6,296 research outputs found

    Modeling Dynamic Functional Connectivity with Latent Factor Gaussian Processes

    Get PDF
    Dynamic functional connectivity, as measured by the time-varying covariance of neurological signals, is believed to play an important role in many aspects of cognition. While many methods have been proposed, reliably establishing the presence and characteristics of brain connectivity is challenging due to the high dimensionality and noisiness of neuroimaging data. We present a latent factor Gaussian process model which addresses these challenges by learning a parsimonious representation of connectivity dynamics. The proposed model naturally allows for inference and visualization of time-varying connectivity. As an illustration of the scientific utility of the model, application to a data set of rat local field potential activity recorded during a complex non-spatial memory task provides evidence of stimuli differentiation

    Estimating Time-Varying Effective Connectivity in High-Dimensional fMRI Data Using Regime-Switching Factor Models

    Full text link
    Recent studies on analyzing dynamic brain connectivity rely on sliding-window analysis or time-varying coefficient models which are unable to capture both smooth and abrupt changes simultaneously. Emerging evidence suggests state-related changes in brain connectivity where dependence structure alternates between a finite number of latent states or regimes. Another challenge is inference of full-brain networks with large number of nodes. We employ a Markov-switching dynamic factor model in which the state-driven time-varying connectivity regimes of high-dimensional fMRI data are characterized by lower-dimensional common latent factors, following a regime-switching process. It enables a reliable, data-adaptive estimation of change-points of connectivity regimes and the massive dependencies associated with each regime. We consider the switching VAR to quantity the dynamic effective connectivity. We propose a three-step estimation procedure: (1) extracting the factors using principal component analysis (PCA) and (2) identifying dynamic connectivity states using the factor-based switching vector autoregressive (VAR) models in a state-space formulation using Kalman filter and expectation-maximization (EM) algorithm, and (3) constructing the high-dimensional connectivity metrics for each state based on subspace estimates. Simulation results show that our proposed estimator outperforms the K-means clustering of time-windowed coefficients, providing more accurate estimation of regime dynamics and connectivity metrics in high-dimensional settings. Applications to analyzing resting-state fMRI data identify dynamic changes in brain states during rest, and reveal distinct directed connectivity patterns and modular organization in resting-state networks across different states.Comment: 21 page

    Disentangling causal webs in the brain using functional Magnetic Resonance Imaging: A review of current approaches

    Get PDF
    In the past two decades, functional Magnetic Resonance Imaging has been used to relate neuronal network activity to cognitive processing and behaviour. Recently this approach has been augmented by algorithms that allow us to infer causal links between component populations of neuronal networks. Multiple inference procedures have been proposed to approach this research question but so far, each method has limitations when it comes to establishing whole-brain connectivity patterns. In this work, we discuss eight ways to infer causality in fMRI research: Bayesian Nets, Dynamical Causal Modelling, Granger Causality, Likelihood Ratios, LiNGAM, Patel's Tau, Structural Equation Modelling, and Transfer Entropy. We finish with formulating some recommendations for the future directions in this area

    Flexible Bayesian Dynamic Modeling of Correlation and Covariance Matrices

    Full text link
    Modeling correlation (and covariance) matrices can be challenging due to the positive-definiteness constraint and potential high-dimensionality. Our approach is to decompose the covariance matrix into the correlation and variance matrices and propose a novel Bayesian framework based on modeling the correlations as products of unit vectors. By specifying a wide range of distributions on a sphere (e.g. the squared-Dirichlet distribution), the proposed approach induces flexible prior distributions for covariance matrices (that go beyond the commonly used inverse-Wishart prior). For modeling real-life spatio-temporal processes with complex dependence structures, we extend our method to dynamic cases and introduce unit-vector Gaussian process priors in order to capture the evolution of correlation among components of a multivariate time series. To handle the intractability of the resulting posterior, we introduce the adaptive Δ\Delta-Spherical Hamiltonian Monte Carlo. We demonstrate the validity and flexibility of our proposed framework in a simulation study of periodic processes and an analysis of rat's local field potential activity in a complex sequence memory task.Comment: 49 pages, 15 figure

    Structure Learning in Coupled Dynamical Systems and Dynamic Causal Modelling

    Get PDF
    Identifying a coupled dynamical system out of many plausible candidates, each of which could serve as the underlying generator of some observed measurements, is a profoundly ill posed problem that commonly arises when modelling real world phenomena. In this review, we detail a set of statistical procedures for inferring the structure of nonlinear coupled dynamical systems (structure learning), which has proved useful in neuroscience research. A key focus here is the comparison of competing models of (ie, hypotheses about) network architectures and implicit coupling functions in terms of their Bayesian model evidence. These methods are collectively referred to as dynamical casual modelling (DCM). We focus on a relatively new approach that is proving remarkably useful; namely, Bayesian model reduction (BMR), which enables rapid evaluation and comparison of models that differ in their network architecture. We illustrate the usefulness of these techniques through modelling neurovascular coupling (cellular pathways linking neuronal and vascular systems), whose function is an active focus of research in neurobiology and the imaging of coupled neuronal systems
    corecore