5 research outputs found

    Enhancing the Performance of Transmission in Cloud Based Multimedia using Fault Tolerance Technique

    Get PDF
    An analyze to increase the speed of transmission , task arrival rate, response time, distribution probability of the response time Specifically the response time of the cloud base multimedia is structured and the fault tolerance in multimedia is analyzed thereby distribution probability is derived imposing the retrying tasks arrival rate are analyzed taking innumerable examples. Probability distribution of the response time is derived using metric that reflects in a better way the requirements of the customers. Analyze carried out on the percentage of response time that characterizes threshold response time. Inter relationship among the number of service resources, service rate, system performance, task. were also analyzed Retrying for fault tolerance is compared with the check- pointing technique. In the competitive world of wireless communication and the growth of multimedia services like real-time conferencing, photo- sharing ,video-on- demand , editing, image search is on high demand for cloud computing. The slogan of access to serve billions of people those who use mobile and wireless transmission on any device, anytime, anywhere. The cloud computing emerged to facilitate the execution of complicated multimedia tasks and are able to store and process multimedia application and distribute them without any discrepancies thereby eliminating the complexity of software installation and maintenance in users devices. DOI: 10.17762/ijritcc2321-8169.15021

    Network monitoring in public clouds: issues, methodologies, and applications

    Get PDF
    Cloud computing adoption is rapidly growing thanks to the carried large technical and economical advantages. Its effects can be observed also looking at the fast increase of cloud traffic: in accordance with recent forecasts, more than 75\% of the overall datacenter traffic will be cloud traffic by 2018. Accordingly, huge investments have been made by providers in network infrastructures. Networks of geographically distributed datacenters have been built, which require efficient and accurate monitoring activities to be operated. However, providers rarely expose information about the state of cloud networks or their design, and seldom make promises about their performance. In this scenario, cloud customers therefore have to cope with performance unpredictability in spite of the primary role played by the network. Indeed, according to the deployment practices adopted and the functional separation of the application layers often implemented, the network heavily influences the performance of the cloud services, also impacting costs and revenues. In this thesis cloud networks are investigated enforcing non-cooperative approaches, i.e.~that do not require access to any information restricted to entities involved in the cloud service provision. A platform to monitor cloud networks from the point of view of the customer is presented. Such a platform enables general customers---even those with limited expertise in the configuration and the management of cloud resources---to obtain valuable information about the state of the cloud network, according to a set of factors under their control. A detailed characterization of the cloud network and of its performance is provided, thanks to extensive experimentations performed during the last years on the infrastructures of the two leading cloud providers (Amazon Web Services and Microsoft Azure). The information base gathered by enforcing the proposed approaches allows customers to better understand the characteristics of these complex network infrastructures. Moreover, experimental results are also useful to the provider for understanding the quality of service perceived by customers. By properly interpreting the obtained results, usage guidelines can be devised which allow to enhance the achievable performance and reduce costs. As a particular case study, the thesis also shows how monitoring information can be leveraged by the customer to implement convenient mechanisms to scale cloud resources without any a priori knowledge. More in general, we believe that this thesis provides a better-defined picture of the characteristics of the complex cloud network infrastructures, also providing the scientific community with useful tools for characterizing them in the future

    Modeling Cloud performance with Kriging

    No full text
    corecore