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ABSTRACT

Plate and spring reverberators are electromechanical systems first
used and researched as means to substitute real room reverberation.
Currently, they are often used in music production for aesthetic rea-
sons due to their particular sonic characteristics. The modeling of
these audio processors and their perceptual qualities is difficult since
they use mechanical elements together with analog electronics re-
sulting in an extremely complex response. Based on digital rever-
berators that use sparse FIR filters, we propose a signal processing-
informed deep learning architecture for the modeling of artificial re-
verberators. We explore the capabilities of deep neural networks to
learn such highly nonlinear electromechanical responses and we per-
form modeling of plate and spring reverberators. In order to measure
the performance of the model, we conduct a perceptual evaluation
experiment and we also analyze how the given task is accomplished
and what the model is actually learning.

Index Terms— artificial reverberation, audio effects modeling,
deep learning, sparse FIR.

1. INTRODUCTION

Reverberation occurs when delayed and attenuated copies of the di-
rect sound appear as reflections. Each reflection is frequency depen-
dent and defined by the directivity of the sound source and the phys-
ical attributes of the reflecting surfaces [1]. In the music and film
industry, artificial reverberation was initially researched as a way of
approximating the reflections occurring in room acoustics. This led
to techniques that simulate reverberation, such as chamber, plate,
spring and digital reverberators [2].

Plate reverberation is based on a large metal plate which vibrates
due to a moving-coil transducer attached to its centre. This trans-
ducer is fed with an amplified dry input signal and the plate vibra-
tions are read by a pickup sensor and further amplified [3]. The plate
reverb sound is different from room acoustic reverberation and is
characterized by a smooth noise-like response [4]. Spring reverber-
ation is based on one or various helical springs suspended under low
tension, attached to a magnetic bead and driven via an electromag-
netic coupling [5]. The input audio source is transduced to spring
vibrations which are read through a pickup sensor at the opposite
end. The distinct sound of spring reverb is due to the various types
of vibrations that occur, transverse and longitudinal, which cause a
peculiar combination of wave and dispersive propagation [1].

Although originally developed as substitutes for room reverber-
ators, digital implementations of these devices have been widely re-
searched due to their distinctive sound which has been of great inter-
est among musicians, music producers and sound engineers. Plate
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reverberation has been emulated with different approaches such as
numerical simulation techniques, where a finite difference scheme
[6, 7, 8] or a modal description [9] is derived from the differential
equations that describe the motion of the plate; and hybrid digital
filter-based algorithms [10, 11, 12], where convolutional impulse re-
sponses and feedback delay networks are used to model the desired
impulse response. Similarly, modeling of spring reverberation has
been explored as wave digital filters [13], to explicitly model the
wave and dispersive propagation; numerical simulation techniques
such as finite difference schemes [14, 5, 15], and nonphysical mod-
eling techniques [16, 17], where chains of allpass filters and varying
delay lines are used to approximate the dispersive and reverberant
features of spring reverb.

The modeling of these audio processors and their salient per-
ceptual qualities remains an active research field. Their mechanical
elements together with their analog circuitry yield a nonlinear and
time-varying spatial system which is difficult to fully emulate digi-
tally. Most of the methods are based on complete physical models or
perceptual simplifications such as linearity and time-invariant behav-
ior, thus, such models are not easily transferable to different artificial
reverberators or cannot capture the full response of the system.

Deep learning architectures for black-box modeling of audio ef-
fects have been researched lately for linear effects such as equal-
ization [18]; nonlinear memoryless effects such as tube amplifiers
[19, 20, 21]; nonlinear effects with temporal dependencies such as
compressors [22]; and linear and nonlinear time-varying effects such
as flanging or ring modulation [23]. Deep learning for dereverbera-
tion has become a heavily researched field [24, 25], although apply-
ing artificial reverberation or modeling plate and spring reverb with
deep neural networks (DNN) has not been explored yet.

Sparse FIR filtering has proven to be an efficient digital rever-
beration method [26, 2]. Dispersive reflections are approximated via
FIR filters with sparsely placed coefficients, which are often deter-
mined by a pseudo-random number sequence such as velvet noise
[27]. We incorporate these methods to model noise-like and disper-
sive responses, such as those present in plate and spring devices.

Prior to this work, end-to-end DNNs have not yet been imple-
mented to model artificial reverberators, i.e. learning from input-
output data and applying the reverberant effect directly to the dry
input audio. In this paper, we use convolutional, recurrent and dense
layers together with sparse FIR (SFIR) filters and time-varying mix-
ing gains which coefficients are learnt by the network. We explore
whether a deep learning architecture is able to emulate plate and
spring reverberators and we measure the performance of the model
through a listening test. Both perceptual and objective evaluations
indicate that the proposed model successfully simulates the elec-
tromechanical devices and performs better than other DNNs for
modeling audio effects.

2. METHODS
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Fig. 1: Block diagram of the proposed model; adaptive front-end, latent-space and synthesis back-end.

2.1. Model
The model is completely based on time-domain input and works with
raw and processed audio as input and output respectively. It is di-
vided into three parts: adaptive front-end, latent-space and synthesis
back-end. A block diagram is depicted in Fig. 1 and a more detailed
structure can be seen online1 together with the source code.

The adaptive front-end uses a filter bank architecture which
learns the latent representation Z by performing time-domain con-
volutions with the input audio. It follows the same architecture as
[23], where it contains two convolutional layers, one pooling layer
and one residual connection. The front-end is considered adaptive
since its convolutional layers learn a filter bank for each modeling
task and directly from the audio. The model learns long-term mem-
ory dependencies by having an input x which consists of the current
audio frame x concatenated with the ±4 previous and subsequent
frames. These frames are of size 4096 (256 ms) and sampled with a
hop size of 50%.

The Conv1D layer has 32 one-dimensional filters of size 64 and
is followed by the absolute value as nonlinear activation function.
Conv1D-Local has 32 filters of size 128, each filter is locally con-
nected and uses the softplus function as nonlinearity. This means we
follow a filter bank architecture since each filter is only applied to
its corresponding row in |X1|: the output of Conv1D. The residual
connection R is the corresponding row in X1 and is the frequency
band decomposition of the current input frame x. This is due the
output of each filter of Conv1D can be seen as a frequency band.
The max-pooling layer is a moving window of size 64, where the
maximum value within each window corresponds to the output. All
convolutional and pooling layers are time distributed, i.e. the same
layer is applied to each of the 9 input frames from x.

The latent-space has as its main objective to process Z into two
latent representations, Ẑ1 and Ẑ2. The former corresponds to a set
of envelope signals and the later is used to create the set of sparse
FIR filters Ẑ3. It consists of two shared Bidirectional Long Short-
Term Memory (Bi-LSTM) layers of 64, 32 units with the hyperbolic
tangent as activation function and its output is fed to two indepen-
dent Bi-LSTM layers of 16 units. Each of these layers is followed by
a Smooth Adaptive Activation Function (SAAF) as the nonlinearity
[28], obtaining in this way Ẑ1 and Ẑ2. SAAFs consist of piecewise
second order polynomials which can approximate any continuous
function and are regularized under a Lipschitz constant to ensure
smoothness. As shown in [19], SAAFs can be used as nonlinearities
or waveshapers in audio processing tasks.

We propose a SFIR layer where we follow the constraints of
sparse pseudo-random reverberation algorithms [2]. Nevertheless,
instead of using discrete coefficient values such as −1 and +1, each
coefficient can take any continuous value within that range. Each
one of the coefficients is placed at a specific index position within
each interval of Ts samples while all the other samples are zero.

1https://mchijmma.github.io/modeling-plate-spring-reverb/

Thus, the SFIR layer processes Ẑ2 by two independent fully con-
nected (FC) layers of 1024 units each. The FC layers are followed
by a hyperbolic tangent and sigmoid function, whose outputs are
the coefficient values and their index position respectively. To ob-
tain the specific index position, the output of the sigmoid function
is multiplied by Ts and a rounding down to the nearest integer is
applied. This operation is not differentiable so we use an identity
gradient as a backward pass approximation [29]. In order to have a
high-quality reverberation, we use 2000 coefficients per second [26],
thus, Ts = 8 samples for a sampling rate of 16 kHz.

The synthesis back-end uses the SFIR output Ẑ3, the envelopes
Ẑ1 and the residual connection R to synthesize the waveform and
accomplish the reverberation task. It consists of an unpooling layer,
a convolution and multiplication operation, a DNN with SAAFs
(DNN-SAAF), two Squeeze-and-Excitation [30] LSTM layers (SE-
LSTM) and a final convolutional layer.

Following the filter bank architecture: X̂4 is obtained by upsam-
pling Ẑ1 and the feature map X̂5 is accomplished by the locally
connected convolution between the frequency band decomposition
R and Ẑ3. The result of this convolution can be seen as explicitly
modeling a frequency dependent reverberation response with the in-
coming audio. Furthermore, due to the temporal dependencies learnt
by the Bi-LSTMs, X̂5 is able to represent from the onset response
the late reflections of the reverberation task. Then the feature map
X̂3 is the result of the element-wise multiplication of the reverber-
ant response X̂5 and the learnt envelopes X̂4. The envelopes are
applied in order to avoid audible artifacts between input frames [27].

Secondly, the feature map X̂2 is obtained when the dynamic
nonlinearites from the DNN-SAAF block are applied to R. The re-
sult of this operation consists of a learnt nonlinear transformation or
waveshaping of the direct sound [19]. The DNN-SAAF block con-
sists of 4 FC layers of 32, 16, 16 and 32 hidden units respectively.
Each FC layer uses the hyperbolic tangent as nonlinearity except for
the last one, which uses a SAAF layer.

Furthermore, we propose an SE-LSTM block to act as a time-
varying gain for X̂2 and X̂3. Since Squeeze-and-Excitation (SE)
blocks explicitly and adaptively scale the channel-wise information
of feature maps [30], we incorporate an LSTM layer in the SE ar-
chitecture in order to include long-term context from the input. Each
SE-LSTM builds on the architecture from [31], it consists of an abso-
lute value operation and global average pooling operation followed
by one LSTM and two FC layers of 32, 512 and 32 hidden units re-
spectively. The LSTM and first FC layer are followed by a rectifier
linear unit, while the last FC layer uses a sigmoid activation function.
The absolute value is incorporated before the global average pooling
since the feature maps are based on time-domain waveforms. Each
SE-LSTM block process each feature map X̂2 and X̂3, thus, apply-
ing a frequency dependent time-varying mixing gain where outputs
are added together in order to obtain X̂0.

The last layer corresponds to the deconvolution operation which
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Fig. 2: Results for model-1 with the test dataset. 2a and 2c) show a segment of the input, target and output frames and their respective
FFT magnitudes for plate and spring reverb, respectively. 2b) plate and 2d) spring reverb and from top to bottom: input, target and output
spectrograms of the test samples; color intensity represents higher magnitude.

is not trainable since its filters are the transposed weights of Conv1D.
The complete waveform is synthesized using a hann window and
constant overlap-add gain. All convolutions are along the time di-
mension and all strides are of unit value. Overall, each SAAF is
locally connected and each function consists of 25 intervals between
−1 to 1 and each Bi-LSTM and LSTM have dropout and recurrent
dropout rates of 0.1.

2.2. Training
Prior to training the whole model, as an initialization step, only the
weights of Conv1D and Conv1D-Local are trained. Thus, within
an unsupervised learning task, the adaptive front-end is able to pro-
cess and reconstruct both the dry audio x and target audio y. This
pretraining allows to have a better fitting when training for the re-
verberation task. During this step the unpooling layer of the back-
end uses the time positions of the maximum values recorded by
the max-pooling operation. Once the front-end is initialized, all the
weights of the convolutional, recurrent, dense and activation layers
are trained following an end-to-end supervised learning task. The
loss function to be minimized is based in time and frequency and
described by:

loss = α1 · mae(y, ŷ) + α2 · mse(Y, Ŷ ) (1)

Where mae is the mean absolute error and mse is the mean
squared error. Y and Ŷ are the log power magnitude spectra of the
target and output respectively, and y and ŷ their respective wave-
forms. Prior to calculating the mae, a pre-emphasis filter H(z) =
1 − 0, 95z−1 is applied to y and ŷ, in order to add more weight to
high frequencies [20]. We use a 4096-point Fourier transform (FFT)
to obtain Y and Ŷ . In order to scale the time and frequency losses,
we use 1.0 and 1e − 4 as the loss weights α1 and α2 respectively.
Explicit minimization in the frequency and time domains resulted
crucial when modeling such complex responses.

For both training steps, Adam [32] is used as optimizer and we
use an early stopping patience of 25 epochs if there is no improve-
ment in the validation loss. Afterwards, the model is fine-tuned fur-
ther with the learning rate reduced by 25% and also a patience of 25
epochs. The initial learning rate is 1e− 4 and the batch size consists
of the total number of frames per audio sample. We select the model
with the lowest error for the validation subset.

2.3. Dataset
Plate reverberation is obtained from the IDMT-SMT-Audio-Effects
dataset [33], which corresponds to individual 2-second notes and
covers the common pitch range of various electric guitars and bass
guitars. We use raw and plate reverb notes from the bass guitar
recordings. Spring reverberation samples are obtained by process-
ing the electric guitar raw audio samples with the spring reverb tank
Accutronics 4EB2C1B.

For each reverb task we use 624 raw and effected notes and both
the test and validation samples correspond to 5% of this subset each.
The recordings are downsampled to 16 kHz and amplitude normal-
ization is applied. Also, since the plate reverb samples have a fade-
out applied in the last 0.5 seconds of the recordings, we process the
spring reverb samples accordingly.

3. RESULTS & ANALYSIS

In order to compare the performance of the proposed architecture
(model-1), we use the network from [23] (model-2), which has
proven capable of modeling electromechanical devices such as the
Leslie speaker. The latter presents an architecture similar to model-
1, although its latent-space and back-end have been designed to
explicitly learn and apply a modulation in order to match modula-
tion based audio effects [34]. Both models are trained under the
same procedure, tested with samples from the test dataset and the
audio results are available online1. Table 1 shows the corresponding
loss values. The number of parameters for model-1 and model-2 are
410, 977 and 275, 073 and the time each model takes to process a 2
second audio sample is 0.752 and 0.4066 seconds, respectively. This

Table 1: loss values for plate and spring reverb models when tested
with the test dataset.

Reverb model mae mse loss

plate 1 0.00214 7.75815 0.00292
2 0.00316 27.08704 0.00587

spring 1 0.00366 9.43629 0.00461
2 0.00474 33.09621 0.00805
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Fig. 3: Various internal plots for model-1 from the test dataset of
the spring modeling task. 3a) 4 rows from the frequency band de-
composition R. 3b) From Ẑ3, corresponding 4 sparse FIR filters
learned by the latent-space. Following the filter bank architecture,
3c) and 3d) show the corresponding 4 rows from X̂1.1 and X̂1.2

respectively. Vertical axes are unitless and horizontal axes are time.

using a Titan XP GPU and non real-time python implementation.
The proposed model outperforms model-2 in both tasks. For

both reverb tasks and from the test subset, Fig. 2 shows selected
input, target, and output waveforms together with their respective
spectrograms. It can be seen that model-1 matches very closely the
target in the time and frequency domains. From the spectrograms,
the smooth noise-like response of the plate and the dispersive reflec-
tions of the spring are noticeable. Overall, the initial onset responses
are being modeled more accurately, whereas the late reflections dif-
fer more prominently in the case of the spring, which across models
presents a higher loss. These differences in the frequency domain
also correspond to the larger differences between the mse and the
mae, thus, further exploration of the loss weights can be conducted.

Fig. 3 depicts internal plots of model-1 when processing the
frames from Fig. 2c. It shows how the model processes the input
frame into the frequency band decomposition R and learns a set of
sparse FIR filters Ẑ3 for each frequency band. Then, the frequency
dependent reverberation response X̂1.1 is obtained by applying the
filters and envelopes to R. The nonlinear transformation of the direct
sound X̂1.2 is accomplished through the learnt waveshapers. These
two representations are added together via a time-varying mixing
gain, which is fed to the last layer so the audio waveform is recon-
structed in the same manner as the front-end that decomposed it.

3.1. Listening test
Thirty participants between the ages of 23 and 46 took part in the
experiment which was conducted at a professional listening room
at Queen Mary University of London. The subjects were among
musicians, sound engineers or experienced in critical listening. The
audio was played via Beyerdynamic DT-770 PRO studio headphones
and the Web Audio Evaluation Tool [35] was used to set up the test.

The participants were presented with samples from the test sub-
set. Each page contained a reference sound, i.e. from the original
plate or spring reverb. Participants were asked to rate 4 different
samples according to the similarity of these in relation to the refer-
ence sound. The aim of the test was to identify which sound is closer
to the reference. The samples consisted of outputs from model-1,
model-2, a hidden copy of the reference and a dry sample as hidden
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Fig. 4: Box plot showing the rating results of the listening tests.
From top to bottom: plate and spring reverb tasks.

anchor. Thus, the test is based on the MUSHRA method [36].
The results of the listening test can be seen in Fig. 4 as a notched

box plot. The end of the boxes represents the first and third quar-
tiles, the end of the notches represents a 95% confidence interval,
the green line depicts the median rating and the circles represent
outliers. As expected, both anchor and reference have the lowest and
highest median respectively. It can be seen that for both plate and
spring reverb tasks, model-1 is rated highly whereas model-2 fails
to accomplish the reverberation task. Thus, the perceptual findings
confirm the results obtained with the loss metric and likewise, plate
models have a better matching that spring reverberators. The rat-
ing and loss values for spring do not represent a significant decrease
of performance, nevertheless, the modeling of spring late reflections
could be further explored via a larger number of filters, different loss
weights or input frame sizes.

4. CONCLUSION

In this work, we introduced a signal processing-informed deep learn-
ing architecture for modeling artificial reverberators. We explored
the capabilities of learning sparse FIR filters and time-varying mix-
ing gains within a DNN framework. We show the model successfully
matching nonlinear time-varying transformations such as plate and
spring reverb. Listening test results show that the model emulates
closely the electromechanical devices and outperforms other DNNs
for black-box modeling of audio effects. As future work, a paramet-
ric model, longer decay times and late reflections, and real-time im-
plementations could be explored together with applications beyond
effects modeling such as automatic reverberation and mixing.
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