2 research outputs found

    Modeling human annotation errors to design bias-aware systems for social stream processing

    No full text
    Comunicaci贸 presentada al ASONAM '19: 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, celebrat del 27 al 30 d'agost de 2019 a Vancouver, Canad脿.High-quality human annotations are necessary to create effective machine learning systems for social media. Low-quality human annotations indirectly contribute to the creation of inaccurate or biased learning systems. We show that human annotation quality is dependent on the ordering of instances shown to annotators (referred as 'annotation schedule'), and can be improved by local changes in the instance ordering provided to the annotators, yielding a more accurate annotation of the data stream for efficient real-time social media analytics. We propose an error-mitigating active learning algorithm that is robust with respect to some cases of human errors when deciding an annotation schedule. We validate the human error model and evaluate the proposed algorithm against strong baselines by experimenting on classification tasks of relevant social media posts during crises. According to these experiments, considering the order in which data instances are presented to human annotators leads to both an increase in accuracy for machine learning and awareness toward some potential biases in human learning that may affect the automated classifier.Purohit thanks U.S. NSF grant awards 1815459 & 1657379 and Castillo thanks La Caixa project (LCF/PR/PR16/11110009) for partial support

    Smoke plume segmentation of wildfire images

    Get PDF
    Aquest treball s'emmarca dins del camp d'estudi de les xarxes neuronals en Aprenentatge profund. L'objectiu del projecte 茅s analitzar i aplicar les xarxes neuronals que hi ha avui dia en el mercat per resoldre un problema en espec铆fic. Aquest 茅s tracta de la segmentaci贸 de plomalls de fum en incendis forestals. S'ha desenvolupat un estudi de les xarxes neuronals utilitzades per resoldre problemes de segmentaci贸 d'imatges i tamb茅 una reconstrucci贸 posterior en 3D d'aquests plomalls de fum. L'algorisme finalment escollit 茅s tracta del model UNet, una xarxa neuronal convolucional basada en l'estructura d'autoencoders amb connexions de pas, que desenvolupa tasques d'autoaprenentatge per finalment obtenir una predicci贸 de la classe a segmentar entrenada, en aquest cas plomalls. de fum. Posteriorment, una comparativa entre algoritmes tradicionals i el model UNet aplicat fent servir aprenentatge profund s'ha realitzat, veient que tant quantitativament com qualitativament s'aconsegueix els millors resultats aplicant el model UNet, per貌 a la vegada comporta m茅s temps de computaci贸. Tots aquests models s'han desenvolupat amb el llenguatge de programaci贸 Python utilitzant els llibres d'aprenentatge autom脿tic Tensorflow i Keras. Dins del model UNet s'han dut a terme m煤ltiples experiments per obtenir els diferents valors dels hiperpar脿metres m茅s adequats per a l'aplicaci贸 del projecte, obtenint una precisi贸 del 93.45 % en el model final per a la segmentaci贸 de fum en imatges d'incendis. forestals.Este trabajo se enmarca dentro del campo de estudio de las redes neuronales en aprendizaje profundo. El objetivo del proyecto es analizar y aplicar las redes neuronales que existen hoy en d铆a en el mercado para resolver un problema en espec铆fico. 脡ste se trata de la segmentaci贸n de penachos de humo en incendios forestales. Se ha desarrollado un estudio de las redes neuronales utilizadas para resolver problemas de segmentaci贸n de im谩genes y tambi茅n una reconstrucci贸n posterior en 3D de estos penachos de humo. El algoritmo finalmente escogido se trata del modelo UNet, una red neuronal convolucional basada en la estructura de autoencoders con conexiones de paso, que desarrolla tareas de autoaprendizaje para finalmente obtener una predicci贸n de la clase a segmentar entrenada, en este caso penachos de humo. Posteriormente, una comparativa entre algoritmos tradicionales y el modelo UNet aplicado utilizando aprendizaje profundo se ha realizado, viendo que tanto cuantitativa como cualitativamente se consigue los mejores resultados aplicando el modelo UNet, pero a la vez conlleva m谩s tiempo de computaci贸n. Todos estos modelos se han desarrollado con el lenguaje de programaci贸n Python utilizando libros de aprendizaje autom谩tico Tensorflow y Keras. Dentro del modelo UNet se han llevado a cabo m煤ltiples experimentos para obtener los distintos valores de los hiperpar谩metros m谩s adecuados para la aplicaci贸n del proyecto, obteniendo una precisi贸n del 93.45 % en el modelo final para la segmentaci贸n de humo en im谩genes de incendios forestales.This work is framed within the field of study of neural networks in Deep Learning. The aim of the project is to analyse and apply the neural networks that exist today in the market to solve a specific problem. This is about the segmentation of smoke plumes in forest fires. A study of the neural networks used to solve image segmentation problems and also a subsequent 3D reconstruction of these smoke plumes has been developed. The algorithm finally chosen is the UNet model, a convolutional neural network based on the structure of autoencoders with step connections, which develops self-learning tasks to finally obtain a prediction of the class to be trained, in this case smoke plumes. Also, a comparison between traditional algorithms and the UNet model applied using deep learning has been carried out, seeing that both quantitatively and qualitatively the best results are achieved by applying the UNet model, but at the same time it involves more computing time. All these models have been developed in the Python programming language using the Tensorflow and Keras machine learning books. Within the UNet model, multiple experiments have been carried out to obtain the different hyperparameter values most suitable for the project application, obtaining an accuracy of 93.45% in the final model for smoke segmentation in wildfire images
    corecore