5 research outputs found

    Modeling and Control of the UGV Argo J5 with a Custom-Built Landing Platform

    Get PDF
    This thesis aims to develop a detailed dynamic model and implement several navigation controllers for path tracking and dynamic self-leveling of the Argo J5 Unmanned Ground Vehicle (UGV) with a custom-built landing platform. The overall model is derived by combining the Argo J5 driveline system with the wheelsterrain interaction (using terramechanics theory and mobile robot kinetics), while the landing platform model follows the Euler-Lagrange formulation. Different controllers are, then, derived, implemented to demonstrate: i.) self-leveling accuracy of the landing platform, ii.) trajectory tracking capabilities of the Argo J5 when moving in uneven terrains. The novelty of the Argo J5 model is the addition of a vertical load on each wheel through derivation of the shear stress depending on the point’s position in 3D space on each wheel. Static leveling of the landing platform within one degree of the horizon is evaluated by implementing Proportional Derivative (PD), Proportional Integral Derivative (PID), Linear Quadratic Regulator (LQR), feedback linearization, and Passivity Based Adaptive Controller (PBAC) techniques. A PD controller is used to evaluate the performance of the Argo J5 on different terrains. Further, for the Argo J5 - landing platform ensemble, PBAC and Neural Network Based Adaptive Controller (NNBAC) are derived and implemented to demonstrate dynamic self-leveling. The emphasis is on different controller implementation for complex real systems such as Argo J5 - Landing platform. Results, obtained via extensive simulation studies in a Matlab/Simulink environment that consider real system parameters and hardware limitations, contribute to understanding navigation performance in a variety of terrains with unknown properties and illustrate the Argo J5 velocity, wheel rolling resistance, wheel turning resistance and shear stress on different terrains

    Effects of Turning Radius on Skid-Steered Wheeled Robot Power Consumption on Loose Soil

    Get PDF
    This research highlights the need for a new power model for skid-steered wheeled robots driving on loose soil and lays the groundwork to develop such a model. State-of-the-art power modeling assumes hard ground; under typical assumptions this predicts constant power consumption over a range of small turning radii where the inner wheels are rotating backwards. However, experimental results performed both in the field and in a controlled laboratory sandbox show that, on sand, power is not in fact constant with respect to turning radius. Power peaks by 20% in a newly identified range of turns where the inner wheels rotate backwards but are being dragged forward. This range of turning radii spans from half the rover width to R', the radius at which the inner wheel is not commanded to turn. Data shows higher motor torque and wheel sinkage in this range. To progress toward predicting the required power for a skid-steered wheeled robot to maneuver on loose soil, a preliminary version of a two-dimensional slip-sinkage model is proposed, along with a model of the force required to bulldoze the pile of sand that accumulates next to the wheels as it they are skidding. However, this is shown to be a less important factor contributing to the increased power in small-radius turns than the added inner wheel torque induced by dragging these wheels through the piles of sand they excavate by counter-rotation (in the identified range of turns). Finally, since a direct application of a power model is to design energy-efficient paths, time dependency of power consumption is also examined. Experiments show reduced rover angular velocity in sand around turning radii where the inner wheels are not rotated and this leads to the introduction to a new parameter to consider in path planning: angular slip

    A Water-Surface Self-Leveling Landing Platform for Small-Scale UAVs

    Get PDF
    Because many of the most widely used UAVs, such as the Vertical Take-Off and Landing (VTOL), cannot land securely on sloped or fast-changing surfaces, there is a need to design better deployment and landing stations. This document proposes an approach to design a water-surface self-leveling landing platform by implementing the best concept to be used as a safe ground for UAVs to land and deploy on open waters. After conceptualizing multiple design ideas, these options were laid out in a decision matrix with four criteria: degrees of freedom, mechanical complexity, manufacturing, and cost. The chosen concept was the spherical parallel manipulator that provides the most degrees of freedom and design symmetry allowing for an easy manufacturing process and better control precision. This concept proves innovative as it improves the range of motion with lower energy requirements resulting in a device that provides low inertia, high velocity, and precise spherical motion [36]. A spherical parallel manipulator platform was designed in SolidWorks, and then a 3D-printed prototype was assembled and tested. The forward and inverse kinematic of the mechanism were thoroughly analyzed, and tests were performed to verify the ideal inverse kinematic solution

    Energy-Efficient Trajectory Planning for Skid-Steer Rovers

    Get PDF
    A skid-steer rover’s power consumption is highly dependent on the turning radius of its path. For example, a point turn consumes a lot of power compared to a straight-line motion. Thus, in path planning for this kind of rover, turning radius is a factor that should be considered explicitly. Based on the literature, there is a lack of analytical approach for finding energy-optimal paths for skid-steer rovers. This thesis addresses this problem for such rovers, specifically on obstacle-free hard ground. The equivalency theorem in this thesis indicates that, when using a popular power model for skid-steer rovers on hard ground, all minimum-energy solutions follow the same path irrespective of velocity constraints that may or may not be imposed. This non-intuitive result stems from the fact that with this model of the system the total energy is fully parametrized by the geometry of the path alone. It is shown that one can choose velocity constraints to enforce constant power consumption, thus transforming the energy-optimal problem to an equivalent time-optimal problem. Existing theory, built upon the basis of Pontryagin’s minimum principle to find the extremals for time-optimal trajectories for a rigid body, can then be used to solve the problem. Accordingly, the extremal paths are obtained for the energy-efficient path planning problem. As there is a finite number of extremals, they are enumerated to find the minimum-energy path for a particular example. Moreover, the analysis identifies that the turns in optimal paths (aside from a small number of special cases called whirls) are to be circular arcs of a particular turning radius, R′, equal to half of a skid-steer rover’s slip track. R′ is the turning radius at which the inner wheels of a skid-steer rover are not commanded to turn, and its description and the identification of its paramount importance in energy-optimal path planning are investigated. Experiments with a Husky UGV rover validate the energy-optimality of using R′ turns. Furthermore, a practical velocity constraint for skid-steer rovers is proposed that maintains constant forward velocity above R’ and constant angular velocity below it. Also, in separate but related work, it is shown that almost always equal “friction requirement” can be used to obtain optimal traction forces for a common and practical type of 4-wheel rover

    Multibody dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: Formulations and Numerical Methods, Efficient Methods and Real-Time Applications, Flexible Multibody Dynamics, Contact Dynamics and Constraints, Multiphysics and Coupled Problems, Control and Optimization, Software Development and Computer Technology, Aerospace and Maritime Applications, Biomechanics, Railroad Vehicle Dynamics, Road Vehicle Dynamics, Robotics, Benchmark Problems. The conference is organized by the Department of Mechanical Engineering of the Universitat Politècnica de Catalunya (UPC) in Barcelona. The organizers would like to thank the authors for submitting their contributions, the keynote lecturers for accepting the invitation and for the quality of their talks, the awards and scientific committees for their support to the organization of the conference, and finally the topic organizers for reviewing all extended abstracts and selecting the awards nominees.Postprint (published version
    corecore