1,158 research outputs found

    Cross-layer static resource provisioning for dynamic traffic in flexible grid optical networks

    Get PDF
    Flexible grid networks need rigorous resource planning to avoid network over-dimensioning and resource over-provisioning. The network must provision the hardware and spectrum resources statically, even for dynamic random bandwidth demands, due to the infrastructure of flexible grid networks, hardware limitations, and reconfiguration speed of the control plane. We propose a flexible online–offline probabilistic (FOOP) algorithm for the static spectrum assignment of random bandwidth demands. The FOOP algorithm considers the probabilistic nature of random bandwidth demands and balances hardware and control plane pressures with spectrum assignment efficiency. The FOOP algorithm uses the probabilistic spectrum Gaussian noise (PSGN) model to estimate the physical-layer impairment (PLI) for random bandwidth traffic. Compared to a benchmark spectrum assignment algorithm and a widely applied PLI estimation model, the proposed FOOP algorithm using the PSGN model saves up to 49% of network resources

    An improved medium access control protocol for real-time applications in WLANs and its firmware development

    Get PDF
    The IEEE 802.11 Wireless Local Area Network (WLAN), commonly known as Wi-Fi, has emerged as a popular internet access technology and researchers are continuously working on improvement of the quality of service (QoS) in WLAN by proposing new and efficient schemes. Voice and video over Internet Protocol (VVoIP) applications are becoming very popular in Wi-Fi enabled portable/handheld devices because of recent technological advancements and lower service costs. Different from normal voice and video streaming, these applications demand symmetric throughput for the upstream and downstream. Existing Wi-Fi standards are optimised for generic internet applications and fail to provide symmetric throughput due to traffic bottleneck at access points. Performance analysis and benchmarking is an integral part of WLAN research, and in the majority of the cases, this is done through computer simulation using popular network simulators such as Network Simulator ff 2 (NS-2) or OPNET. While computer simulation is an excellent approach for saving time and money, results generated from computer simulations do not always match practical observations. This is why, for proper assessment of the merits of a proposed system in WLAN, a trial on a practical hardware platform is highly recommended and is often a requirement. In this thesis work, with a view to address the abovementioned challenges for facilitating VoIP and VVoIP services over Wi-Fi, two key contributions are made: i) formulating a suitable medium access control (MAC) protocol to address symmetric traffic scenario and ii) firmware development of this newly devised MAC protocol for real WLAN hardware. The proposed solution shows signifocant improvements over existing standards by supporting higher number of stations with strict QoS criteria. The proposed hardware platform is available off-the-shelf in the market and is a cost effective way of generating and evaluating performance results on a hardware system

    Distributed environmental monitoring

    Get PDF
    With increasingly ubiquitous use of web-based technologies in society today, autonomous sensor networks represent the future in large-scale information acquisition for applications ranging from environmental monitoring to in vivo sensing. This chapter presents a range of on-going projects with an emphasis on environmental sensing; relevant literature pertaining to sensor networks is reviewed, validated sensing applications are described and the contribution of high-resolution temporal data to better decision-making is discussed

    Enabling Technologies for Cognitive Optical Networks

    Get PDF

    Planning broadband infrastructure - a reference model

    Get PDF

    Reconfiguration in an Optical Multiring Interconnection Network - Masters Thesis, December 2002

    Get PDF
    The advent of optical technology that can feasibly support extremely high bandwidth chip-to-chip communication raises a host of architectural questions in the design of digital systems. Terabit per second (and higher) bandwidths have not been previously available at the chip level. In this thesis, we examine the use of this technology in two different scenarios, viz., as the interconnection network in a multiprocessor system and as a switch fabric in network routers. Specifically, we examine the performance gains associated with utilizing the bandwidth reconfiguration capabilities of a system based on this technology
    corecore