6,890 research outputs found

    Reducing fuzzy answer set programming to model finding in fuzzy logics

    Get PDF
    In recent years, answer set programming (ASP) has been extended to deal with multivalued predicates. The resulting formalisms allow for the modeling of continuous problems as elegantly as ASP allows for the modeling of discrete problems, by combining the stable model semantics underlying ASP with fuzzy logics. However, contrary to the case of classical ASP where many efficient solvers have been constructed, to date there is no efficient fuzzy ASP solver. A well-known technique for classical ASP consists of translating an ASP program P to a propositional theory whose models exactly correspond to the answer sets of P. In this paper, we show how this idea can be extended to fuzzy ASP, paving the way to implement efficient fuzzy ASP solvers that can take advantage of existing fuzzy logic reasoners

    Context for Ubiquitous Data Management

    Get PDF
    In response to the advance of ubiquitous computing technologies, we believe that for computer systems to be ubiquitous, they must be context-aware. In this paper, we address the impact of context-awareness on ubiquitous data management. To do this, we overview different characteristics of context in order to develop a clear understanding of context, as well as its implications and requirements for context-aware data management. References to recent research activities and applicable techniques are also provided

    Aggregated fuzzy answer set programming

    Get PDF
    Fuzzy Answer Set programming (FASP) is an extension of answer set programming (ASP), based on fuzzy logic. It allows to encode continuous optimization problems in the same concise manner as ASP allows to model combinatorial problems. As a result of its inherent continuity, rules in FASP may be satisfied or violated to certain degrees. Rather than insisting that all rules are fully satisfied, we may only require that they are satisfied partially, to the best extent possible. However, most approaches that feature partial rule satisfaction limit themselves to attaching predefined weights to rules, which is not sufficiently flexible for most real-life applications. In this paper, we develop an alternative, based on aggregator functions that specify which (combination of) rules are most important to satisfy. We extend upon previous work by allowing aggregator expressions to define partially ordered preferences, and by the use of a fixpoint semantics
    corecore