1,779 research outputs found

    How to Retrain Recommender System? A Sequential Meta-Learning Method

    Full text link
    Practical recommender systems need be periodically retrained to refresh the model with new interaction data. To pursue high model fidelity, it is usually desirable to retrain the model on both historical and new data, since it can account for both long-term and short-term user preference. However, a full model retraining could be very time-consuming and memory-costly, especially when the scale of historical data is large. In this work, we study the model retraining mechanism for recommender systems, a topic of high practical values but has been relatively little explored in the research community. Our first belief is that retraining the model on historical data is unnecessary, since the model has been trained on it before. Nevertheless, normal training on new data only may easily cause overfitting and forgetting issues, since the new data is of a smaller scale and contains fewer information on long-term user preference. To address this dilemma, we propose a new training method, aiming to abandon the historical data during retraining through learning to transfer the past training experience. Specifically, we design a neural network-based transfer component, which transforms the old model to a new model that is tailored for future recommendations. To learn the transfer component well, we optimize the "future performance" -- i.e., the recommendation accuracy evaluated in the next time period. Our Sequential Meta-Learning(SML) method offers a general training paradigm that is applicable to any differentiable model. We demonstrate SML on matrix factorization and conduct experiments on two real-world datasets. Empirical results show that SML not only achieves significant speed-up, but also outperforms the full model retraining in recommendation accuracy, validating the effectiveness of our proposals. We release our codes at: https://github.com/zyang1580/SML.Comment: Appear in SIGIR 202

    User-oriented recommender systems in retail

    Get PDF
    User satisfaction is considered a key objective for all service provider platforms, regardless of the nature of the service, encompassing domains such as media, entertainment, retail, and information. While the goal of satisfying users is the same across different domains and services, considering domain-specific characteristics is of paramount importance to ensure users have a positive experience with a given system. User interaction data with a system is one of the main sources of data that facilitates achieving this goal. In this thesis, we investigate how to learn from domain-specific user interactions. We focus on recommendation as our main task, and retail as our main domain. We further explore the finance domain and the demand forecasting task as additional directions to understand whether our methodology and findings generalize to other tasks and domains. The research in this thesis is organized around the following dimensions: 1) Characteristics of multi-channel retail: we consider a retail setting where interaction data comes from both digital (i.e., online) and in-store (i.e., offline) shopping; 2) From user behavior to recommendation: we conduct extensive descriptive studies on user interaction log datasets that inform the design of recommender systems in two domains, retail and finance. Our key contributions in characterizing multi-channel retail are two-fold. First, we propose a neural model that makes use of sales in multiple shopping channels in order to improve the performance of demand forecasting in a target channel. Second, we provide the first study of user behavior in a multi-channel retail setting, which results in insights about the channel-specific properties of user behavior, and their effects on the performance of recommender systems. We make three main contributions in designing user-oriented recommender systems. First, we provide a large-scale user behavior study in the finance domain, targeted at understanding financial information seeking behavior in user interactions with company filings. We then propose domain-specific user-oriented filing recommender systems that are informed by the findings of the user behavior analysis. Second, we analyze repurchasing behavior in retail, specifically in the grocery shopping domain. We then propose a repeat consumption-aware neural recommender for this domain. Third, we focus on scalable recommendation in retail and propose an efficient recommender system that explicitly models users' personal preferences that are reflected in their purchasing history

    Personalized Category Frequency prediction for Buy It Again recommendations

    Full text link
    Buy It Again (BIA) recommendations are crucial to retailers to help improve user experience and site engagement by suggesting items that customers are likely to buy again based on their own repeat purchasing patterns. Most existing BIA studies analyze guests personalized behavior at item granularity. A category-based model may be more appropriate in such scenarios. We propose a recommendation system called a hierarchical PCIC model that consists of a personalized category model (PC model) and a personalized item model within categories (IC model). PC model generates a personalized list of categories that customers are likely to purchase again. IC model ranks items within categories that guests are likely to consume within a category. The hierarchical PCIC model captures the general consumption rate of products using survival models. Trends in consumption are captured using time series models. Features derived from these models are used in training a category-grained neural network. We compare PCIC to twelve existing baselines on four standard open datasets. PCIC improves NDCG up to 16 percent while improving recall by around 2 percent. We were able to scale and train (over 8 hours) PCIC on a large dataset of 100M guests and 3M items where repeat categories of a guest out number repeat items. PCIC was deployed and AB tested on the site of a major retailer, leading to significant gains in guest engagement.Comment: This work appears as a short paper in RecSys 202

    User-oriented recommender systems in retail

    Get PDF
    User satisfaction is considered a key objective for all service provider platforms, regardless of the nature of the service, encompassing domains such as media, entertainment, retail, and information. While the goal of satisfying users is the same across different domains and services, considering domain-specific characteristics is of paramount importance to ensure users have a positive experience with a given system. User interaction data with a system is one of the main sources of data that facilitates achieving this goal. In this thesis, we investigate how to learn from domain-specific user interactions. We focus on recommendation as our main task, and retail as our main domain. We further explore the finance domain and the demand forecasting task as additional directions to understand whether our methodology and findings generalize to other tasks and domains. The research in this thesis is organized around the following dimensions: 1) Characteristics of multi-channel retail: we consider a retail setting where interaction data comes from both digital (i.e., online) and in-store (i.e., offline) shopping; 2) From user behavior to recommendation: we conduct extensive descriptive studies on user interaction log datasets that inform the design of recommender systems in two domains, retail and finance. Our key contributions in characterizing multi-channel retail are two-fold. First, we propose a neural model that makes use of sales in multiple shopping channels in order to improve the performance of demand forecasting in a target channel. Second, we provide the first study of user behavior in a multi-channel retail setting, which results in insights about the channel-specific properties of user behavior, and their effects on the performance of recommender systems. We make three main contributions in designing user-oriented recommender systems. First, we provide a large-scale user behavior study in the finance domain, targeted at understanding financial information seeking behavior in user interactions with company filings. We then propose domain-specific user-oriented filing recommender systems that are informed by the findings of the user behavior analysis. Second, we analyze repurchasing behavior in retail, specifically in the grocery shopping domain. We then propose a repeat consumption-aware neural recommender for this domain. Third, we focus on scalable recommendation in retail and propose an efficient recommender system that explicitly models users' personal preferences that are reflected in their purchasing history
    • …
    corecore