22,405 research outputs found

    Sharing emotions and space - empathy as a basis for cooperative spatial interaction

    Get PDF
    Boukricha H, Nguyen N, Wachsmuth I. Sharing emotions and space - empathy as a basis for cooperative spatial interaction. In: Kopp S, Marsella S, Thorisson K, Vilhjalmsson HH, eds. Proceedings of the 11th International Conference on Intelligent Virtual Agents (IVA 2011). LNAI. Vol 6895. Berlin, Heidelberg: Springer; 2011: 350-362.Empathy is believed to play a major role as a basis for humans’ cooperative behavior. Recent research shows that humans empathize with each other to different degrees depending on several modulation factors including, among others, their social relationships, their mood, and the situational context. In human spatial interaction, partners share and sustain a space that is equally and exclusively reachable to them, the so-called interaction space. In a cooperative interaction scenario of relocating objects in interaction space, we introduce an approach for triggering and modulating a virtual humans cooperative spatial behavior by its degree of empathy with its interaction partner. That is, spatial distances like object distances as well as distances of arm and body movements while relocating objects in interaction space are modulated by the virtual human’s degree of empathy. In this scenario, the virtual human’s empathic emotion is generated as a hypothesis about the partner’s emotional state as related to the physical effort needed to perform a goal directed spatial behavior

    Dynamic Facial Expression of Emotion Made Easy

    Full text link
    Facial emotion expression for virtual characters is used in a wide variety of areas. Often, the primary reason to use emotion expression is not to study emotion expression generation per se, but to use emotion expression in an application or research project. What is then needed is an easy to use and flexible, but also validated mechanism to do so. In this report we present such a mechanism. It enables developers to build virtual characters with dynamic affective facial expressions. The mechanism is based on Facial Action Coding. It is easy to implement, and code is available for download. To show the validity of the expressions generated with the mechanism we tested the recognition accuracy for 6 basic emotions (joy, anger, sadness, surprise, disgust, fear) and 4 blend emotions (enthusiastic, furious, frustrated, and evil). Additionally we investigated the effect of VC distance (z-coordinate), the effect of the VC's face morphology (male vs. female), the effect of a lateral versus a frontal presentation of the expression, and the effect of intensity of the expression. Participants (n=19, Western and Asian subjects) rated the intensity of each expression for each condition (within subject setup) in a non forced choice manner. All of the basic emotions were uniquely perceived as such. Further, the blends and confusion details of basic emotions are compatible with findings in psychology

    The perception of emotion in artificial agents

    Get PDF
    Given recent technological developments in robotics, artificial intelligence and virtual reality, it is perhaps unsurprising that the arrival of emotionally expressive and reactive artificial agents is imminent. However, if such agents are to become integrated into our social milieu, it is imperative to establish an understanding of whether and how humans perceive emotion in artificial agents. In this review, we incorporate recent findings from social robotics, virtual reality, psychology, and neuroscience to examine how people recognize and respond to emotions displayed by artificial agents. First, we review how people perceive emotions expressed by an artificial agent, such as facial and bodily expressions and vocal tone. Second, we evaluate the similarities and differences in the consequences of perceived emotions in artificial compared to human agents. Besides accurately recognizing the emotional state of an artificial agent, it is critical to understand how humans respond to those emotions. Does interacting with an angry robot induce the same responses in people as interacting with an angry person? Similarly, does watching a robot rejoice when it wins a game elicit similar feelings of elation in the human observer? Here we provide an overview of the current state of emotion expression and perception in social robotics, as well as a clear articulation of the challenges and guiding principles to be addressed as we move ever closer to truly emotional artificial agents
    • 

    corecore