78 research outputs found

    Unified Behavior Framework in an Embedded Robot Controller

    Get PDF
    Robots of varying autonomy have been used to take the place of humans in dangerous tasks. While robots are considered more expendable than human beings, they are complex to develop and expensive to replace if lost. Recent technological advances produce small, inexpensive hardware platforms that are powerful enough to match robots from just a few years ago. There are many types of autonomous control architecture that can be used to control these hardware platforms. One in particular, the Unified Behavior Framework, is a flexible, responsive control architecture that is designed to simplify the control system’s design process through behavior module reuse, and provides a means to speed software development. However, it has not been applied on embedded systems in robots. This thesis presents a development of the Unified Behavior Framework on the Mini-WHEGS™, a biologically inspired, embedded robotic platform. The Mini-WHEGS™ is a small robot that utilize wheel- legs to emulate cockroach walking patterns. Wheel-legs combine wheels and legs for high mobility without the complex control system required for legs. A color camera and a rotary encoder completes the robot, enabling the Mini-WHEGS™ to identify color objects and track its position. A hardware abstraction layer designed for the Mini-WHEGS™ in this configuration decouples the control system from the hardware and provide the interface between the software and the hardware. The result is a highly mobile embedded robot system capable of exchanging behavior modules with much larger robots while requiring little or no change to the modules

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study

    Design, Actuation, and Functionalization of Untethered Soft Magnetic Robots with Life-Like Motions: A Review

    Full text link
    Soft robots have demonstrated superior flexibility and functionality than conventional rigid robots. These versatile devices can respond to a wide range of external stimuli (including light, magnetic field, heat, electric field, etc.), and can perform sophisticated tasks. Notably, soft magnetic robots exhibit unparalleled advantages among numerous soft robots (such as untethered control, rapid response, and high safety), and have made remarkable progress in small-scale manipulation tasks and biomedical applications. Despite the promising potential, soft magnetic robots are still in their infancy and require significant advancements in terms of fabrication, design principles, and functional development to be viable for real-world applications. Recent progress shows that bionics can serve as an effective tool for developing soft robots. In light of this, the review is presented with two main goals: (i) exploring how innovative bioinspired strategies can revolutionize the design and actuation of soft magnetic robots to realize various life-like motions; (ii) examining how these bionic systems could benefit practical applications in small-scale solid/liquid manipulation and therapeutic/diagnostic-related biomedical fields

    Hybrid optical and magnetic manipulation of microrobots

    Get PDF
    Microrobotic systems have the potential to provide precise manipulation on cellular level for diagnostics, drug delivery and surgical interventions. These systems vary from tethered to untethered microrobots with sizes below a micrometer to a few microns. However, their main disadvantage is that they do not have the same capabilities in terms of degrees-of-freedom, sensing and control as macroscale robotic systems. In particular, their lack of on-board sensing for pose or force feedback, their control methods and interface for automated or manual user control are limited as well as their geometry has few degrees-of-freedom making three-dimensional manipulation more challenging. This PhD project is on the development of a micromanipulation framework that can be used for single cell analysis using the Optical Tweezers as well as a combination of optical trapping and magnetic actuation for recon gurable microassembly. The focus is on untethered microrobots with sizes up to a few tens of microns that can be used in enclosed environments for ex vivo and in vitro medical applications. The work presented investigates the following aspects of microrobots for single cell analysis: i) The microfabrication procedure and design considerations that are taken into account in order to fabricate components for three-dimensional micromanipulation and microassembly, ii) vision-based methods to provide 6-degree-offreedom position and orientation feedback which is essential for closed-loop control, iii) manual and shared control manipulation methodologies that take into account the user input for multiple microrobot or three-dimensional microstructure manipulation and iv) a methodology for recon gurable microassembly combining the Optical Tweezers with magnetic actuation into a hybrid method of actuation for microassembly.Open Acces

    Novel Locomotion Methods in Magnetic Actuation and Pipe Inspection

    Get PDF
    There is much room for improvement in tube network inspections of jet aircraft. Often, these inspections are incomplete and inconsistent. In this paper, we develop a Modular Robotic Inspection System (MoRIS) for jet aircraft tube networks and a corresponding kinematic model. MoRIS consists of a Base Station for user control and communication, and robotic Vertebrae for accessing and inspecting the network. The presented and tested design of MoRIS can travel up to 9 feet in a tube network. The Vertebrae can navigate in all orientations, including smooth vertical tubes. The design is optimized for nominal 1.5 outside diameter tubes. We developed a model of the Locomotion Vertebra in a tube. We defined the model\u27s coordinate system and its generalized coordinates. We studied the configuration space of the robot, which includes all possible orientations of the Locomotion Vertebra. We derived the expression for the elastic potential energy of the Vertebra\u27s suspensions and minimized it to find the natural settling orientation of the robot. We further explore the effect of the tractive wheel\u27s velocity constraint on locomotion dynamics. Finally, we develop a general model for aircraft tube networks and for a taut tether. Stabilizing bipedal walkers is a engineering target throughout the research community. In this paper, we develop an impulsively actuated walking robot. Through the use of magnetic actuation, for the first time, pure impulsive actuation has been achieved in bipedal walkers. In studying this locomotion technique, we built the world\u27s smallest walker: Big Foot. A dynamical model was developed for Big Foot. A Heel Strike and a Constant Pulse Wave Actuation Schemes were selected for testing. The schemes were validated through simulations and experiments. We showed that there exists two regimes for impulsive actuation. There is a regime for impact-like actuation and a regime for longer duration impulsive actuation

    Biomechanical study of the Spider Crab as inspiration for the development of a biomimetic robot

    Get PDF
    A problem faced by oil companies is the maintenance of the location register of pipelines that cross the surf zone, the regular survey of their location, and also their inspection. A survey of the state of art did not allow identifying operating systems capable of executing such tasks. Commercial technologies available on the market also do not address this problem and/or do not satisfy the presented requirements. A possible solution is to use robotic systems which have the ability to walk on the shore and in the surf zone, subject to existing currents and ripples, and being able to withstand these ambient conditions. In this sense, the authors propose the development of a spider crab biologically inspired robot to achieve those tasks. Based on these ideas, this work presents a biomechanical study of the spider crab, its modeling and simulation using the SimMechanics toolbox of Matlab/Simulink, which is the first phase of this more vast project. Results show a robot model that is moving in an “animal like” manner, the locomotion, the algorithm presented in this paper allows the crab to walk sideways, in the desired direction.N/
    • …
    corecore