36,901 research outputs found

    Modeling plate and spring reverberation using a DSP-informed deep neural network

    Get PDF
    Plate and spring reverberators are electromechanical systems first used and researched as means to substitute real room reverberation. Currently, they are often used in music production for aesthetic reasons due to their particular sonic characteristics. The modeling of these audio processors and their perceptual qualities is difficult since they use mechanical elements together with analog electronics resulting in an extremely complex response. Based on digital reverberators that use sparse FIR filters, we propose a signal processing-informed deep learning architecture for the modeling of artificial reverberators. We explore the capabilities of deep neural networks to learn such highly nonlinear electromechanical responses and we perform modeling of plate and spring reverberators. In order to measure the performance of the model, we conduct a perceptual evaluation experiment and we also analyze how the given task is accomplished and what the model is actually learning

    Empiricism without Magic: Transformational Abstraction in Deep Convolutional Neural Networks

    Get PDF
    In artificial intelligence, recent research has demonstrated the remarkable potential of Deep Convolutional Neural Networks (DCNNs), which seem to exceed state-of-the-art performance in new domains weekly, especially on the sorts of very difficult perceptual discrimination tasks that skeptics thought would remain beyond the reach of artificial intelligence. However, it has proven difficult to explain why DCNNs perform so well. In philosophy of mind, empiricists have long suggested that complex cognition is based on information derived from sensory experience, often appealing to a faculty of abstraction. Rationalists have frequently complained, however, that empiricists never adequately explained how this faculty of abstraction actually works. In this paper, I tie these two questions together, to the mutual benefit of both disciplines. I argue that the architectural features that distinguish DCNNs from earlier neural networks allow them to implement a form of hierarchical processing that I call “transformational abstraction”. Transformational abstraction iteratively converts sensory-based representations of category exemplars into new formats that are increasingly tolerant to “nuisance variation” in input. Reflecting upon the way that DCNNs leverage a combination of linear and non-linear processing to efficiently accomplish this feat allows us to understand how the brain is capable of bi-directional travel between exemplars and abstractions, addressing longstanding problems in empiricist philosophy of mind. I end by considering the prospects for future research on DCNNs, arguing that rather than simply implementing 80s connectionism with more brute-force computation, transformational abstraction counts as a qualitatively distinct form of processing ripe with philosophical and psychological significance, because it is significantly better suited to depict the generic mechanism responsible for this important kind of psychological processing in the brain
    • …
    corecore