1,911 research outputs found

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    Model Based Control of Single-Phase Marine Cooling Systems

    Get PDF

    Review of dynamic positioning control in maritime microgrid systems

    Get PDF
    For many offshore activities, including offshore oil and gas exploration and offshore wind farm construction, it is essential to keep the position and heading of the vessel stable. The dynamic positioning system is a progressive technology, which is extensively used in shipping and other maritime structures. To maintain the vessels or platforms from displacement, its thrusters are used automatically to control and stabilize the position and heading of vessels in sea state disturbances. The theory of dynamic positioning has been studied and developed in terms of control techniques to achieve greater accuracy and reduce ship movement caused by environmental disturbance for more than 30 years. This paper reviews the control strategies and architecture of the DPS in marine vessels. In addition, it suggests possible control principles and makes a comparison between the advantages and disadvantages of existing literature. Some details for future research on DP control challenges are discussed in this paper

    Experimental Validation Of An Integrated Guidance And Control System For Marine Surface Vessels

    Get PDF
    Autonomous operation of marine surface vessels is vital for minimizing human errors and providing efficient operations of ships under varying sea states and environmental conditions which is complicated by the highly nonlinear dynamics of marine surface vessels. To deal with modelling imprecision and unpredictable disturbances, the sliding mode methodology has been employed to devise a heading and a surge displacement controller. The implementation of such a controller necessitates the availability of all state variables of the vessel. However, the measured signals in the current study are limited to the global X and Y positioning coordinates of the boat that are generated by a GPS system. Thus, a nonlinear observer, based on the sliding mode methodology, has been implemented to yield accurate estimates of the state variables in the presence of both structured and unstructured uncertainties. Successful autonomous operation of a marine surface vessel requires a holistic approach encompassing a navigation system, robust nonlinear controllers and observers. Since the overwhelming majority of the experimental work on autonomous marine surface vessels was not conducted in truly uncontrolled real-world environments. The first goal of this work was to experimentally validate a fully-integrated LOS guidance system with a sliding mode controller and observer using a 16’ Tracker Pro Guide V-16 aluminium boat with a 60 hp. Mercury outboard motor operating in the uncontrolled open-water environment of Lake St. Clair, Michigan. The fully integrated guidance and controller-observer system was tested in a model-less configuration, whereby all information provided from the vessel’s nominal model have been ignored. The experimental data serves to demonstrate the robustness and good tracking characteristics of the fully-integrated guidance and controller/observer system by overcoming the large errors induced at the beginning of each segment and converging the boat to the desired trajectory in spite of the presence of environmental disturbances. The second focus of this work was to combine a collision avoidance method with the guidance system that accounted for “International Regulations for Prevention of Collisions at Sea” abbreviated as COLREGS. This new system then needed to be added into the existing architecture. The velocity obstacles method was selected as the base to build upon and additional restrictions were incorporated to account for these additional rules. This completed system was then validated with a software in the loop simulation

    Formation and trajectory control of multiple dynamical systems

    Get PDF
    In recent years a lot of effort is put into making the transition from individually operating dy-namical systems to cooperation of multiple dynamical systems within a group. Besides providing straightforward advantages as increased effectiveness and performance, cooperation between sys-tems can also lead to performing complex tasks that cannot be realised with a single system. In this report possibilities of multi-system control are examined with particular focus on movement of individual systems in group formations. The main objective is to present a control strategy that is able to force a group of dynamical systems to move according to a desired trajectory in a desired formation layout and ensure stability of the overall dynamics. The control strategy presented in this report observes the group of dynamical systems as one large single system and moreover separates the overall movement and the formation of the group with each other. This is realised with a coordinate transformation, which transforms the dynamics of the n m-degree-of-freedom (m-DOF) systems into a m-DOF average system and a (n-1)m for-mation system. Here the average system represents the movement of the group and logically the formation system coincides with the dynamics of the group formation. Advantage of thi

    From Rousettus aegyptiacus (bat) Landing to Robotic Landing: Regulation of CG-CP Distance Using a Nonlinear Closed-Loop Feedback

    Get PDF
    Bats are unique in that they can achieve unrivaled agile maneuvers due to their functionally versatile wing conformations. Among these maneuvers, roosting (landing) has captured attentions because bats perform this acrobatic maneuver with a great composure. This work attempts to reconstruct bat landing maneuvers with a Micro Aerial Vehicle (MAV) called Allice. Allice is capable of adjusting the position of its Center of Gravity (CG) with respect to the Center of Pressure (CP) using a nonlinear closed-loop feedback. This nonlinear control law, which is based on the method of input-output feedback linearization, enables attitude regulations through variations in CG-CP distance. To design the model-based nonlinear controller, the Newton-Euler dynamic model of the robot is considered, in which the aerodynamic coefficients of lift and drag are obtained experimentally. The performance of the proposed control architecture is validated by conducting several experiments

    Passive and Active Nonlinear Control of Ship Roll Motions Using U-Tube Tanks

    Get PDF
    A U-tube water tank is first designed to roll a ship floating on still water. The 6-degree of freedom (DOF) dynamic model of U-tube tank is derived and the effects of its parameters on ship roll motion are studied. Numerical simulations show that the U-tube tank is an effective stimulator to roll the ship on still water. For a rolling ship, the U-tube tank can be used as a damper to reduce ship roll motion quickly. Active control of ship roll motion with a proportional and derivative (PD) controller, linear quadratic regulator (LQR), generalized predictive control (GPC), and deadbeat predictive control (DPC) is studied using a U-tube water tank as actuator is studied. For the predictive control, system identification is applied to update the parameters of the linear ship roll model with a U-tube tank when the ship dynamics changes. Numerical simulations show that GPC has the best performance and the U-tube tank is effective in ship roll mitigation. Nonlinear ship roll mitigation with passive U-tube tank, U-tube tank using feedback linearization with completely known system parameters, and U-tube tank using adaptive fuzzy feedback linearization control with unknown system parameters, are also studied. In numerical simulation, a passive U-tube tank and feedback linearization help to reduce ship roll motion and capsizing compared to a ship without the U-tube tank. Feedback linearization is the most effective means of controlling ship roll motion, and adaptive feedback linearization is more effective than a passive U-tube tank
    corecore