einen niedrigen Wert hat, wurden die SAR DatensĂ€tzen zur Erkennung des Wintereisdeckenregimes verwendet. ZunĂ€chst wurden Schemen in der rĂ€umlichen Verteilung der Eisdeckenregimes der Thermokarstteiche in einer typischen diskontinuierlichen Permafrostregion abgeleitet. Dann wurden die ZusammenhĂ€nge dieser Eisdeckenregimes mit dem Degradationszustand des Permafrosts und der Entwicklung der Thermokarstteiche in zwei historischen Phasen (Sheldrake Einzugsgebiet in 1957 und 2009, Tasiapik Tal in 1994 und 2010) erforscht. Die Ergebnisse deuten darauf, dass die Eisdeckenregimes der Thermokarstteiche von der Bodenart, dem Degradationszustand des Permafrosts und der Permafrosttiefe beeinflusst werden. Es ist schwer, die Permafrostdegradation in einem einzelnen Jahr direkt durch den Abdeckungsbereich der Treibeis-Teiche und die Prozentzahl aller aus solchen Treibeis-Teichen bestehenden Thermokarstteiche abzuschĂ€tzen. Ein kontinuierliches Monitoring der Eisdeckenregimes und -oberflĂ€chen ist empfehlenswert, um den hydrologischen Verlauf des Thermokarstprozesses zu erlĂ€utern. In dieser Dissertation wurden mehrere operativen Monitoringsmethoden entwickelt. In der Zwischenzeit wurden die rĂ€umliche Verteilung der saisonalen Bodentauabsenkung, die Permafrostlandschaft, die Thermokarstteiche und ihre Wintereisdeckenregimes erstmals in diesem Untersuchungsgebiet aufgedeckt. Die Ergebnisse tragen dazu bei, den Zustand und die Dynamik der Permafrostumwelt zu verstehen

    Monitoring permafrost environments with Synthetic Aperture Radar (SAR) sensors

    Get PDF
    Permafrost occupies approximately 24% of the exposed land area in the Northern Hemisphere. It is an important element of the cryosphere and has strong impacts on hydrology, biological processes, land surface energy budget, and infrastructure. For several decades, surface air temperatures in the high northern latitudes have warmed at approximately twice the global rate. Permafrost temperatures have increased in most regions since the early 1980s, the averaged warming north of 60°N has been 1-2°C. In-situ measurements are essential to understanding physical processes in permafrost terrain, but they have several limitations, ranging from difficulties in drilling to the representativeness of limited single point measurements. Remote sensing is urgently needed to supplement ground-based measurements and extend the point observations to a broader spatial domain. This thesis concentrates on the sub-arctic permafrost environment monitoring with SAR datasets. The study site is selected in a typical discontinuous permafrost region in the eastern Canadian sub-Arctic. Inuit communities in Nunavik and Nunatsiavut in the Canadian eastern sub-arctic are amongst the groups most affected by the impacts of climate change and permafrost degradation. Synthetic Aperture Radar (SAR) datasets have advantages for permafrost monitoring in the Arctic and sub-arctic regions because of its high resolution and independence of cloud cover and solar illumination. To date, permafrost environment monitoring methods and strategies with SAR datasets are still under development. The variability of active layer thickness is a direct indication of permafrost thermal state changes. The Differential SAR Interferometry (D-InSAR) technique is applied in the study site to derive ground deformation, which is introduced by the thawing/freezing depth of active layer and underlying permafrost. The D-InSAR technique has been used for the mapping of ground surface deformation over large areas by interpreting the phase difference between two signals acquired at different times as ground motion information. It shows the ability to detect freeze/thaw-related ground motion over permafrost regions. However, to date, accuracy and value assessments of D-InSAR applications have focused mostly on the continuous permafrost region where the vegetation is less developed and causes fewer complicating factors for the D-InSAR application, less attention is laid on the discontinuous permafrost terrain. In this thesis, the influencing factors and application conditions for D-InSAR in the discontinuous permafrost environment are evaluated by using X- band and L-band data. Then, benefit from by the high-temporal resolution of C-band Sentinel-1 time series, the seasonal displacement is derived from small baseline subsets (SBAS)-InSAR. Landforms are indicative of permafrost presence, with their changes inferring modifications to permafrost conditions. A permafrost landscape mapping method was developed which uses multi-temporal TerraSAR-X backscatter intensity and interferometric coherence information. The land cover map is generated through the combined use of object-based image analysis (OBIA) and classification and regression tree analysis (CART). An overall accuracy of 98% is achieved when classifying rock and water bodies, and an accuracy of 79% is achieved when discriminating between different vegetation types with one year of single-polarized acquisitions. This classification strategy can be transferred to other time-series SAR datasets, e.g., Sentinel-1, and other heterogeneous environments. One predominant change in the landscape tied to the thaw of permafrost is the dynamics of thermokarst lakes. Dynamics of thermokarst lakes are developed through their lateral extent and vertical depth changes. Due to different water depth, ice cover over shallow thermokarst ponds/lakes can freeze completely to the lake bed in winter, resulting in grounded ice; while ice cover over deep thermokarst ponds/lakes cannot, which have liquid water persisting under the ice cover all winter, resulting in floating ice. Winter ice cover regimes are related to water depths and ice thickness. In the lakes having floating ice, the liquid water induces additional heat in the remaining permafrost underneath and surroundings, which contributes to further intensified permafrost thawing. SAR datasets are utilized to detect winter ice cover regimes based on the character that liquid water has a remarkably high dielectric constant, whereas pure ice has a low value. Patterns in the spatial distribution of ice-cover regimes of thermokarst ponds in a typical discontinuous permafrost region are first revealed. Then, the correlations of these ice-cover regimes with the permafrost degradation states and thermokarst pond development in two historical phases (Sheldrake catchment in the year 1957 and 2009, Tasiapik Valley 1994 and 2010) were explored. The results indicate that the ice-cover regimes of thermokarst ponds are affected by soil texture, permafrost degradation stage and permafrost depth. Permafrost degradation is difficult to directly assess from the coverage area of floating-ice ponds and the percentage of all thermokarst ponds consisting of such floating-ice ponds in a single year. Continuous monitoring of ice-cover regimes and surface areas is recommended to elucidate the hydrological trajectory of the thermokarst process. Several operational monitoring methods have been developed in this thesis work. In the meanwhile, the spatial distribution of seasonal ground thaw subsidence, permafrost landscape, thermokarst ponds and their winter ice cover regimes are first revealed in the study area. The outcomes help understand the state and dynamics of permafrost environment.Der Permafrostboden bedeckt etwa 24% der exponierten LandflĂ€che in der nördlichen HemisphĂ€re. Es ist ein wichtiges Element der KryosphĂ€re und hat starke Auswirkungen auf die Hydrologie, die biologischen Prozesse, das Energie-Budget der LandoberflĂ€che und die Infrastruktur. Seit mehreren Jahrzehnten erhöhen sich die OberflĂ€chenlufttemperaturen in den nördlichen hohen Breitengraden etwa doppelt so stark wie die globale Rate. Die Temperaturen der Permafrostböden sind in den meisten Regionen seit den frĂŒhen 1980er Jahren gestiegen. Die durchschnittliche ErwĂ€rmung nördlich von 60° N betrĂ€gt 1-2°C. In-situ-Messungen sind essentiell fĂŒr das VerstĂ€ndnis der physischen Prozesse im PermafrostgelĂ€nde. Es gibt jedoch mehrere EinschrĂ€nkungen, die von Schwierigkeiten beim Bohren bis hin zur ReprĂ€sentativitĂ€t begrenzter Einzelpunktmessungen reichen. Fernerkundung ist dringend benötigt, um bodenbasierte Messungen zu ergĂ€nzen und punktuelle Beobachtungen auf einen breiteren rĂ€umlichen Bereich auszudehnen. Diese Dissertation konzentriert sich auf die Umweltbeobachtung der subarktischen Permafrostböden mit SAR-DatensĂ€tzen. Das Untersuchungsgebiet wurde in einer typischen diskontinuierlichen Permafrostzone in der kanadischen östlichen Sub-Arktis ausgewĂ€hlt. Die Inuit-Gemeinschaften in den Regionen Nunavik und Nunatsiavut in der kanadischen östlichen Sub-Arktis gehören zu den Gruppen, die am stĂ€rksten von den Auswirkungen des Klimawandels und Permafrostdegradation betroffen sind. Synthetische Apertur Radar (SAR) DatensĂ€tze haben Vorteile fĂŒr das Permafrostmonitoring in den arktischen und subarktischen Regionen aufgrund der hohen Auflösung und der UnabhĂ€ngigkeit von Wolkendeckung und Sonnenstrahlung. Bis heute sind die Methoden und Strategien mit SAR-DatensĂ€tzen fĂŒr Umweltbeobachtung der Permafrostböden noch in der Entwicklung. Die VariabilitĂ€t der Auftautiefe der aktiven Schicht ist eine direkte Indikation der VerĂ€nderung des thermischen Zustands der Permafrostböden. Die Differential-SAR-Interferometrie(D-Insar)-Technik wird im Untersuchungsgebiet zur Ableitung der Bodendeformation, die durch Auftau- / und Gefriertiefe der aktiven Schicht und des unterliegenden Permafrostbodens eingefĂŒhrt wird, eingesetzt. Die D-InSAR-Technik wurde fĂŒr Kartierung der LandoberflĂ€chendeformation ĂŒber große FlĂ€chen verwendet, indem der Phasenunterschied zwischen zwei zu verschiedenen Zeitpunkten als Bodenbewegungsinformation erfassten Signalen interpretiert wurde. Es zeigt die FĂ€higkeit, tau- und gefrierprozessbedingte Bodenbewegungen ĂŒber Permafrostregionen zu detektieren. Jedoch fokussiert sich die Genauigkeit und WertschĂ€tzung der D-InSAR-Anwendung bis heute hauptsĂ€chlich auf kontinuierliche Permafrostregion, wo die Vegetation wenig entwickelt ist und weniger komplizierte Faktoren fĂŒr D-InSAR-Anwendung verursacht. Das diskontinuierliche PermafrostgelĂ€nde wurde nur weniger berĂŒcksichtigt. In dieser Dissertation wurden die Einflussfaktoren und Anwendungsbedingungen fĂŒr D-InSAR im diskontinuierlichen Permafrostgebiet mittels X-Band und L-Band Daten ausgewertet. Dann wurde die saisonale Verschiebung dank der hohen Auflösung der C-Band Sentinel-1 Zeitreihe von „Small Baseline Subsets (SBAS)-InSAR“ abgeleitet. Landformen weisen auf die PrĂ€senz des Permafrosts hin, wobei deren VerĂ€nderungen auf die Modifikation der Permafrostbedingungen schließen. Eine Kartierungsmethode der Permafrostlandschaft wurde entwickelt, dabei wurde Multi-temporal TerraSAR-X RĂŒckstreuungsintensitĂ€t und interferometrische KohĂ€renzinformationen verwendet. Die Landbedeckungskarte wurde durch kombinierte Anwendung objektbasierter Bildanalyse (OBIA) und Klassifikations- und Regressionsbaum Analyse (CART) generiert. Eine Gesamtgenauigkeit in Höhe von 98% wurde bei Klassifikation der Gesteine und Wasserkörper erreicht. Bei Unterscheidung zwischen verschiedenen Vegetationstypen mit einem Jahr einzelpolarisierte Akquisitionen wurde eine Genauigkeit von 79% erreicht. Diese Klassifikationsstrategie kann auf andere Zeitreihen der SAR-DatensĂ€tzen, z.B. Sentinel-1, und auch anderen heterogenen Umwelten ĂŒbertragen werden. Eine vorherrschende VerĂ€nderung in der Landschaft, die mit dem Auftauen des Permafrosts verbunden ist, ist die Dynamik der Thermokarstseen. Die Dynamik der Thermokarstseen ist durch VerĂ€nderungen der seitlichen Ausdehnung und der vertikalen Tiefe entwickelt. Aufgrund der unterschiedlichen Wassertiefen kann die Eisdecke ĂŒber den flachen Thermokarstteichen/-seen im Winter bis auf den Wasserboden vollstĂ€ndig gefroren sein, was zum geerdeten Eis fĂŒhrt, wĂ€hrend die Eisdecke ĂŒber den tiefen Thermokarstteichen/-seen es nicht kann. In den tiefen Thermokarstteichen/-seen bleibt den ganzen Winter flĂŒssiges Wasser unter der Eisdecke bestehen, was zum Treibeis fĂŒhrt. Das Wintereisdeckenregime bezieht sich auf die Wassertiefe und die Eisdicke. In den Seen mit Treibeis leitet das flĂŒssige Wasser zusĂ€tzliche WĂ€rme in den restlichen Permafrost darunter oder in der Umgebung, was zur weiteren VerstĂ€rkung des Permafrostauftauen beitrĂ€gt. Basiert auf den Charakter, dass das flĂŒssige Wasser eine bemerkenswert hohe DielektrizitĂ€tskonstante besitzt, wĂ€hrend reines Eis einen niedrigen Wert hat, wurden die SAR DatensĂ€tzen zur Erkennung des Wintereisdeckenregimes verwendet. ZunĂ€chst wurden Schemen in der rĂ€umlichen Verteilung der Eisdeckenregimes der Thermokarstteiche in einer typischen diskontinuierlichen Permafrostregion abgeleitet. Dann wurden die ZusammenhĂ€nge dieser Eisdeckenregimes mit dem Degradationszustand des Permafrosts und der Entwicklung der Thermokarstteiche in zwei historischen Phasen (Sheldrake Einzugsgebiet in 1957 und 2009, Tasiapik Tal in 1994 und 2010) erforscht. Die Ergebnisse deuten darauf, dass die Eisdeckenregimes der Thermokarstteiche von der Bodenart, dem Degradationszustand des Permafrosts und der Permafrosttiefe beeinflusst werden. Es ist schwer, die Permafrostdegradation in einem einzelnen Jahr direkt durch den Abdeckungsbereich der Treibeis-Teiche und die Prozentzahl aller aus solchen Treibeis-Teichen bestehenden Thermokarstteiche abzuschĂ€tzen. Ein kontinuierliches Monitoring der Eisdeckenregimes und -oberflĂ€chen ist empfehlenswert, um den hydrologischen Verlauf des Thermokarstprozesses zu erlĂ€utern. In dieser Dissertation wurden mehrere operativen Monitoringsmethoden entwickelt. In der Zwischenzeit wurden die rĂ€umliche Verteilung der saisonalen Bodentauabsenkung, die Permafrostlandschaft, die Thermokarstteiche und ihre Wintereisdeckenregimes erstmals in diesem Untersuchungsgebiet aufgedeckt. Die Ergebnisse tragen dazu bei, den Zustand und die Dynamik der Permafrostumwelt zu verstehen

    A New Orbiting Deployable System for Small Satellite Observations for Ecology and Earth Observation

    Get PDF
    In this paper, we present several study cases focused on marine, oceanographic, and atmospheric environments, which would greatly benefit from the use of a deployable system for small satellite observations. As opposed to the large standard ones, small satellites have become an effective and affordable alternative access to space, owing to their lower costs, innovative design and technology, and higher revisiting times, when launched in a constellation configuration. One of the biggest challenges is created by the small satellite instrumentation working in the visible (VIS), infrared (IR), and microwave (MW) spectral ranges, for which the resolution of the acquired data depends on the physical dimension of the telescope and the antenna collecting the signal. In this respect, a deployable payload, fitting the limited size and mass imposed by the small satellite architecture, once unfolded in space, can reach performances similar to those of larger satellites. In this study, we show how ecology and Earth Observations can benefit from data acquired by small satellites, and how they can be further improved thanks to deployable payloads. We focus on DORA—Deployable Optics for Remote sensing Applications—in the VIS to TIR spectral range, and on a planned application in the MW spectral range, and we carry out a radiometric analysis to verify its performances for Earth Observation studies
    corecore