3,027 research outputs found

    Lightweight Blockchain Framework for Location-aware Peer-to-Peer Energy Trading

    Full text link
    Peer-to-Peer (P2P) energy trading can facilitate integration of a large number of small-scale producers and consumers into energy markets. Decentralized management of these new market participants is challenging in terms of market settlement, participant reputation and consideration of grid constraints. This paper proposes a blockchain-enabled framework for P2P energy trading among producer and consumer agents in a smart grid. A fully decentralized market settlement mechanism is designed, which does not rely on a centralized entity to settle the market and encourages producers and consumers to negotiate on energy trading with their nearby agents truthfully. To this end, the electrical distance of agents is considered in the pricing mechanism to encourage agents to trade with their neighboring agents. In addition, a reputation factor is considered for each agent, reflecting its past performance in delivering the committed energy. Before starting the negotiation, agents select their trading partners based on their preferences over the reputation and proximity of the trading partners. An Anonymous Proof of Location (A-PoL) algorithm is proposed that allows agents to prove their location without revealing their real identity. The practicality of the proposed framework is illustrated through several case studies, and its security and privacy are analyzed in detail

    A Survey on the Contributions of Software-Defined Networking to Traffic Engineering

    Get PDF
    Since the appearance of OpenFlow back in 2008, software-defined networking (SDN) has gained momentum. Although there are some discrepancies between the standards developing organizations working with SDN about what SDN is and how it is defined, they all outline traffic engineering (TE) as a key application. One of the most common objectives of TE is the congestion minimization, where techniques such as traffic splitting among multiple paths or advanced reservation systems are used. In such a scenario, this manuscript surveys the role of a comprehensive list of SDN protocols in TE solutions, in order to assess how these protocols can benefit TE. The SDN protocols have been categorized using the SDN architecture proposed by the open networking foundation, which differentiates among data-controller plane interfaces, application-controller plane interfaces, and management interfaces, in order to state how the interface type in which they operate influences TE. In addition, the impact of the SDN protocols on TE has been evaluated by comparing them with the path computation element (PCE)-based architecture. The PCE-based architecture has been selected to measure the impact of SDN on TE because it is the most novel TE architecture until the date, and because it already defines a set of metrics to measure the performance of TE solutions. We conclude that using the three types of interfaces simultaneously will result in more powerful and enhanced TE solutions, since they benefit TE in complementary ways.European Commission through the Horizon 2020 Research and Innovation Programme (GN4) under Grant 691567 Spanish Ministry of Economy and Competitiveness under the Secure Deployment of Services Over SDN and NFV-based Networks Project S&NSEC under Grant TEC2013-47960-C4-3-

    Multiscale design for system-wide peer-to-peer energy trading

    Get PDF
    The integration of renewable generation and the electrification of heating and transportation are critical for the sustainable energy transition toward net-zero greenhouse gas emissions. These changes require the large-scale adoption of distributed energy resources (DERs). Peer-to-peer (P2P) energy trading has gained attention as a new approach for incentivizing the uptake and coordination of DERs, with advantages for computational scalability, prosumer autonomy, and market competitiveness. However, major unresolved challenges remain for scaling out P2P trading, including enforcing network constraints, managing uncertainty, and mediating transmission and distribution conflicts. Here, we propose a novel multiscale design framework for P2P trading, with inter-platform coordination mechanisms to align local transactions with system-level requirements, and analytical tools to enhance long-term planning and investment decisions by accounting for forecast real-time operation. By integrating P2P trading into planning and operation across spatial and temporal scales, the adoption of large-scale DERs is tenable and can create economic, environmental, and social co-benefits

    A Simulation Framework for Fast Design Space Exploration of Unmanned Air System Traffic Management Policies

    Full text link
    The number of daily small Unmanned Aircraft Systems (sUAS) operations in uncontrolled low altitude airspace is expected to reach into the millions. UAS Traffic Management (UTM) is an emerging concept aiming at the safe and efficient management of such very dense traffic, but few studies are addressing the policies to accommodate such demand and the required ground infrastructure in suburban or urban environments. Searching for the optimal air traffic management policy is a combinatorial optimization problem with intractable complexity when the number of sUAS and the constraints increases. As the demands on the airspace increase and traffic patterns get complicated, it is difficult to forecast the potential low altitude airspace hotspots and the corresponding ground resource requirements. This work presents a Multi-agent Air Traffic and Resource Usage Simulation (MATRUS) framework that aims for fast evaluation of different air traffic management policies and the relationship between policy, environment and resulting traffic patterns. It can also be used as a tool to decide the resource distribution and launch site location in the planning of a next-generation smart city. As a case study, detailed comparisons are provided for the sUAS flight time, conflict ratio, cellular communication resource usage, for a managed (centrally coordinated) and unmanaged (free flight) traffic scenario.Comment: The Integrated Communications Navigation and Surveillance (ICNS) Conference in 201

    Delay Performance and Cybersecurity of Smart Grid Infrastructure

    Get PDF
    To address major challenges to conventional electric grids (e.g., generation diversification and optimal deployment of expensive assets), full visibility and pervasive control over utilities\u27 assets and services are being realized through the integratio
    • …
    corecore