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Flexible grid networks need rigorous resource planning to avoid network over-dimensioning and re-
source over-provisioning. The network must provision the hardware and spectrum resources statically,
even for dynamic random bandwidth demands, due to the infrastructure of flexible grid networks, hard-
ware limitations, and the reconfiguration speed of the control plane. We propose a flexible-online-offline
probabilistic (FOOP) algorithm for the static spectrum assignment of random bandwidth demands. The
FOOP algorithm considers the probabilistic nature of random bandwidth demands and balances hard-
ware and control plane pressures with spectrum assignment efficiency. The FOOP algorithm uses the
probabilistic spectrum Gaussian noise (PSGN) model to estimate the physical-layer impairment (PLIs)
for random bandwidth traffic. Compared to a benchmark spectrum assignment algorithm and a widely
applied PLI estimation model, the proposed FOOP algorithm using the PSGN model saves up to 49% of
network resources.
© 2020 Optical Society of America
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1. INTRODUCTION

With the development of modern communication technology,
flexible grid networks have become a promising solution to over-
come shortages in network resources. Flexible grid networks
efficiently utilize the spectrum by partitioning it into many finely
grided frequency slots (6.25 GHz or 12.5 GHz) [1–3]. However,
network resources such as spectrum, transceivers, and switches
are costly and energy-consuming considering the constantly
increasing communication traffic. Efficient network resource
provisioning is essential for establishing future flexible grid net-
works. A robust cross-layer network resource provisioning ap-
proach needs to have three main components: a valid traffic
model, an efficient yet scalable resource assignment algorithm,
and an accurate physical layer model.

The increasingly heterogeneous traffic is geographically and
temporally dependent on traffic data-rates that can vary signifi-
cantly within hours [4]. In current dense wavelength division
multiplexed (DWDM) optical networks, time-varying traffic
does not severely impair the spectrum utilization because of
the coarse 50 GHz frequency grid [1]. However, for flexible
grid networks, heterogeneity does matter. Most provisioning
approaches do not consider the time-varying nature of the traf-

fic that has a random data-rate, and simply use the maximum
bandwidth of the traffic, referred to in this paper as standard
provisioning. Utilizing standard provisioning is an appropriate
solution for DWDM networks, but it is not efficient for flexible
grid networks. Migrating the algorithms designed for DWDM
networks to flexible grid networks without considering the im-
plications due to the finer grid is wasteful, and often results in
significant over-provisioning [3, 5, 6].

In addition, traffic comes from various applications with
different latency requirements. For example, some traffic, such
as autonomous driving data, remote control, and real-time voice
services, require low traffic latency. However, large-volume
data backup between data centers is not very latency-sensitive.
Resource provisioning algorithms can exploit such differences
in requirements.

For realistic continental-scale optical backbone networks, the
resource provisioning algorithm has to satisfy the following
requirements: (a) the algorithm should be non-disruptive and
long-term stable for established connections; (b) the network
accessibility must be robust and reliable; (c) the algorithm should
not be too conservative to prevent resource over-provisioning [3,
7].

http://dx.doi.org/10.1364/jocn.XX.XXXXXX
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Offline resource allocation algorithms satisfy requirements
(a) and (b). These algorithms are suitable for traffic that is slowly
time-varying (months or years) and can thus be considered de-
terministic. Offline algorithms are also referred to as static al-
gorithms due to the reasons mentioned above, and tradition-
ally configure the traffic by its maximum bandwidth needed to
provide high robustness. These less time-sensitive algorithms
pre-assign fixed spectrum and routing, and the control plane
executes the pre-planned results by assigning the traffic with
fixed resources [3, 7]. Therefore, requirement (c) above is not
satisfied by conventional offline algorithms because they tend
to be over-conservative and lack flexibility.

On the contrary, online algorithms are considered dynamic
because they deal with fast-varying traffic in real-time or within
a short time delay (minutes or hours). These algorithms easily
meet requirements (b) and (c) because the resources (routing and
spectrum) are assigned flexibly by the control plane in one or a
few time periods with respect to the actual network state (traffic
volume, signal quality, control plane load and other metrics of
the network). However, online algorithms are significantly less
stable due to the frequent changes in established connections,
and can thus add substantial pressure to the control plane and
hardware infrastructure [3].

In recently proposed offline resource provisioning algorithms
for time-varying traffic [3, 8–10], time is considered an extra
optimization dimension. These algorithms perform a flexible re-
source allocation based on a highly-scalable dynamic resource as-
signment while considering the comprehensive interests of mul-
tiple consecutive time periods (overall interests within the time
frames). In [10], the proposed algorithm employs this approach
using integer linear programming (ILP) with time-varying traf-
fic between time periods. It also proposes an elastic-spectrum
allocation to prevent wasting spectrum resources. However,
this algorithm causes much network disruption, which requires
more advanced hardware and results in a heavy computational
burden [3, 7].

In [8, 9], the authors proposed using the statistical network
assignment process (SNAP) algorithm based on Monte Carlo
simulations to obtain the expected network state. The traffic’s
data-rate is randomly selected in each simulation trial (also con-
sidered as a time period), and then network resources are as-
signed by a static network planning algorithm for the randomly-
selected traffic state. After obtaining all simulated time periods,
the hardware infrastructure, e.g., regeneration resources (regen-
eration nodes and circuits), are then assigned statically. This al-
gorithm requires an astronomically large number of simulation
trials to obtain all possible network states when the problem di-
mension is large and requires extremely massive computational
resources.

In this paper, which extends our preliminary work [11], we
propose a flexible online-offline probabilistic (FOOP) combined
resource provisioning algorithm. The FOOP algorithm is a rout-
ing, spectrum, and regeneration assignment (RSRA) algorithm.
It considers the randomness of the demands’ bandwidth as
an extra optimization dimension instead of considering time
as the extra dimension. Time-varying traffic is modeled in a
probabilistic way, and thus the network resources (spectrum)
are also assigned probabilistically. With the probabilistic infor-
mation about the traffic, the overall network resources can be
aggressively planned to prevent over-provisioning. The FOOP
algorithm provides a comprehensive solution with respect to
all traffic scenarios without depending on time periods. The
complexity of the FOOP algorithm is as low as a single trial of

SNAP. Therefore, it is able to address the resource allocation
problem for continental-scale networks in which every node has
data transmission to every other node.

Furthermore, taking into account the probabilistic nature of
heterogeneous traffic, instead of conservatively reserving re-
sources for rare scenarios (always reserving spectrum for the
maximum bandwidth that may be needed), the FOOP algorithm
avoids resource over-provisioning by aggressively assigning net-
work resources to common scenarios. It then addresses the rare
scenarios when the bandwidth exceeds the provisioned spectral
allocation by a compensation mechanism. Our proposed FOOP
algorithm saves considerable spectrum usage.

Due to the nature of realistic traffic, some demands are more
resource-consuming than others (bottlenecks of resource provi-
sioning); we refer to these as resource-consuming (RC) demands.
The others we refer to as low-resource-consuming (LRC) de-
mands. In this research, RC demands are planned by the offline
algorithm, and LRC demands are assigned by an online algo-
rithm. Through this design, the FOOP algorithm balances the
aforementioned requirements (a), (b), and (c). The offline part
provides non-disruptive and stable light-paths with a carefully
planned network resource assignment to the bulk of the traffic.
The online part for the remaining LRC demands adds flexibility
to the resource assignment and significantly reduces the com-
plexity.

The standard Gaussian noise (GN) model is one of the sim-
plest and most popular physical-layer impairment (PLI) esti-
mates, but it is not suitable for estimating the PLIs of random
bandwidth traffic [12, 13]. In [5], we propose a probabilistic
spectrum Gaussian noise (PSGN) model based on the GN model
to optimize the regeneration resource deployment for long-haul
optical networks. The PSGN model is suitable for random band-
width traffic and results in simple closed-form equations. How
conservative the algorithm is in estimating the noise level (the
margin between the actual noise and the noise estimated by
PSGN for random bandwidth demands) is selectable by the net-
work designer. Unlike the widely applied transmission reach
(TR) based PLI estimate [6, 14], which estimates the worst-case
PLIs, the GN-based PSGN model is network-state dependent
and thus provides higher accuracy and remarkable resource
savings. We show through simulation that using the proposed
PSGN model saves almost half of the regeneration resources
needed compared to using the TR model.

We envision the FOOP algorithm using the PSGN model as
an integral part of dynamic and heterogeneous optical networks
of the future. It can provide network operators with information
about spectrum reserves that operators can use opportunistically.
They may even be able to lease their precious spectrum resources
to other operators while still preserving their data transmission
requirements [15, 16].

This paper is organized as follows. In Section 2, we introduce
the proposed FOOP algorithm. Section 3 then describes the
proposed PLI model, the PSGN model. Section 4 presents the
regeneration resource deployment scheme for long-haul optical
networks. Section 5 provides our simulation setting, numerical
results, and analyses. Finally, we draw conclusions in Section 6.

2. FLEXIBLE-ONLINE-OFFLINE PROBABILISTIC ALGO-
RITHM

We envision a software-defined network (SDN) as shown in [Fig.
3, 17] and [Fig. 7, 7]. The SDN control layer sends instructions
to the network infrastructure via OpenFlow [17]. Centralized
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SDN controllers realize network functions such as routing and
demand accommodations [7, 17]. The FOOP algorithm is em-
bedded in the SDN controllers in the control layer to efficiently
accommodate network resources.

The FOOP algorithm utilizes probabilistic information about
the traffic to accommodate bottleneck demands aggressively. It
can be applied to networks using any routing algorithm, such
as shortest-path. In order to add flexibility to the network, the
FOOP algorithm provisions spectral resources for smaller de-
mands through an online approach.

The FOOP algorithm aggressively assigns a static spectrum
to random bandwidth traffic in order to avoid network disrup-
tion (relieving hardware and control plane pressure) but still
saving spectral resources. Instead of reserving the maximum
spectrum that may be needed for each demand, the spectrum
(or guard-bands) allocated to adjacent demands is allowed to
overlap slightly with a low probability of occurrence. When the
spectrum assigned to two adjacent demands overlaps because
the demands experience large bandwidths at the same time,
the portion of the signal in the overlapped spectrum may be
corrupted.

The resulting rare spectral overlap can have different effects
on different network designs. In classical networks with large
guard-bands between channels, the idea of placing adjacent
channels with low probability of occurrence closer simply re-
duces the size of these margins. In marginless or low-margin
networks, the signal in the potentially overlapped spectral re-
gion must be pre-processed (pre-filtered and a collision warn-
ing generated) to avoid corruption, and it may become dis-
torted. For sliced spectrum wavelength-division multiplexing
(WDM) optical networks [18], this intentional spectrum over-
lap is manageable and almost harmless. In these networks,
multiple independent 2.5-10 Gb/s sub-channels are groomed
and transmitted as super-channels of ≥ 40 Gb/s [18]. Due
to the independence between sub-channels, a collision of two
super-channels only corrupts the sub-channels on the edges that
overlap; the non-overlapped sub-channels are not corrupted.
In orthogonal frequency-division multiplexing (OFDM) based
optical networks [1] that comprise independent sub-carriers
for data transmission, the impact of spectral overlap is similar.
When a spectrum collision occurs, only overlapping sub-carriers
are corrupted; the remaining non-overlapping sub-carriers are
not affected. For the rare occurrence of a traffic collision, the
control plane can easily compensate for the loss of data by re-
transmission. A clever network control system may place latency
insensitive sub-channels at the outer edges of the spectrum, in
case a re-transmission is necessary. For networks catering to
broadband single-carrier signals, signal processing may be used
to correct the signal distortion caused by spectral overlap or
over-filtering, as was suggested in [19].

A. Demand Statistics and Partitioning
For the proposed RSRA algorithm, FOOP, we assume the cu-
mulative distribution function (CDF), F∆q (δ), and the maximum
bandwidth, Bq = max supp ∆q, of the random bandwidth ∆q are
known for demand q ∈ D, where D represents all demands that
need to be served in the network. In Section 5C, we consider the
case when the CDF is not fully known or inaccurately estimated.

As described in Section 1, traffic is categorized into RC and
LRC demands. The FOOP algorithm comprises two stages: 1)
an offline resource provisioning algorithm for the RC demands
and 2) an online assignment for the LRC demands, as shown
in Algorithm 1. RC demands deserve to be aggressively provi-

sioned in order to maximally save limited network resources.
LRC demands can be assigned by our online algorithm after
executing the offline algorithm in order to utilize the fragmented
network resources.

In RSRA algorithms, the network resources consumed (spec-
trum usage and regeneration resource) by a demand q correlate
with the route distance `q and the maximum bandwidth Bq for
demand q ∈ D. Hence, we propose a multi-term cost function
for prioritizing the allocation of demands on the network,

H(q) = v`q + χBq, (1)

where v and χ are weighting parameters for balancing the fac-
tors. Utilizing (1), demands are sorted and categorized as ei-
ther RC or LRC and then offered as the input to either the of-
fline or online algorithm, described below. DRC and DLRC rep-
resent the sets of RC and LRC demands, respectively, where
D = DRC ∪DLRC. Once the demands have been partitioned,
the algorithm performs the offline and online steps, successively.
By changing the weighting parameters, H(q) emphasizes a dif-
ferent priority of network resources and hence obtains different
orders of demands and different elements in DRC and DLRC,
which impacts the results of the RSRA algorithms.

B. Offline Resource Provisioning
The offline provisioning algorithm contains three steps, shown
in Algorithm 2, to assign resources to the demands categorized
as resource-consuming. This algorithm is a generalization of the
approach given in [11]. First, a routing and spectrum assignment
(RSA) is performed: demands are routed by a desired routing
algorithm (we use the shortest-path algorithm for our results),
and then a probabilistic spectrum assignment is employed for
the random-bandwidth RC traffic. Second, having obtained the
RSA, the PSGN model is then used to predict the extent of PLIs
for the random bandwidth demands. Third, an optimal mixed
integer linear program (MILP) [14] uses the estimate of the PLIs
to optimally assign the regeneration nodes and circuits in the
network.

The traffic can be routed through any stand-alone algorithm
(not performed jointly with the spectrum assignment), such
as the widely-applied shortest-path algorithm, which is very
computational friendly. As is well known, the shortest-path
algorithm trades off the complexity and performance (as mea-
sured by the resources used). In this research, we do not explore
the effect of diverse routing schemes on network resource usage
since this topic has been well studied [3, 20]. The route (ordered
set of nodes or links) for demand q is denoted as Uq.

The probabilistic spectrum assignment attributes a frequency
range and determines a spectrum occupancy distribution within
this range on the light-path for each demand q ∈ DRC. For every
possible bandwidth realization δ, a starting frequency f start

q (δ)
within the spectrum assigned for q is determined by step 1 in
Algorithm 2 based on the spectrum assignment scheme used.
Note, f start

q (δ) denotes the lowest frequency assigned to q when
∆q = δ. This algorithm operates on any spectrum allocation
scheme. For the numerical results in this paper, we use the
first-fit spectrum assignment due to its scalability.

The offline portion of the FOOP algorithm assigns spectrum
aggressively by exploiting the probability that a frequency f is
occupied by demand q on link l, denoted as Sq,l( f ), as shown in
Figure 1. Let Iq,l( f ) ∈ {0, 1} denote the presence of demand q
on link l at frequency f ; then Pr[Iq,l( f ) = 1] = Sq,l( f ) represents
demand q’s occupancy probability, i.e., Sq,l( f ) = Pr[ f start

q (∆q) ≤
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Algorithm 1. Flexible Online-Offline Combined Probabilistic
Algorithm

Input: Demands q ∈ D with known bandwidth statistics F∆q ;
network topology with a set of links L and nodes N; net-
work parameters F as listed in Table 1; spectrum overlapping
probability threshold B.
Definitions: The network is modeled as a connected graph
(N, L) where a node is denoted by n ∈N and a unidirectional
link l ∈ L. U is the routing data for the input demands;
Uq ∈ U is the route for a demand q ∈ D; H is the vector of
costs for the input demands with elements H(q); subscripts
RC and LRC represent the sets of RC demands DRC and LRC
demands DLRC, respectively; C is the spectrum allocation
for the demands, where CLRC ∪ CRC = C; URC and ULRC
are the routes for demand sets DRC and DLRC, respectively;
GRC is the estimate of PLIs of the RC demands, derived in
Section 3; T is the regeneration nodes and circuits assignment,
described in Section 4. For network planning, define B as
the set of maximum bandwidths Bq for all demands q; for
network operation, define B as the set of actual bandwidths
δq for all demands q.
procedure FOOP ALGORITHM(D, L, N, B, F)

I. Routing:
Perform the shortest-path algorithm on all demands D:
Obtain the routing data U for D

II. Sorting:
Calculate demands cost by H(q) = v`q + χBq
Categorize demands into DRC and DLRC based on de-

scending ordered elements of H:
Obtain DRC and DLRC
III. Spectrum assignment:
procedure OFFLINE PROBABILISTIC ALGORITHM(DRC,

L, N, B, F)
Obtain URC, CRC, GRC, and T

end procedure
procedure ONLINE ASSIGNMENT(DLRC, URC,

CRC, L, N, F, B)
Obtain ULRC and CLRC

end procedure
end procedure
Output: URC, ULRC, CRC, CLRC, GRC, and T

f ≤ f start
q (∆q) + ∆q]. Depending on the CDF of the bandwidth,

Sq,l( f ) could have long low-probability tails.
We propose to aggressively assign spectrum to demands

so that there is a small probability B of overlap between ad-
jacent connections’ reserved spectrum. Recall that spectrum
collisions only influence the spectral guard-bands or over-
lapped sub-channels while keeping the data transmission of
non-overlapping signals intact. In the likely case that overlap-
ping does not happen, all the data are successfully transmitted.
POL

l represents the overlapping probability at frequency f on
link l:

POL
l ( f ) = Pr[ ∑

q, l∈Uq

Iq,l( f ) > 1]

= 1− ∏
q, l∈Uq

Sq,l( f )− ∑
q, l∈Uq

Sq,l( f ) ∏
x 6=q

[1− Sx,l( f )]

 .

(2)
where x represents adjacent demands sharing the same link with

Fig. 1. (a) CDF of bandwidth of demand q. (b) Frequency occu-
pancy distribution Sq,l( f ) of demand q.

demand q.
In order to achieve reliable and robust data transmission, we

design the offline algorithm so that for each link l, POL
l ( f ) ≤

B, ∀ f . This condition allows a limited spectrum assignment
overlap.

Once the routing and spectrum assignments are executed, the
PSGN model is used to provide a noise estimate GRC, where the
PLIs of all demands q ∈ DRC are estimated. The PSGN model
first described in [5] is accurate at estimating the PLIs of random
bandwidth traffic. It is also able to estimate the PLIs in scenarios
with non-zero probability of intentional spectrum collisions. To
account for spectral collisions, and using (2), the spectrum oc-
cupancy probability at frequency f for other demands x 6= q on
link l can be written as

P̂q,l( f ) = Pr[ Îq,l( f ) = 1] = Pr[∑
x 6=q

Ix,l( f ) ≥ 1] (3)

= 1−∏
x 6=q

[1− Sx,l( f )], (4)

where Îq,l( f ) ∈ {0, 1} is the indicator that denotes the occupancy
of frequency f by at least one other channel sharing link l with
demand q. P̂q,l( f ), which measures the probability that a fre-
quency point f has been re-utilized (assigned multiple times
because of frequency overlap) for other demands sharing the
same link with the channel of interest q, is needed to calculate
the PLIs in step 2 of Algorithm 2. This is described below in
Section 3.

As shown in step 3 of Algorithm 2, after estimating the PLIs
for all demands, an MILP algorithm described below in Section 4
is applied to optimally and globally deploy regeneration nodes
to guarantee the transmission quality.

C. Online Assignment
After carefully and aggressively assigning resources using prob-
abilistic provisioning for the bottleneck RC demands, an online
assignment is designed for the LRC demands, shown in Algo-
rithm 3. These LRC demands are routed by a desired routing
algorithm (the shortest-path algorithm) with a standard first-fit
spectrum assignment, shown in step 1 in Algorithm 3. Because
these remaining random bandwidth demands do not require
many resources, assigning these demands by an online method
rarely causes disruption. Moreover, these demands do not add
significant PLIs because they are either small in bandwidth or
short in transmission distance. Assigning these demands by
the online algorithm adds flexibility and prevents wasting frag-
mented network resources. Therefore, the online assignment
enhances the efficiency of resource utilization.
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Algorithm 2. Offline Probabilistic Algorithm [11]

Input: resource-consuming demands DRC; network topology
with a set of links L and nodes N; network parameters F;
spectrum overlapping probability threshold B.
Definitions: Same as for Algorithm 1. In addition, f start

q (δ)
denotes the lowest frequency assigned to demand q ∈ DRC
when ∆q = δ; CRC comprises f start

q (δ) for all bandwidths
δ ∈ supp ∆q and all q ∈ DRC.
procedure OFFLINE PROBABILISTIC ALGORITHM(DRC,
L, N, B, F)

1. Route demands DRC using any desired routing algo-
rithm:

Obtain the routing data URC for DRC
for each q ∈ DRC do

Based on Uq, use first-fit to find f start
q (Bq), where Sq,l( f )

satisfies POL
l ( f ) ≤ B, ∀ f , l.

end for
Obtain the spectrum assignment CRC for DRC
2. Use the PSGN model for PLI estimation:
Obtain the noise estimation GRC
3. Based on DRC, GRC, and URC, use MILP to assign the

regeneration nodes:
Obtain the regeneration assignment T

end procedure
Output: URC, CRC, GRC, and T

The online assignment algorithm is invoked in two modes:
network operation and network planning. In network operation,
the bandwidths δq of all demands q are known and input to
Algorithm 3. In network planning, however, only the statistics
of the random bandwidths are known, and their maximum
values Bq are input to Algorithm 3, as captured by parameter B.

3. MODELING PLI FOR AN OVERLAPPED SPECTRUM
ASSIGNMENT

Long-haul optical networks require an accurate PLI estimation
algorithm so that the quality of transmission (QoT) for demands
is guaranteed. In this paper, we make the following assumptions
for modeling PLIs to calculate GRC, which consists of Gq,l ∈ GRC
for each q ∈ DRC and l ∈ L. We consider a dual-polarization
transmission scheme with the same modulation format and the
same power spectral density (PSD) in both polarizations. We
adopt similar assumptions as in [14, 21]. Several main types of
PLIs are taken into account: nonlinear distortion, chromatic dis-
persion, and amplified spontaneous emission (ASE) noise [12].
Modern digital signal processing techniques are able to com-
pensate for chromatic dispersion. Thus we only consider the
impairments of the nonlinear interference (NLI) due to the inter-
action of nonlinearity and dispersion in the fiber and ASE noise
due to the erbium-doped fiber amplifiers [14, 21]. We assume
that the PLIs consist of additive noise and interference (assumed
independent), accumulating incoherently over all spans on the
transparent segment. In this paper, we consider the widely ap-
plied transmission reach (TR) model as the benchmark. The TR
model is conservative and estimates the worst-case noise for
demands [6, 8, 14, 21].

The so-called Gaussian noise (GN) model is one of the most
widely-applied PLI estimates with low complexity and accept-
able accuracy. Furthermore, it has been shown to have ad-
vantages when used in RSA algorithms because it is a state-

Algorithm 3. Online Assignment Algorithm

Input: LRC demands DLRC; network topology with a set of
links L and nodes N; network parameters F; Results of routed
demands URC for DRC; Results of assigned spectrum CRC for
DRC; demand bandwidths B.
Definitions: Same as for Algorithm 1.
procedure ONLINE ASSIGNMENT(DLRC,URC,
CRC, L, N, F, B)

Route demands DLRC with a desired routing algorithm:
Obtain the routing data ULRC for DLRC
for each q ∈ DLRC do

Based on Uq, URC, and CRC, find the first spectrum
gap starting at f = 0 to fit δq

end for
Obtain the spectrum assignment CLRC for DLRC

end procedure
Output: ULRC and CLRC

dependent noise estimate and thus results in network resource
saving [12, 13, 21, 22]. However, it is unable to account for de-
mands with random bandwidth. The probabilistic spectrum
Gaussian noise (PSGN) model described in [5] is a GN-model-
based network-state dependent PLI estimation model that incor-
porates knowledge about the statistics of the traffic bandwidth.
It can thus be used to estimate the accumulated noise for each de-
mand in long-haul optical networks that use any RSA algorithm
for random bandwidth traffic, including the FOOP and standard
provisioning. For use in the FOOP algorithm, we must modify
the PSGN model slightly to allow for spectrum overlapping.

For deterministic bandwidth traffic, the PLI PSD per span per
polarization for channel of interest q on link l is given by

Gq,l = GASE
q,l + GNLI

q,l , (5)

where GASE
q,l and GNLI

q,l represent the PSD of ASE and NLI, respec-
tively. The ASE noise for the channel of interest is determined
only by the signal transmission distance `q. The ASE noise is
usually considered the dominant PLI, but the NLI noise, which
is signal dependent, still significantly impacts network resource
provisioning [5,11]. We assume an ideal amplifier model for
calculating the ASE noise. Therefore, the ASE noise does not
depend on the demands’ random bandwidths. We focus on ex-
amining the random bandwidth effects on the NLI noise, which
can be large depending on the network topology and the number
of demands accommodated in the networks.

The fiber nonlinearity is given by

GNLI
q,l = GSCI

q,l + GXCI
q,l (6)

where GSCI
q,l represents the PSD of self-channel interference (SCI)

per span per polarization, and GXCI
q,l represents the PSD of the

cross-channel interference (XCI) per span per polarization con-
tributed by all channels that share the same spectrum with the
channel of interest. Hence, only the nonlinear noise (the SCI and
XCI) is influenced by the random bandwidths of the demands
and the spectrum assignment.

The PSGN model uses the variance (Var[·]) and expected
value (E[·]) of the SCI and the expected value of the XCI to
provide a network-state dependent estimate of GNLI

q,l . The PSGN
PSD estimate can be written as [5]

GPSGN
q,l = E[GSCI

q,l ] + r
√

Var[GSCI
q,l ] + E[GXCI

q,l ] (7)
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where r is a parameter defining how conservative the estimate is.
A more conservative estimate (a larger value of r) yields a higher
reliability, meaning a low risk that the actual noise exceeds the
PSGN estimated noise. Empirically, the variance of the total
XCI is usually more than 10 times smaller than that of SCI [5].
Therefore, we assume that the variance of XCI is negligible.
Using (7), the general PLI estimate per span per polarization
given in (5) can be re-written for random bandwidth traffic as

Gq,l = GASE
q,l + GPSGN

q,l . (8)

For random bandwidth demand q, GASE
q,l can still be computed

as usual [14]:
GASE

q,l = (eαL − 1)hνnsp. (9)

where L, α, nsp, and ν are defined in Table 1; h is Planck’s con-
stant. E[GSCI

q,l ] is calculated by [Eq. (7), 5]:

E[GSCI
q,l ] = µG3

∫ ∞

−∞
ln(ρδ2) dF∆q (δ). (10)

Fiber parameters are defined in Table 1. µ = (3γ2)/(2πα|β2|)
and ρ = (π2|β2|)/2α. G represents the signal PSD per polariza-
tion, assumed to be the same for all channels [22]. Var[GSCI

q,l ] is
calculated by [Eq. (8), 5]:

Var[GSCI
q,l ] = µ2G6

∫ ∞

−∞
ln2(ρδ2) dF∆q (δ)− E2[GSCI

q,l ]. (11)

In [Eq. (3), 5], the expected XCI, E[GXCI
q,l ] = ∑x E[GXCI

q,x,l ],
where x is each demand sharing at least one link with q (x 6= q),
must be re-written for the proposed spectrum overlapped sce-
nario because the XCI contributed by each demand x is no longer
independent. We assume that the channel of interest q is cen-
tered at frequency fq. Using a similar idea as in [Eq. (9), 5], the
expected XCI can be estimated by the Riemann sum

E[GXCI
q,l ]

= µG3E
[ ∞

∑
i=0

Îq,l( f end
q (Bq) + id f ) ln

 | f end
q (Bq) + id f − fq|+ d f

2

| f end
q (Bq) + id f − fq| − d f

2


+

0

∑
i=−∞

Îq,l( f start
q (Bq) + id f ) ln

 | f start
q (Bq) + id f − fq|+ d f

2

| f start
q (Bq) + id f − fq| − d f

2

]
(12)

= µG3
[ ∞

∑
i=0

P̂q,l( f end
q (Bq) + id f ) ln

 | f end
q (Bq) + id f − fq|+ d f

2

| f end
q (Bq) + id f − fq| − d f

2


+

0

∑
i=−∞

P̂q,l( f start
q (Bq) + id f ) ln

 | f start
q (Bq) + id f − fq|+ d f

2

| f start
q (Bq) + id f − fq| − d f

2

]
(13)

where f end
q (Bq) = f start

q (Bq) + Bq is the highest frequency as-
signed to the channel of interest q. Similarly, f start

q (Bq) is the
lowest frequency of the channel of interest q. d f is the frequency
differential.

P̂q,l( f ) and Îq,l( f ) are defined in Section 2B for evaluating the
effects of channel q’s adjacent channels. Equation (13) follows
from (12) and (3), because the expected value in (12) applies only

Table 1. System Parameters [14, 21]

Parameter Symbol Simulation value

Fiber power attenuation α 0.22 dB/km

Fiber group velocity dispersion β2 −21.7 ps2/km

Fiber nonlinearity γ 1.32× 10−3 (W ·m)−1

Light frequency ν 193.55 THz

Spontaneous emission factor nsp 1.58

Fiber length per span L 100 km

to Îq,l(·). When d f → 0, the discrete sum becomes an integral.
Eq. (13) can be simplified as in [Eq. (10)-(11), 5], and written as

E[GXCI
q,l ] =µG3

∫ f start
q (Bq)

−∞

P̂q,l( f )
| f − fq|

d f +
∫ ∞

f end
q (Bq)

P̂q,l( f )
| f − fq|

d f .

(14)

The detailed derivation and validation of the PSGN model
for non-overlapping spectra can be found in [5]. To validate
the overlapping spectrum scenario, we conducted a 1,000,000-
trial Monte Carlo simulation with randomly generated traffic,
the average value of the which yielded negligible error for (14)
compared to the standard GN model applied to each trial [5].

The PSGN model is used in Algorithm 2 as follows. GRC,
the set of PLIs, comprises the PLI estimate Gq,l (per span per
polarization) for each demand q ∈ DRC and link l ∈ Uq, com-
puted by the noise estimated in (8), where GASE

q,l and GPSGN
q,l

are given by (9) and (7), respectively. E[GSCI
q,l ], Var[GSCI

q,l ], and

E[GXCI
q,l ] are computed by (10), (11), and (14). On the network

level, PLIs for each demand q accumulate over all spans of Uq
during transmission.

A theory for deploying regeneration resources to negate ac-
cumulated PLIs, as step 3 in Algorithm 2, is introduced in the
following section.

4. REGENERATION NODES DEPLOYMENT FOR RAN-
DOM BANDWIDTH TRAFFIC

As discussed above, during signal transmission through long-
haul optical backbone networks, the accumulated noise severely
impairs the QoT. The transmitted data cannot be appropriately
decoded if the accumulated noise exceeds the required noise
threshold. Regeneration nodes are used to refresh the signal and
fully negate the accumulated noise by performing an optical-
electrical-optical (OEO) process of re-timing, re-shaping, and
re-amplification [6]. However, regeneration nodes are scarce
resources due to the high cost of the requisite equipment and
its maintenance. Thus, regeneration nodes must be carefully
planned and deployed. A regeneration node contains regenera-
tion circuits, and each regeneration circuit serves one light-path.
Considering the limited number of transceivers per reconfig-
urable optical add-drop multiplexer (ROADM) [1] and data
processing ability per regeneration node [23], the number of
circuits per regeneration node is limited.

In this section, we use a path-based MILP algorithm to op-
timize the assignment of regeneration resources to nodes. The
network is modeled as a connected graph (N, L). Note, for a bet-
ter description of the MILP formulation, we refine the notation
of the unidirectional link l as li,j, representing the source node
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i and destination j for the signal propagation direction. DRC is
the demands set used by the MILP algorithm. The optimization
objective is εT + C, where T is the total number of regeneration
nodes needed; C is the total number of regeneration circuits
used; and ε is a balancing factor.

The PSGN model (8) provides a link-based noise estimation
Gq,l for each demand per span per polarization. Ĝq,li,j

represents
the link level PSGN estimated noise for demand q ∈ DRC on link
li,j, Ĝq,li,j

= Gq,l=li,j
‖li,j‖, where ‖li,j‖ is the number of spans on

link li,j. Zq,n ∈ R represents the accumulated noise at node n for
demand q. In is a binary variable used as a regeneration node
indicator: if node n is a regeneration node, In = 1; otherwise,
In = 0. Iq,n is a binary decision variable indicating if a regen-
eration circuit is assigned at node n for demand q, (Iq,n = 1),
and otherwise, Iq,n = 0. Suppose that the route Uq consists
of consecutive nodes n1, n2, . . . , nM. Then Zq,ni at node ni, for
i = 1, . . . , M, is given by

Zq,ni =

{
0, if i = 1 or Iq,ni = 1,
Zq,ni−1 + Ĝq,lni−1,ni

, otherwise,
(15)

which represents the noise accumulation along the route from
the beginning node of the transparent segment (light-path with-
out regeneration) to node ni.

The constraint enforcing that regeneration circuits can only
be applied at regeneration nodes is given by

∑
q∈DRC

Iq,n ≤ InImax, ∀n ∈N, (16)

where Imax is the maximum number of circuits per regeneration
node. The objective function variables are accumulated using

T = ∑
n∈N

In; (17)

C = ∑
n∈N,q∈DRC

Iq,n; (18)

which count the total number of regeneration nodes and regen-
eration circuits used, respectively.

The ratio of input signal power G to accumulated noise for
each demand q is given by

G
Zq,ni

≥ SINRth, ∀q ∈ DRC, n ∈N, (19)

which should always be greater than the required signal to inter-
ference plus noise ratio (SINR) threshold SINRth for demand q
in order to satisfy the QoT requirements.

5. SIMULATION SETTINGS AND NUMERICAL RESULTS

In order to test the performance of the proposed algorithm,
numerous network-level simulations were conducted. The fol-
lowing simulation results demonstrate the benefits of using the
proposed FOOP algorithm and the PSGN model.

A. Traffic Model
We simulated realistic traffic in a real continental-scale network
to show the potential benefits to industry brought by the pro-
posed algorithm. The traffic model used is based on statis-
tics from [24]: the average demand bandwidth is related to
the traffic volume, which is estimated based on the popula-
tion served by pairwise network nodes, provided by [24], and
the bandwidth variance is a function of the traffic variance,

which is estimated based on the statistics from major opera-
tors [4]. In accordance with [4], we categorize each traffic de-
mand bandwidth using three realizations: large, medium, and
small, which are representative of the traffic volume experienced
in one day (corresponding to rush hour traffic δL, normal traffic
δM, and light traffic δS scenarios) with bandwidth realization
probabilities Pr(∆ = δL) = 5/24, Pr(∆ = δM) = 12/24, and
Pr(∆ = δS) = 7/24. In simulation, the same random band-
width traffic is applied to all algorithms in all scenarios. The
time-varying demand bandwidths are considered as statistically
independent in Sections 5C and 5D. Correlated traffic is simu-
lated in Section 5E.

B. Simulation Settings
The NSF-24 network with |N| = 24 nodes and |L| = 86 links is
used to test the proposed algorithm. We assume a flexible grid
network with spectrum slices of 6.25 GHz, with 4400 GHz of
available spectrum (C-band). We consider that each node in the
network communicates with all the others, i.e., the total number
of demands is |N| × (|N| − 1) = 552. All demands use the
same modulation format. Neither wavelength conversion nor
modulation conversion is utilized. The simulation parameters
are listed in Table 1.

C. Network Planning: Spectrum Usage, Network Throughput,
and Transmission Loss

In this section, we test the proposed FOOP algorithm to establish
a trade-off between spectrum usage, network throughput, and
transmission loss. The spectrum usage reflects the provisioning
efficiency of the proposed algorithm.

The network throughput is a metric to show the transmission
capacity of the algorithm. The average network throughput is
the data from the accommodated demands minus the transmis-
sion loss caused by the rare occurrence of spectrum collisions,
calculated as

Average throughput = η ∑
q

∫ ∞

−∞
Sq,l( f )d f − Transmission Loss,

(20)
where η is the modulation spectral efficiency, and the sum is
over all demands.

The transmission loss measures the stability of the proposed
algorithm. In this section, we consider the occurrence of any
assigned-spectrum overlap as causing data loss, as a worst-case
scenario. The transmission loss and, consequently, the network
throughput, are calculated using a path-based approach, i.e.,
they are calculated along the light-path from the source to the
destination. The transmission loss can be derived using

Transmission Loss = η ∑
q

∫ f end
q (Bq)

f start
q (Bq)

1− ∏
l∈Uq

[1− POL
l ( f )]d f . (21)

It is thus calculated by considering the probability of the data
lost by spectrum overlapping POL

l ( f ), accumulated along the
demand route Uq over all demands.

Two benchmark algorithms are used for comparison: stan-
dard provisioning (static provisioning according to the maxi-
mum bandwidth for each demand, equivalent to the FOOP with
B = 0%) and median provisioning (static provisioning that uses
the median value of the bandwidth for each demand, indepen-
dent of B; in our simulation settings, the median value of a
random bandwidth equals the value of its medium-sized band-
width realization δM). For fairness in comparison, the bench-
mark algorithms also comprise an offline static provisioning
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Fig. 2. Spectrum usage and average network throughput ver-
sus number of demands provisioned in the network for the
Hybrid demand ordering scheme.

step and an online dynamic portion. For the offline part, the
benchmarks execute resource provisioning without considering
any randomness in the demand bandwidth. The online part
of the benchmark algorithms is similar to the proposed FOOP
algorithm.

Further simulation details are as follows. Two overlapping
probability thresholds, B = 5% and 15%, are simulated. In
this section, the modulation format used for all demands is
polarization-multiplexed quadrature phase-shift keying (PM-
QPSK), requiring a pre-forward-error-correction (pre-FEC) bit
error rate (BER) of 4 × 10−3 (SINRth = 8.47 dB) [8, 14, 25].
To balance hardware pressures and algorithm scalability, the
number of demands processed in the offline static provision-
ing, |DRC|, using Algorithm 2 is 300 (RC demands) and the
remaining |DLRC| = 252 LRC demands are accommodated by
the online Algorithm 3.

We also consider different RC demand selection based on the
demand ordering scheme H. We test three schemes H, showing
three representative cases: considering bandwidth only (v = 0),
denoted as BW, routing only (χ = 0), denoted as Hops, and a hy-
brid of bandwidth and routing (v/χ = 1/20 GHz/km), which
makes v`q and χ max ∆q comparable, denoted as Hybrid. The
simulation results of different demand ordering schemes result
in different performances but a similar trend. For illustration
purposes, in this section we present results based on the Hybrid
demand ordering scheme.

Figure 2 shows both the spectrum needed by the provisioning
algorithms (on the left-side axis) and the network throughput
(on the right-side axis) versus the number of demands accommo-
dated. The first 50 demands require almost as much spectrum
as that needed by the remaining 502 demands. Furthermore,
with the resource-consuming demands DRC provisioned, the
remaining LRC demands DLRC require few additional spectrum
resources.

Figure 2 quantifies the trade-off between resource savings
(spectrum needed) and capacity (network throughput). Stan-
dard provisioning has the highest throughput but requires sig-
nificantly more spectrum than the 4400 GHz provided by C-
band [1]. The FOOP algorithm with B = 5% has almost the
same throughput compared to standard provisioning, yet saves
14% of the spectrum needed. Median provisioning and FOOP
with B = 15% require a decrease of 31% and 25% in spectrum re-
quired, respectively, compared to standard provisioning, which
is much less than that needed by FOOP with B = 5%. But these
provisioning algorithms sacrifice too much data throughput (on
the order of 105 Gbps throughput loss). Therefore, median pro-
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Fig. 3. Network transmission loss versus spectrum savings for
demands DRC and D provisioned using the Hybrid scheme.

visioning and FOOP with B = 15% are not sufficiently robust
to employ in backbone networks, and we do not discuss these
further.

The intentionally designed spectrum overlap between neigh-
boring channels saves spectrum resources but potentially results
in transmission loss, as shown in Figure 3. Considering only the
300 RC demands, DRC, standard provisioning (B = 0%) has no
transmission loss since it reserves the maximal resources needed
by demands. The FOOP algorithm with B = 5% results in less
than 2% data transmission loss, which is negligible, but saves
14% of spectrum resources. Median provisioning is independent
of the overlapping probability threshold B; it results in 25% data
loss. The LRC demands DLRC induce zero transmission loss
since they are provisioned with the online algorithm based on
their maximum bandwidth needs. For the other demand sorting
schemes H (BW and Hops), the trends in the results are similar
to the Hybrid; the performance of these schemes is described in
the next section.

In summary, saving on the required spectrum is achieved
at the cost of a potential loss of data transmission in the net-
work. However, the selection of a small overlapping probability
threshold of B = 5% leads to a negligible throughput loss with a
substantial spectrum saved. For all subsequent analyses, we use
B = 5% when referring to the FOOP algorithm.

To test the robustness of the FOOP algorithm to uncertainties
in the traffic bandwidth distribution, two scenarios were simu-
lated assuming an inaccurate traffic CDF. We consider the CDF of
the demands in Section 5A as the benchmark. We first simulate a
worst-case scenario where the FOOP is based on the benchmark
CDF, but the actual demand bandwidths are their maximum
values. (All other simulation settings remain unchanged.) The
transmission loss for this scenario is severe, 26%. Second, we
simulate the scenario with a less extreme mismatched CDF esti-
mate: the FOOP is based on the benchmark CDF, but the actual
demand bandwidths are normally distributed with the same
mean and variance as the benchmark. The transmission loss for
this scenario is 8%, which is still significantly higher than the 2%
transmission loss observed when the CDF is known precisely.
Therefore, obtaining an accurate demand CDF is essential for
our probabilistic resource provisioning algorithm. However,
with the current emphasis on network monitoring, we expect
that the characteristics of the heterogeneous traffic will be well
understood in the near future.

D. Network Operation: Bottleneck Demand Selection
Network resource usage depends significantly on the sequence
of demands accommodated [3, 14, 20]. In this section, we ana-
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Fig. 4. Simulated distribution of the total spectrum usage for
three resource consumption orderings. The solid dots and
triangles are the offline provisioning results for demands in
DRC for the FOOP (B = 5%) and standard provisioning (B =
0%), respectively. The box plot shows the maximum, upper
quartile, median, lower quartile, and the minimum.

lyze the impact of the ordering scheme, H, on network resource
usage. The criteria named above Hybrid, BW, and Hops are
investigated. We simulate the FOOP and the benchmark al-
gorithm, standard provisioning, using a 100,000 trial Monte
Carlo simulation. The Monte Carlo simulation randomly selects
the bandwidth of demands in D according to their probabili-
ties in order to test the operational performance given the pre-
planned results. The operational spectrum usage for demands
DRC with randomly selected bandwidth is unvarying since it
is pre-planned with probabilistic information. However, the
spectrum usage for D will vary because DLRC with randomly
selected bandwidth can fill the spectrum fragmentation using
the online provisioning scheme. The network transmission loss
and the average throughput are also verified in this section
by the Monte Carlo simulation, where the analytic results in
Sections 5 C are shown to be consistent with the results of the
simulation.

Figure 4 shows the distributions of spectrum usage for the
three different criteria obtained by Monte Carlo simulation for
the FOOP and standard provisioning. When all demands D

are provisioned, the spectrum usage of the FOOP algorithm is
again significantly lower than that of the standard provision-
ing, consistent with the pre-planning results in Section 5 C. The
Hops scheme has the lowest static spectrum needed for provi-
sioning demands in DRC, with the actual spectrum usage for
all demands D constantly and significantly exceeding the pre-
planned resources for the RC demands. This is because static pro-
visioning for the Hops criterion only accommodates demands
with long routes, and some of the remaining demands have
large bandwidths. These remaining demands in DLRC cannot
fit into the spectrum gaps left by provisioning the longest-route
demands DRC, which results in a need for additional spectrum.
Thus the Hops scheme leads to tremendous disruption during
the online stage; it results in excessive hardware pressure and
immoderate burden on the control plane.

For the FOOP algorithm, the Hybrid scheme requires 3%
less spectrum for static provisioning of the resource-consuming
demands than the BW scheme. In most cases, shown by the
box-plot in Figure 4, the subsequent dynamic provisioning does
not require additional spectrum resources beyond the static pro-
visioning, which leads to infrequent disruption. The spectrum
reserved by the static provisioning step for both the BW and
Hybrid schemes usually suffices for all demands in D, but the

Hybrid scheme saves more spectrum than the BW method. In
addition, the design margin between the maximum spectrum
(top of the box plot) and the static result (solid dot) for the
Hybrid is larger than that of the BW for the FOOP algorithm.
This means that given a smart operational scheme, the Hybrid
scheme would have more flexibility than the BW scheme. Lastly,
considering the factors impacting the PLIs (bandwidth and accu-
mulated length) [8], the Hybrid scheme is more comprehensive
for regeneration resource deployment, which does not consider
the LRC demands. In summary, as shown in Figure 4, the Hybrid
scheme provides the best trade-off among the three ordering
criteria because its static provisioning efficiently reserves spec-
trum for the RC demands, mitigates the disruption caused by
dynamic provisioning, and aligns with the nature of the PLIs.

E. Correlated Traffic

The scenarios in Sections 5 C and D assume that the demand
bandwidths are statistically independent of each other, i.e., the
probability of demand bandwidths varies independently. How-
ever, realistic traffic in optical backbone networks is often corre-
lated and varies with time. For example, a higher traffic volume
between all pairs of nodes is expected at major sports and enter-
tainment events. The assumption of uncorrelated traffic volume
may not yield results that are representative of correlated traf-
fic. Therefore, we simulate a scenario where the traffic volume
between adjacent demands sharing a link is correlated. The
conditional probability that a channel x adjacent to the channel
of interest q on a link has a large bandwidth, given that q has a
large bandwidth, is denoted by Pcorr. For the previous discus-
sion assuming independent traffic, based on the probability of
large, medium, and small bandwidth traffic, Pcorr = 7/24. We
simulate three additional cases: Pcorr = 1, where the traffic is
totally correlated, Pcorr = 0.5, and Pcorr = 0.7.

In general, a varying Pcorr will not result in a fixed overlap
probability threshold B. For example, the threshold B = 5% is
too strict to yield a high Pcorr. A higher value of B will result in
an unacceptable transmission loss in the low Pcorr case. For the
results in this section, the network transmission loss is fixed at
2% (equal to the network transmission loss with independent
traffic and B = 5% in Figure 2). We adopt a similar spectrum
overlapping situation as in the uncorrelated B = 5% case, where
overlapping occurs only when two adjacent channels x and
q both have a large bandwidth, i.e., ∆q = δL and ∆x = δL.
The spectrum assignment Sq,l( f ) can be obtained by using (20)
and (21), where the network transmission loss is fixed at 2%, and
POL

l ( f ) from (2) in this scenario can be re-written as

POL
l ( f ) = Pr[∑

q
Iq,l( f ) > 1]

= Pr[∆x = δL, ∆q = δL] = Pr[∆q = δL]Pcorr, (22)

where Pr[∆x = δL, ∆q = δL] is the joint probability that two
adjacent channels (x and q) have large bandwidth, and Pr[∆q =
δL] is the probability that the channel of interest q has a large
bandwidth.

Except for the conditional probability of the bandwidth in ad-
jacent channels, all simulation settings remain the same as above.
Only the offline provisioning phase in the FOOP algorithm is
simulated since the bandwidths of demands in the online provi-
sioning phase are taken as deterministic. The offline provision-
ing is executed by replacing the constraint POL

l ( f ) ≤ B, ∀ f in
step 1 of Algorithm 2 with the modified constraint (22).
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Fig. 5. Spectrum needed as a function of Pcorr for three de-
mand ordering schemes.

Figure 5 shows the effect that different bandwidth correlation
levels have on the required spectrum. For the FOOP algorithm,
an increase in the correlation results in an increase in the spec-
trum needed. For the Hybrid demand ordering scheme, the
independent traffic scenario requires 9% less spectrum than the
totally correlated traffic. The spectrum required for practical
traffic, where the correlation may vary with time, should remain
around the dashed lines. The double arrows show the spectrum
saving brought by the FOOP for correlated bandwidth demands
compared to standard provisioning. The spectrum needed using
standard provisioning does not depend on Pcorr. The FOOP
algorithm saves spectrum, even for highly correlated demands.
The spectrum saving brought by the FOOP algorithm varies
from 6% to 14% for the Hybrid demand ordering scheme.

F. Regeneration Resource Deployment
For long-haul optical networks such as the NSF-24 network,
regeneration resources are required to maintain error-free data
transmission. OEO processing ability and the parameters of the
ROADMs at the regeneration nodes limit the number of regener-
ation circuits per node [6, 23, 26, 27]. Regeneration nodes and
circuits are scarce resources and need to be efficiently deployed.
Regeneration resources are static resources and have to be pre-
planned by an offline method. In this section, we use the results
of Steps 1 and 2 of the offline Algorithm 2 in the regeneration
resource assignment. For the reasons given in Section 5D, we
use the Hybrid demand ordering scheme for the results in this
section.

In order to efficiently deploy the regeneration resources, accu-
rate PLI estimates are necessary. In this section, we optimize the
regeneration resource deployment using the proposed PSGN
model and compare it with the widely-applied TR model as a
benchmark.

F.1. Regeneration for PM-QPSK Modulation

We simulate the regeneration resource deployment algorithm,
described in Section 4, on the NSF-24 network using PM-QPSK
modulation with both the PSGN and TR models. The TR model
is the most conservative model considering the worst-case trans-
mission reach for the maximum bandwidth of the random band-
width demands. We compare the number of regeneration nodes
and circuits needed for both standard provisioning and the
FOOP algorithm for the same demands, assuming that the de-
mand bandwidths are statistically independent.

Figure 6 shows results on the number of regeneration nodes
needed with a different maximum number of circuits per node,
Imax, for the FOOP algorithm. The factor r is a measure of how
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Fig. 6. Number of regeneration nodes required as functions of
the maximum number of regeneration circuits per node, Imax,
with the FOOP algorithm using the PSGN model with various
r and the TR model; PM-QPSK modulation.

Table 2. Regeneration nodes and circuits required using the
PSGN model for PM-QPSK modulation

Regeneration Nodes

Circuits Imax =10 Imax =15 Imax =30

r=0.5 95 10 7 5

r=1.0 99 11 7 5

r=1.5 101 11 7 5
B=5%

TR 188 N/A N/A 8

r=0.5 88 9 7 5

r=1.0 90 9 7 5

r=1.5 95 10 7 5
B=0%

TR 188 N/A N/A 8

conservative is the PSGN model, as described in Section 3. For
Imax less than 50, the number of regeneration nodes required
decreases steeply as Imax increases. The algorithm using the
PSGN model has a looser Imax requirement compared to the TR
model. With Imax = 10 or 15, the algorithm using the TR model
has no solution for the NSF-24 network. Therefore, network
operators using the TR model require more advanced ROADMs
and higher data processing abilities.

As shown in Table 2, for Imax = 30, the PSGN model requires
37.5% fewer regeneration nodes and less than half of the regen-
eration circuits than the TR model. For Imax = 10, using the
smallest r, r = 0.5, saves 10% and 6% of the regeneration nodes
and circuits required, respectively, compared to using a higher
r, r = 1.5. The additional six regeneration circuits needed with
r = 1.5 implies that there are six demands that might fall short
of the required SINR threshold compared to less conservative
planning, i.e., r = 0.5. This shows a trade-off between network
resources and planning robustness: a more conservative PLI es-
timate leads to an increase in regeneration resources needed. In
general, the small loss in robustness can be absorbed by normal
network margins. For algorithms using the TR model, more
than half of the demands require regeneration at intermediate
nodes of the routes during transmission, as shown in Table 2.
This wastes tremendous network resources for OEO processing,
including hardware resources, computational resources, and
power, in order to gain the ultimate robustness in transmission.

For the standard provisioning algorithm (B = 0), spectrum
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Table 3. Two higher-order modulation formats applicable to
the NSF-24 network

Modulation format PM-QPSK PM-8QAM

SINRth 8.47 dB 10.8 dB

pre-FEC BER 4× 10−3 2.2× 10−2

FEC code Staircase code OH 6.25% Staircase code OH 33.3%

Net spectral efficiency 3.8 bit/symbol 4.5 bit/symbol

is reserved for the maximum bandwidth needs of the demands,
but the demands’ bandwidths are still random and time-varying.
The spectrum assigned to neighboring channels does not over-
lap. For standard provisioning, also shown in Table 2, the PSGN
model again shows significant savings on regeneration nodes
and circuits compared to the TR model, of 38% and 49%, respec-
tively, for Imax = 30.

For systems that use smaller ROADMs with Imax = 10, the
FOOP algorithm requires 11% more regeneration nodes and 8%
more regeneration circuits, respectively, compared to standard
provisioning (B = 0). Standard provisioning has lower PLIs
than the FOOP algorithm because the XCI for B = 5% is higher
than for B = 0%; the SCI of the random bandwidth demands is
the same for both algorithms since it is independent of B. The
higher XCI of B = 5% is the result of a more compact spectrum
assignment than that of B = 0%, i.e., we intentionally overlap
the spectrum allocation in order to save spectrum. Therefore,
we conclude that increasing B results in an increase in the PLIs,
and thus leads to the need for more regeneration resources.

F.2. Regeneration for Higher-Order Modulation Formats

High order modulation formats are desired to solve the spectrum
shortage problem by increasing the spectral efficiency. In the
near future, saving spectrum by applying higher-order modula-
tion formats is a potential solution for the rapid increase in data
volume expected. However, higher-order modulation formats
require a higher SINR threshold in order to maintain error-free
data recovery, i.e., a negligible post-FEC BER of 10−15 [28]. The
stricter SINR threshold leads to a need for more regeneration
resources. In this section, we simulate the NSF-24 network and
estimate the regeneration resources needed when a higher-order
modulation format is applied. We do not consider modulation
conversion and maintain the same modulation format for all
demands due to the current high costs of implementing this tech-
nology. When we choose a modulation, we vary the data-rate
and not the bandwidth so that, as the order of the modulation
format increases, the total network throughput increases.

We vary the SINR threshold in the MILP algorithm used to
assign regeneration nodes and circuits. The combination of the
SINR threshold and the modulation format determines the pre-
FEC BER and, therefore, which FEC code is needed to maintain
error-free transmission. The lowest SINRth considered is 8.47 dB,
suitable for PM-QPSK modulation [8, 14, 25] with a pre-FEC BER
of 4× 10−3, which can be corrected down to a post-FEC BER of
10−15 using a staircase code with overhead (OH) of 6.25% [29].
On the high end, we push the system up to an SINRth = 10.8
dB, which suffices for PM-8QAM (8-ary quadrature amplitude
modulation) to achieve a pre-FEC BER of 2.2× 10−2 [28, 30],
requiring a staircase code with 33.33% OH to achieve the same
post-FEC BER [29]. Comparing PM-QPSK with a 6.25% OH
code and PM-8QAM with a 33.33% OH code, the net spectral
efficiency is increased from 4/(1 + 0.0625) = 3.8 bits/symbol
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Fig. 7. Regeneration nodes needed versus SINRth. (a) Imax =
50 (b) Imax = 100.
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Fig. 8. Regeneration circuits needed for various SINR thresh-
olds, estimated using the PSGN model with various r; Imax =
50.

to 6/(1 + 0.3333) = 4.5 bits/symbol, an increase of 18%. These
parameters are summarized in Table 3. Note that PM-8QAM
with an SINRth ≥ 11 dB does not work because the required
SINR is too high for the continental-scale NSF-24 network: some
links are too long, and thus the signal accumulates too much
noise given the input signal PSD.

Figure 7 shows the number of regeneration nodes needed for
various SINRth for IImax = 50 and Imax = 100. The network is
able to operate at an SINRth = 10.8 dB (suitable for PM-8QAM)
using the PSGN with r = 0.5, but r = 1.0 and r = 1.5 are too
strict for error-free transmission. Imax = 100 requires up to 16%
fewer regeneration nodes than Imax = 50. PM-8QAM cannot be
deployed by using the TR model with any value of Imax because
of the long links; the PLIs predicted by the TR model lead to
an SINR estimate that is below the required SINR threshold.
Thus, networks using the PSGN model can use PM-8QAM to
achieve 18% higher net spectral efficiency compared to networks
using the TR model, which can only function with PM-QPSK. In
our results, intermediate values of the SINRth of 10 and 10.5 dB
are included only for completeness and not matched with any
particular modulation scheme and code.

Figure 8 shows how many regeneration circuits are needed
for the various SINRth, using the PSGN model with various r.
Choosing r = 0.5 saves up to 8% of the regeneration circuits
at an SINRth = 10.5 dB compared to choosing r = 1.5. For
an SINRth = 10.8 dB, the network requires 337 regeneration
circuits, which means that most of the demands need to be re-
freshed at least once in order to negate the noise and keep the
signal SINR high enough for transmission. A network that pro-
vides an SINRth = 10.8 dB can increase the spectral efficiency
by 18% compared to SINRth = 8.47 dB at the cost of 150% more
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regeneration nodes and 251% more regeneration circuits. The
number of regeneration circuits with these high-order modula-
tion formats needs to be high because the PLIs are worse. With
the development of ROADMs equipped with more circuits and
more advanced OEO processing techniques, the benefits of us-
ing higher spectral efficiency modulation will be an appealing
solution to address the constantly increasing data volume.

In brief, there is a trade-off between spectral efficiency, re-
generation resources, and reliability. Reliability and spectral
efficiency increase at the cost of an increase in regeneration re-
sources needed. With fixed regeneration resources, reliability
decreases with increasing spectral efficiency. The most spectrally-
efficient solution for the NSF-24 network is to use PM-8QAM
with the FOOP algorithm based on the PSGN model—the TR
model is too conservative to allow higher order modulations to
be used.

6. CONCLUSIONS

In this paper, we propose an algorithm called the FOOP for re-
source provisioning of random bandwidth demands. The FOOP
algorithm comprises a static offline planning phase for resource-
consuming demands and a dynamic online phase to accommo-
date low-resource-consuming demands. This two-step process
balances provisioning performance, hardware pressure, and net-
work flexibility. We use the newly proposed PSGN model, which
can be designed to be more or less conservative based on opera-
tor needs, for estimating the PLI of random bandwidth demands.
The PSGN model is also suitable for aggressive spectrum allo-
cation scenarios. The FOOP algorithm with B = 5% saves 14%
of the spectrum resources with less than 2% throughput loss.
Compared to the widely applied TR model, utilizing the PSGN
model has a remarkable savings of 49% in the regeneration re-
sources needed. In addition, with the appropriate modulation
formats, sufficient regeneration resources, and appropriate FEC
codes, the PSGN model enables the whole networks to operate
at an 18% higher net spectral efficiency than the TR model.
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