
 
 
 

Energy-Efficient Trajectory Planning for Skid-Steer 
Rovers 

 
 

Meysam Effati 
       
 

A Thesis  
In the Department  

of  
Electrical and Computer Engineering 

         
 

Presented in Partial Fulfillment of the Requirements  
For the Degree of  

Doctor of Philosophy (Electrical and Computer Engineering) at  
Concordia University  

Montreal, Quebec, Canada 
 
 
 
 
 

July 2020 
 

  © Meysam Effati, 2020 



CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared 

By: Meysam Effati 

Entitled: Energy-Efficient Trajectory Planning for Skid-Steer Rovers 

and submitted in partial fulfillment of the requirements for the degree of 

Doctor Of Philosophy  (Electrical & Computer Engineering) 

complies with the regulations of the University and meets the accepted standards with respect to 
originality and quality. 

Signed by the final examining committee:

Chair
Dr. Catherine Mulligan

External Examiner
Dr. James Forbes

External to Program
Dr. Youmin Zhang

Examiner
Dr. Luis Rodrigues

Examiner
Dr. Rastko Selmic

Thesis Co-Supervisor
Dr. Krzysztof Skonieczny

Approved by 
Dr. Rastko Selmic, Graduate Program Director 

June 30, 2020 _____________________________________________
Dr. Amir Asif, Dean
Gina Cody School of Engineering and Computer Science



Abstract

Energy-Efficient Trajectory Planning for Skid-Steer Rovers

Meysam Effati, Ph. D.

Concordia University, 2020

A skid-steer rover’s power consumption is highly dependent on the turning radius
of its path. For example, a point turn consumes a lot of power compared to a straight-
line motion. Thus, in path planning for this kind of rover, turning radius is a factor
that should be considered explicitly.

Based on the literature, there is a lack of analytical approach for finding energy-
optimal paths for skid-steer rovers. This thesis addresses this problem for such rovers,
specifically on obstacle-free hard ground. The equivalency theorem in this thesis indi-
cates that, when using a popular power model for skid-steer rovers on hard ground,
all minimum-energy solutions follow the same path irrespective of velocity constraints
that may or may not be imposed. This non-intuitive result stems from the fact that
with this model of the system the total energy is fully parametrized by the geometry
of the path alone. It is shown that one can choose velocity constraints to enforce con-
stant power consumption, thus transforming the energy-optimal problem to an equiva-
lent time-optimal problem. Existing theory, built upon the basis of Pontryagin’s mini-
mum principle to find the extremals for time-optimal trajectories for a rigid body, can
then be used to solve the problem. Accordingly, the extremal paths are obtained for
the energy-efficient path planning problem. As there is a finite number of extremals,
they are enumerated to find the minimum-energy path for a particular example.

Moreover, the analysis identifies that the turns in optimal paths (aside from a
small number of special cases called whirls) are to be circular arcs of a particular
turning radius, R′, equal to half of a skid-steer rover’s slip track. R′ is the turning
radius at which the inner wheels of a skid-steer rover are not commanded to turn, and
its description and the identification of its paramount importance in energy-optimal
path planning are investigated. Experiments with a Husky UGV rover validate the
energy-optimality of using R′ turns.

Furthermore, a practical velocity constraint for skid-steer rovers is proposed that
maintains constant forward velocity above R′ and constant angular velocity below
it. Also, in separate but related work, it is shown that almost always equal “friction
requirement” can be used to obtain optimal traction forces for a common and practical
type of 4-wheel rover.
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0 & c2 > 0. The blue hexagon is the control space shown in Fig. 20. . . . . . . . 54

28 Different path types based on the λ0 categories. . . . . . . . . . . . . . . . . . 55
29 The tasks performed in this chapter are Highlighted. . . . . . . . . . . . . . . 59
30 The level set for explaining a complete maneuver. . . . . . . . . . . . . . . . . 60
31 Complete ⇑maneuver for a generic TST path in Fig. 28. . . . . . . . . . . . . . 61
32 The example control space considered for the numerical scenario . . . . . . . 63
33 CCC path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
34 LCCLCC1 path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
35 LCCLCC2 path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
36 CLC2 path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
37 Resulting feasibility line for all subpaths of CCC3 . . . . . . . . . . . . . . . . 69
38 Resulting feasibility line for all subpaths of LCCLCC1 . . . . . . . . . . . . . . 69
39 Resulting feasibility region for all subpaths of LCCLCC2 . . . . . . . . . . . . 70
40 Resulting feasibility region for all subpaths of CLC2 . . . . . . . . . . . . . . . 70
41 Map indicating the optimal paths to the origin when starting at different(x,y, π

4
) on the x−y plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

42 The paths related to the true blue region (CLC) in Fig. 41 . . . . . . . . . . . 74
43 The tasks performed in this chapter are highlighted. . . . . . . . . . . . . . . . 76
44 A CLC path including two circular arcs and a line segment . . . . . . . . . . . 77
45 CLC paths between a starting and end point in the global and path-defined

coordinate system. The axes xP and yP indicate the path-defined coordi-
nate system. Also, axes x and y indicate the global coordinate system. . . . 79

46 A PLP path consisting of two point turns and a line segment . . . . . . . . . . 89
47 Husky UGV Rover on hard ground. . . . . . . . . . . . . . . . . . . . . . . . . . 93
48 The laser total station (red box) and the prism on the rover (blue box) used

for tracking rover motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
49 Comparison of experimentallymeasured energy consumption for CLC paths

vs. PLP paths for the Husky rover on hard ground. Start and end angle 45o;
distance 10 m. Lowest energy is observed for CLC paths with turning ra-
dius R′H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

50 Comparison of experimentallymeasured energy consumption for CLC paths
vs. PLP paths for the Husky rover on hard ground. Start angle 60o; end
angle 30o; distance 8 m. Lowest energy is observed for CLC paths with
turning radius R′H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

51 Comparison of experimentally measured power consumption vs. time for
a CLC path (with R =R′H ) and PLP path for the Husky rover on hard ground.100

52 Husky UGV power consumption as a function of commanded turning radii
bigger than R′. The tests are performed on hard ground consisting of con-
crete. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

53 Comparison of experimentally measured energy consumption over a 90
degree turn as a function of turning radius. . . . . . . . . . . . . . . . . . . . . 102

54 The laser total station (red box) and the prism, it travels on the rover (yel-
low box) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xii



55 A CLC path performed by Husky rover . . . . . . . . . . . . . . . . . . . . . . . 107
56 Comparison of Husky and Argo experimental results . . . . . . . . . . . . . . 108
57 Power consumptions for different scenarios reported in Table 24 . . . . . . . 110
58 Sensitivity analysis for the energy consumption of a R′-CLC path . . . . . . 112
59 The tasks performed in this chapter are highlighted. . . . . . . . . . . . . . . . 113
60 A wheel on a slope (m and g are the mass and gravitational acceleration,

respectively) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
61 Two-wheel rover on slopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
62 The four-wheel rover on rough terrain . . . . . . . . . . . . . . . . . . . . . . . 121
63 Rover simulation showing terrain traversed in 10 second run . . . . . . . . . 124
64 Friction requirements for both wheels throughout the simulation example,

when equal friction requirements are enforced. . . . . . . . . . . . . . . . . . . 125
65 Friction requirements (blue for front wheel and red for rear wheel) when

torques are distributed evenly. The front wheel has an increased friction
requirement, both in relative and absolute terms. . . . . . . . . . . . . . . . . 126

66 The values of θ1 and θ2, for which the numerical method solution is not
feasible (results for all α overlaid) for the two-wheel rover . . . . . . . . . . . 127

67 Optimal T1 versus θ1 and θ2 for α=0 . . . . . . . . . . . . . . . . . . . . . . . . . 130

xiii



List of Tables

1 Symbols and the related maneuvers. CCW and CW stand for Counter
Clockwise and Clockwise, respectively. . . . . . . . . . . . . . . . . . . . . . . . 49

2 The vertices of Hamiltonian level set in Fig. 24 through Fig. 26. . . . . . . . 52
3 Extremal paths for the equivalent time-optimal problem. . . . . . . . . . . . . . 58
4 The start (S) and end (E) pose of the considered scenario. This type of par-

ticular scenario is useful for illustrating the kind of paths that are optimal
depending on where the rover starts relative to a desired goal. . . . . . . . . 63

5 The parameters considered for the algorithms to obtain the map (Fig 41). . 71
6 The correspondent maneuver symbols for the paths shown in Fig. 41. . . . . 74
7 Different intervals for the turning radii . . . . . . . . . . . . . . . . . . . . . . . 79
8 Logical Table for the Inequality Coefficients . . . . . . . . . . . . . . . . . . . . 82
9 Path and Rover Parameters for the Example Problem . . . . . . . . . . . . . . . 84
10 Arrow representations for basic maneuvers . . . . . . . . . . . . . . . . . . . . . 85
11 Candidate solutions obtained forCLC paths according to the different cases

for inequality constraints’ coefficients (for example problem), when 0 <
R1 ≤ (W/2) and 0 <R2 ≤ (W/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

12 Summary of Table 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
13 The results for the four different combinations of the turning radii for CLC

paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
14 Summary of candidate solutions obtained for CC paths according to the

different cases for inequality constraints’ coefficients (for example prob-
lem), when 0 <R1 ≤ (W/2) and 0 <R2 ≤ (W/2) . . . . . . . . . . . . . . . . . . . 87

15 The results for the four different combinations of the turning radii for CC
paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

16 Husky Rover Parameters on Hard Ground (HG) used in the Numerical
Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

17 Husky Rover Test Plan on Hard Ground . . . . . . . . . . . . . . . . . . . . . . . 95
18 Numerically Computed Energy-Efficient CLC Paths for Husky Rover on

Hard Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
19 Husky and Argo Rover Test Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
20 Argo Rover Parameters used in Numerical Computations . . . . . . . . . . . . 105
21 Husky Rover Parameters used in Numerical Computations . . . . . . . . . . . 105
22 Numerically Computed Energy-Efficient CLC Paths for Argo Rover . . . . . 106
23 Numerically Computed Energy-Efficient CLC Paths for Husky Rover . . . . 106
24 CLC and PLP tests of (45o,45o) tests at 0.5R

′

Hc
, R

′

Hc
, and 1.5R

′

Hc
with the

Husky rover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
25 The specifications for a two-wheel rover . . . . . . . . . . . . . . . . . . . . . . . 126
26 The specifications for the rover . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
27 The results of the numerical solving of (246) to (250) for the mentioned

configurations space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
28 Conditions for comparison of COF and NEFF performances . . . . . . . . . . 130

xiv



29 Performance Comparison of COF and NEFF for the Conditions presented
in Table 28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

xv



1 Introduction

In this chapter, subsection 1.1 introduces skid-steer rovers and presents the motivation of
working on energy-efficient path planning for this type of rover. Subsection 1.2 reviews
different publications related to trajectory/path planning for rovers as well as equiva-
lency between time and energy problems. Moreover, a practical control input constraint
for the energy-efficient trajectory planning problem is suggested in the subsection. Next,
contributions of this thesis are listed in subsection 1.3. Finally, an overview to the thesis
is presented in subsection 1.4 to guide the readers through the different chapters.

1.1 Motivation

Several countries are planning missions involving an autonomous rover moving across
the surface of a planet and collecting samples. Due to communication delays of up to
tens of minutes the rover must be able to navigate autonomously to sites of scientific
interest. To do this task, the rover must be able to plan and execute paths over natural
terrains.

There are several types of rover configurations that can be used for the aforemen-
tioned missions including skid, explicit, and Ackerman steering. The rover that is chosen
for our research is skid-steer. Skid-steering is a method of steering where four (or more)
wheels are not themselves steered, but different velocities are commanded for the left and
right wheels in order to maneuver a vehicle. Due to their mechanical simplicity, maneu-
verability and robustness, skid-steer rovers are widely used for excavation and loading,
planetary exploration [1,2], and other field robotics applications. It is a popular configu-
ration, from the Clearpath Husky to the Soviet Union’s 8-wheel Lunokhod rovers [1] and
a series of rovers recently developed for the Canadian Space Agency (CSA) [3]. Hence,
energy-optimal and time-optimal trajectories should be designed to help the rovers per-
form their missions efficiently1.

A pair of skid-steer rovers, Husky UGV and Argo J5, are utilized for experiments in
this work and are thus introduced here. Husky UGV (Fig. 1) is a medium sized robotic
development platform.

 

Figure 1: Husky UGV rover

1Also, there are some interesting experimental tests for skid-steer rovers showing that based on the
terrain type which kind of shortest path or energy-efficient path should be chosen [4] to obtain overall less
energy consumption.
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The Husky UGV’s rugged construction and high-torque drivetrain make it appropri-
ate for research in various terrains including hard ground as well as sand. In addition,
it is fully supported in Robotics Operating System (ROS) with community driven Open
Source code and examples.

Argo J5 (Fig. 2) is an extreme-terrain vehicle that is a commercially available version
of a rover configuration developed explicitly for CSA.

Figure 2: Argo J5 rover
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Figure 3: Two aspects of optimal trajectory planning investigated in this thesis.

Trajectory planning for this type of rover is an ongoing challenge presently. Two as-
pects of it, which are shown in Fig. 3, are mentioned in the following.

1. The first investigated aspect in this thesis is optimal paths (see Fig. 3). High
torque is required to overcome lateral motion resistances induced during a skid-
steer turn [5]. Therefore, a key challenge of skid-steer mobility for planetary rovers
is the power and energy consumption of this steering configuration. Shamah et
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al. [6] show that during a maneuver the power consumption of a skid-steer rover
is inversely related to its turning radius. Accordingly, point turns (i.e. turning in
place) and straight line maneuvers have the highest and lowest power consumption,
respectively. For point turns, skid steering can require over twice the power of ex-
plicit steering [6]. The difference between the two steering modes drops away with
increasing turning radius. Thus, the shortest distance path, which requires point
turns along with straight lines, may not be the lowest-energy path. In fact, we show
this to be the case. The selection of turning radii that result in the lowest overall
energy consumption when traversing from a start to an end pose can be formulated
as a path planning problem.

2. Based on Fig. 3, another aspect which is optimal traction forces is considered. In
the absence of any constraints on the system (e.g. force/torque balance, maximum
motor torques), the optimal traction solution is known to be that with equal “fric-
tion requirements” (ratios of tractive to normal force) for all wheels. Nevertheless,
the current state-of-the-art is to routinely perform computationally expensive con-
strained optimization, because of the presumed importance of the constraints in a
real system. Therefore, there is a worthwhile research opportunity for a thorough
investigation of the configuration space for 4-wheel rovers, driving straight over
rough terrain, in search of configurations where the unconstrained optimal answer
does or does not satisfy the constraints, and thus, is or is not valid.

Since the aforementioned aspects are related to distinct subjects, separate literature
reviews (presented in different subsections) are provided. Accordingly, subsection 1.2 re-
views the most relevant papers to the optimal trajectory/path planning problem. Then,
in subsection 7.1 the most related publications to optimal wheel traction control are pre-
sented.

1.2 Literature Review

In subsection 1.2.1, some sampling methods for obtaining paths are presented. More-
over, local and global planning methods are explained. Then, the importance of using an
analytical approach in local planning methods is described by explaining the related lit-
erature. In subsection 1.2.2, the related papers to the equivalency between time-optimal
and energy-optimal problems are reviewed. This part is necessary for the equivalency
theorem which will be discussed in Chapter 3. Also, a suggested new practical control
input constraint for skid-steer rovers is stated in subsection 1.2.3. Finally, the steps that
were taken to solve the energy-efficient path planning problem are explained in 1.2.4.

1.2.1 Sample-Based and Local Planning Methods

Optimal path planning in the presence of obstacles is always challenging2. Generally,
path planning with differential constraints are two-point boundary value problem (BVPs)

2For example, standard Piano Mover’s Problem [7, 8], which is special case of motion planning under
differential constraints, is NP-hard.
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[9]. However, the techniques to solve BVPs cannot efficiently/entirely solve the path plan-
ning problems while considering obstacles [7]. Even for some cases without considering
the differential constraints while obstacles are taken into account the optimal path plan-
ning is NP-hard, such as 3D optimal path planning for a point in an environment with
polyhedral obstacles [7, 10]. Only for double integrator systems the exact paths can be
found while obstacles are considered [7,11,12].

Hence, path planning for vehicles with differential constraints in complex environ-
mentsmotivates sampling-based approaches (e.g. Rapidly-exploring RandomTrees (RRT)).
However, there is also a need to generate feasible local paths between the nodes that
sampling-based/global planning algorithms generate. Accordingly, Local PlanningMeth-
ods (LPM) provide useful motion primitives for the global planningmethod [7]. It should
bementioned that in path planning problem in the presence of obstacles, each global path
consists of several local paths. These local paths are generated in an obstacle-free envi-
ronment, representing the space between nodes that are already chosen to avoid obstacles
in a complex environment. It may be possible to explicitly optimize these simpler local
paths (in terms of either length, time duration, energy consumption, etc.). There are two
probable advantages of considering such optimal local paths to build overall paths [7]:

1. They can lead to more time/length/energy efficient overall paths

2. They can be more efficient in computational cost compared to executing the global
algorithms with ad hoc candidate local paths

The importance of these local paths is stated by LaValle [7]:

“Although discrete-time model for path planning is the most straightforward and general,
there are often many better motion primitives that can be used. For a particular system,
it may be possible to design a nice family of trajectories off-line in the absence of obstacles
and then use them as motion primitives in the rapidly exploring dense tree (RDT) con-
struction. If possible, it is important to carefully analyze the system under consideration
to try to exploit any special structure it may have or techniques that might have been
developed for it. For motion planning of a vehicle, symmetries can be exploited to apply
the primitives from different states.
Using more complicated motion primitives may increase the burden on the Local Path
Model (LPM). Ideally, the LPM should behave like a good steering method, which could
be obtained using methods such as Dubins path. It is important to note, though, that the
RDT’s ability to solve problems does not hinge on this. It will greatly improve performance
if there are excellent motion primitives and a good steering method in the LPM. The main
reason for this is that the difficulties of the differential constraints have essentially been
overcome once this happens (except for the adverse effects of drift). Having good motion
primitives can often improve performance in practice.”

1.2.1.1 Sample-Based Algorithms for Global Planning Method There are many dif-
ferent numerical sampling-based methods to globally search for efficient paths in com-
plex environments (such as in the presence of obstacles), including potential fields [13],
several versions of rapidly exploring random tree algorithms (such as RRT [14–16], RRT*
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[17], and Theta*-RRT [18]), and several numerical methods based on heuristic (D* [19])
or meta-heuristic approaches as Genetic Algorithm (GA) [20, 21], Ant Colony Optimiza-
tion (ACO) [22], and Particle Swarm Optimization (PSO) [23]. Also, there are several
learning approaches in motion and path planning such as deep reinforcement learn-
ing [24,25]. In addition, other approaches for designing optimal trajectory include using
pseudo-spectral3 [26, 27] and minimum snap4 [28–30] optimal control. In both methods,
the optimization problem is eventually solved numerically and the path types are not ob-
tained analytically. It should be mentioned that there are dozens of published papers that
use the mentioned algorithms in this paragraph, some of which are cited in this thesis for
brevity.

For global planning methods of skid-steer rovers, there has been some work related to
time-efficiency5 and energy efficiency. In the following a method which is used for energy
efficiency is explained. Sampling Based Model Predictive Optimization (SBMPO) [32] is
popular for path planning with skid-steer rovers. Because SBMPO samples from the
feasible space of control inputs, it can automatically satisfy any kinematic or dynamic
constraints. SBMPO generates nodes on a graph where a model predicts the rover’s mo-
tion after that the sampled control inputs have been applied for some specified duration.
The cost at each node is the sum of the cost of getting to that node (which can be pre-
dicted by the model used) plus an “optimistic” estimate (i.e. meant to guarantee to not
over-estimate) of the remaining cost to get to the goal from that node. After a node is
expanded with some fixed number of new nodes and each is assigned a cost, a priority
queue is re-sorted to pick the next node to expand (the one with lowest cost). Reese [33]
proves that SBMPO gives the optimal path on the graph, but only once the priority queue
is completely exhausted.

Recent attempts for global planning methods to determine energy-efficient paths for
skid-steer rovers all use SBMPO. Gupta et al. [34] opt to select the first path that reaches
the goal by this method (i.e. leaving nodes still available in the priority queue), resulting
in a suboptimal trajectory, in order to reduce computation time. Pentzer et al. [35] assume
that a point turn followed by a straight line to the goal (which, in general, may still be far
away) provides an “optimistic” estimate of remaining energy cost; however, this work,
using the same power model, will show that there are sometimes paths with lower cost
than this option and thus it does not in fact guarantee not to over-estimate cost. Even a
fully optimally implemented SBMPO provides only the optimal solution on the graph of
sampled nodes. To approach a global optimum in continuous space, the sampling must
thus be dense. However, it is mentioned by Gupta et al. [34] that computation time is
already a limiting consideration. These challenges in practice related to suboptimality
and computational cost align exactly with the points raised by LaValle [7] motivating

3The purpose of pseudo-spectral optimal control method is converting the optimal control problem to a
nonlinear programming problem (NLP). Accordingly, the state and control variables are discretized and
the control trajectory and states are approximated using Lagrange interpolating polynomials.

4In the minimum snap approach, the purpose is to minimize the integral of the square of the norms
of the snap which is the second derivative of acceleration. Accordingly, the vehicle traverses through the
waypoints until it reaches to the the final state in the specified time.

5Yamamoto et al. [31] investigate time-optimal paths for skid-steer rovers in the presence of obstacles;
they find quasi-optimal solutions by using the B-spline parametrization technique.
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optimal local paths.
In the following, some hybrid approaches are explained. These papers explicitly

have mentioned that they use different algorithms for their global planning and obstacle-
avoidance/LPM algorithms.

1.2.1.2 Hybrid Approaches Hybrid path planning is sometimes utilized for collision
avoidance in dynamic environments, whileminimizing control signal for unmannedUGV,
minimizing energy for differential drive robots, etc. For example, Zhong et al. [36] uti-
lize A* for mobile robots global path planning (on a known map) and adaptive window
approach for other tasks including real-time obstacle avoidance for the unpredicted ob-
stacles. Mohamed and Ren [37] use Pontryagin’s minimum principle to minimize the
control signals for unmanned UGV while the obstacles are taken into account by Artifi-
cial Potential Field Method6. Furthermore, there are some hybrid approaches that con-
sider the sampling methods for the global planning method and the analytical approach
for LPM. For example, Chaudhari et al. [38] use Dubins path7 to traverse between the
waypoints of the global path obtained by A*. These turn out to be better paths, consid-
ering energy, for differential drive rovers while avoiding obstacles. Although it is known
that Dubins paths are the shortest path (as a LPM) for car-like rovers, using these paths
has helped Chaudhari et al. to obtain smoother energy-efficient paths compared to the
path obtained by A* or even smoothed8 A*-paths. This raises the question of what would
happen if their utilized LPMwas specifically designed for energy-efficiency of differential
drive rovers? In this thesis, the research is not on differential drive rovers. However, to
deal with similar situations for skid-steer rovers, we obtain energy-efficient LPM and thus
provide the opportunity for more investigations on other related energy-efficient global
planning methods.

1.2.1.3 LPM for Different Vehicles There have been no optimal analytically-obtained
LPM developed for skid-steer rovers that consider energy-efficiency. In related work,
however, several analytical approaches to find shortest distance or time LPM paths for
car-like, differential drive, omni-directional, and rigid body rovers moving on obstacle-
free environment have been published. Dubins [39] proposes a method to obtain the
shortest path for a car-like rover that can only travel forward, subject to a constraint
that the average curvature everywhere is less than or equal to a given constant value.
Johnson [40] obtains the Dubins paths using another method, namely Pontryagin’s min-
imum principle. This principle, which is utilized in optimal control theory9, helps to
solve the constrained optimization problem of controlling a dynamical system to move

6In the utilized Lagrange function for Pontryagin’s minimum principle, potential field’s coordinates of
obstacles and end point are considered.

7Which are obtained from analytical approach [39]
8The paths are smoothed by using Bezier curves.
9 Solving for LPMs using Pontryagin’s minimum principle is an application of optimal control. Another

related approach is to use nonlinear model predictive control for online trajectory optimization. Perform-
ing iterative computations for finite-horizon planning, using GPOPS-II for example [41], is thus another
option. Iterative approaches like this may be able to handle obstacles in many cases, providing a bridge
between global methods and optimal local methods.
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from one state to another. Reeds and Shepp [42] design the shortest path (a path with
circular arcs and line segments) for car-like rovers that can go both forwards and back-
wards. In addition, Sussmann and Tang [43], Philippe Sou and Laumond [44], as well as
Boissonnat et al. [45] use Pontryagin’s minimum principle to develop the shortest path
for the Reeds-Shepp car. Qin et al. [46] use Pontryagin’s minimum principle to obtain
the energy-efficient trajectory for car-like rovers. In addition, Tokekar et al. [47] work
toward optimizing energy consumption for car-like robots; they first show how to find
energy-optimal velocity profiles along a given path, and then build a discretized graph
composed of individual circular arcs (or straight lines) connecting the vertices. Balk-
com and Mason [48–50] design time optimal trajectories (ultimately consisting of point
turns and straight lines) for differential drive vehicles in an unobstructed plane by the
use of Pontryagin’s minimum principle. Also, Balkcom et al. [51, 52] as well as Wang
and Balkcom [53] use the Pontryagin’s minimum principle to obtain time-optimal paths
for omni-directional vehicles. They conclude that the optimal paths should contain cir-
cular arcs, and straight lines which are parallel to the wheel axles. In addition, Chit-
saz et al. [54, 55] design the shortest path for differential drive mobile robots by using
Pontryagin’s minimum principle. Furthermore, Balkcom et al. [56] as well as Wang and
Balkcom [57] obtain 3D time-optimal trajectories for rigid bodies. Firstly, they obtain the
necessary conditions for optimality using Pontryagin’s minimum principle and a geomet-
ric method. Then, they design the optimal trajectories by sufficiently dense sampling10.
Furtuna et al. [59–62] investigate an algorithm for general parametrized model of mo-
bile robots. They use Pontryagin’s minimum principle and prove several other theorems
to design the algorithm. In addition, some research on the structure of time-optimal
trajectories for rigid bodies are performed in [63]. The challenge after obtaining the op-
timal control inputs from the Pontryagin’s minimum principle is to limit the number of
switches between them. Accordingly, Lyu and Balkcom [64–67] constrain the number of
switches between the optimal controls to avoid the chattering phenomenon.

1.2.2 Literature Review for the Equivalency Theorem

Ioslovich et al. [68–70] state that by “appropriate” selection of constraints for a rigid body
with the dynamic equations of motion11, the minimum time problem and minimum energy
problem are equivalent which means that they result in the same trajectory. However,
their strict definition of “appropriate” ultimately renders their result trivial. The process
that they have followed is as follows:

(a) The driving force, velocity, and position are considered as the state variables. Also,
jerk12 is considered as the control input. They assume that driving force, velocity,
and jerk are bounded. Furthermore, they consider that the states at the starting and
end pose are known.

10Also, [58] is another paper on sufficiently dense sampling for the extremal trajectories obtained by
Pontryagin’s minimum principle to make sure that in obstacle free environment the wheeled robot can go
from any starting to end point.

11Equation (1) to (3) of [69]
12The driving force derivative
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(b) Pontryagin’s minimum principle is utilized to solve the minimum time problem for
the conditions presented in part (a). Hence, t̃∗f (the optimal time for the problem) is
obtained.

(c) Energy for the energy-optimal problem is defined as follows [68–70]:

∫ tf

0

v2

2
dt (1)

where v, tf , and t are velocity, final time, and time, respectively.

(d) A sentence about the “appropriate” constraints for the energy-optimal problem is
stated in each of the mentioned references:

• “tf is taken from the solution of the minimal time problem and all the constraints
and end conditions are the same.”13

• “tf is taken from the solution of the minimal time problem and the upper bound for
v is omitted from the constraints.”14

(e) Pontryagin’s minimum principle is utilized to solve theminimum energy problem for
Eq. (1) with the constraints presented in part (d).

There are some concerns about their approach:

• As mentioned in (d), tf for the energy-efficient problem is the optimal time (i.e. t̃∗f )
taken from the solution of the minimum time problem. In other words, they are
only searching for the most energy-efficient path from among already time-optimal
paths. In the case of a unique time-optimal path (not unusual in practice), this
reduces to a trivial search within a set of cardinality 1. Such an overly restrictive
search can miss lower energy solutions that take some extra time.

• The definition of energy is wrong in Eq. (1). They assume that mass is 1 kg. Then,

it is stated that energy is the integral of kinetic energy (
1
2
v2).

There are other papers [71–77] which have cited references of [68–70]. Some of which
[71–74] are written by the authors of [68–70] or Ioslovich15 is coauthor in those papers.
The rest [75–77] are written by other researchers. However, none of the follow on papers
[71–77] use the idea of equivalency.

Furthermore, a thorough search is performed to find any other publications related to
equivalency between time and energy optimization. There are dozens of papers in differ-
ent fields that have been published on either minimum time problem or minimum energy
problems. Also, there are some papers that have worked on the time-energyminimization
such as [78–84]. They talk about time-energy optimization and they try to do a trade-off
between time and energy. However, none of them work on equivalency between time and
energy in their research.

13After equation (10) of [69]
14After equation (10) of both [68] and [70]
15One of the authors of [68–70]
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1.2.3 Control Input Constraints

In general, any real rover will be subject to control input constraints due to motor sat-
uration. In a skid-steer rover, the control inputs are the left and right wheel velocities,
Vl and Vr respectively, and they have a maximum (positive) value, Vmax, and minimum
value, Vmin = −Vmax. It is typical and useful to first conduct an analysis of the case where
forward velocity is held constant. This is precisely the constraint applied in state-of-
the-art literature on skid-steer energy efficiency by Gupta et al. [34] and by Dogru and
Marques [85]; the approach can be traced back all the way to the foundational work by
Dubins [39]. Applying constant forward velocity allows to decouple the shape of the path from
the overall trajectory.

In general, a given trajectory follows a unique path. A single path may in general,
however, be followed using various trajectories (i.e. with varying velocity). A prescribed
velocity constraint can ensure a unique trajectory for each path,making the concepts of op-
timal trajectory (subject to the constraint) and optimal path equivalent and interchangeable.
In the context of energy efficiency, this also means power can be expressed as a univariate
function of turning radius, R. It is also a common control mode in practice, where for-
ward and angular velocities are independently set by the user (e.g. “twist” commands in
ROS - Robotic Operating System).

However, as this work will show in Chapter 2, constant forward velocity does not
allow us to analyze all possible shapes of skid-steer curves (a point turn, or turn in place,
by definition has zero forward velocity). Therefore we present a modified constraint16

that maintains the essence of this approach while enabling the study of all turning radii,
0 ≤R <∞. The experiments are conducted with this constraint, and it is considered in the
optimization analysis.

The boundary between the cases where Vl and Vr are of the same or of opposite sign
(i.e. when either Vl or Vr are 0) turns out to be very important. The turning radius at this
boundary is defined as R′ in this thesis. The concept is somewhat similar to Rc recently
introduced by Dogru and Marques [86], but R′ is more general and its importance is
more fully analyzed here than any related concepts in prior literature. Rc is assumed to
occur at half the rover width, not accounting for the possibility of lateral slip. Although
Dogru and Marques work toward finding an optimal turning radius for skid-steer rovers
in subsequent work [85], they do not explicitly link the important boundary case (i.e. Rc

or, actually, R′) to optimal energy consumption. A contribution of this work is thus that
it provides deeper context and explanations for those earlier results in the literature.

In the next subsection, our approach to solve the energy-efficient path planning for
skid-steer rovers is explained.

1.2.4 Our Approach

This research explores optimally energy-efficient local paths (LPMs) for skid-steer rovers.
As mentioned in subsection 1.1, Shamah et al. [6] show the importance of turning radius
in energy consumption. In addition, based on the above mentioned papers, there is a

16In Chapter 2, the constraint presented in Eq. (25) for the velocities
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general lack of analytical work on skid-steer rovers to find paths minimizing the en-
ergy consumption.

Based on the above mentioned work, we have several contributions which are listed
in the next subsection.

1.3 Contributions

This work has the following major contributions:

• The equivalency theorem presented in subsection 3.1 allows us to obtain the opti-
mal path for the energy-efficient path planning problem considering any proper17

constraint on velocity. As a result, the constant power velocity constraint is utilized
to convert the energy-optimal path planning problem for skid-steer rovers (in subsection
2.1) to an equivalent time-optimal problem.

• As investigated in the literature review (subsection 1.2), there is no analytical ap-
proach to find optimally energy-efficient paths for skid steer rovers. Based on the
work performed in chapter 3 and 4, our second contribution is finding optimally
energy-efficient paths for skid-steer rovers under the practical assumptions that will
be elaborated in chapter 2. The paths are obtained by solving the equivalent time-
optimal problem. Hence, the extremal paths for the energy-optimal problem are
the answers of the equivalent problem.

• Another key contribution of this work is a detailed exposition of the importance
of R′, including its use in optimally energy-efficient local path planning on hard
ground (see chapter 4). When considered with respect to a popular power model
for skid-steer rovers [87], R′ corresponds to an important transition for energy con-
sumption: below R′ energy consumption for a circular-arc maneuver is not a func-
tion of turning radius while above R′ it is (see Theorem 9). It should be mentioned
that all the circles of the non-whirl18 extremal trajectories (Table 3) have the turn-
ing radius of R′. Furthermore, the importance of R′ is verified by performing several
experimental tests by Husky UGV on hard ground (see subsection 6.2.3.3). In addi-
tion, several experiments are done on loose soil to show the power/energy behavior
of Husky UGV and Argo J5 rovers around R′ (see subsection 6.3).

• In subsection 2.3, a new practical constraint on the velocity for skid-steer rovers is
suggested, which is another contribution in this thesis. Based on the constraint, the
summation of right and left wheel’s absolute velocity should be constant. It is noted
that the common assumption of constant forward velocity, which is considered for
other type of rovers, is not feasible for skid-steer rovers. As will be discussed in
subsection 2.3, considering constant forward velocity as turning radius approaches
zero requires angular velocity approaches infinity which is impossible for real sys-
tems. On the other hand, the proposed constraint allows to have constant angular

17As will be explained in subsection 3.1, as long as the velocity constraint does not restrict the range of
turning radii, it can be considered as a proper constraint.

18Non-whirl paths are described in the explanations provided after Eq. (138).
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velocity below R′ and constant forward velocity above R′ which is obviously possi-
ble for skid-steer rovers.

• The contributions of optimal traction research, which is more elaborated in chap-
ter 7, is as follows: we show, by performing a numerical simulation for a practical
type of 4-wheel rovers, that almost always19 equal “friction requirement” can be used
to obtain optimal traction forces. Our finding results in avoiding extra optimization
processes that are computationally expensive.

In the next subsection, an overview to the thesis is presented to give a brief explana-
tion to the whole work and steps performed.

1.4 Overview to the Thesis

The subject of this research is “Energy-Efficient Trajectory Planning for Skid-Steer
Rovers” (Fig. 4). There are several factors that can reduce the rover energy consumption
during its motion: Optimal Path, Optimal Traction Forces applied to the rover wheels,
etc. The major work in my research is on optimal path planning, which can be seen as a
“High Level” problem (Fig. 4), and is elaborated in chapters 2 though 6.

  

 

 

 

 

 

  

 

 

  

Energy-Efficient Trajectory 
Planning for Skid-Steer Rovers 

Optimal 
Traction 
Forces 

Optimal   
Path 

Figure 4: High level and low level aspects of the energy-efficient trajectory planning prob-
lem. Note: This figure provides more details about high and low level aspects presented
in Fig. 3.

Obtaining the optimal traction forces makes up a smaller portion of the research, and
is “Low Level” (Fig. 4) because it can be done on whatever path the higher-level planner
selects; it is described, somewhat independently, in chapter 7.

Thus, the main purpose of this research is to devise energy-efficient paths for skid-
steer rovers. Specifically, the situation studied is where the rover is driving on hard flat
ground. The work focuses on analytical approaches to find the optimal path. The find
approach is presented in chapters 3 through 5 . Chapter 6 and our existing publications

19In 99.93% of cases, solving the set of Eq. (246) through (250) converges to a valid solution.
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include some work conducted before it was successfully generalized into the find ap-
proach. Before finding a general energy-efficient path, preliminary work was performed
to find the optimal path within a class of predefined paths. There are several reasons why
these predefined classes of paths were important for us.

• As mentioned in the Introduction (section 1), Shamah et al. [6] show the importance
of skid-steer rover turning radius in power consumption. The easiest way to control
turning radius in practice is to have constant-turning-radius paths by using circular
arcs.

• In problems such as Dubins paths [39], it is shown that the minimum length paths
for car-like rovers are always a combination of circles and straight lines. It was
possible that these results would also be useful for our problem (i.e. such paths
may turn out to be more energy-efficient than other ad hoc or heuristically selected
paths).

• Solving simpler problems (i.e. predefined classes) before tackling the general case
enabled us to learn interesting features of our overall problem during preliminary
phases of the work.

The next phase of the research solved the optimal planning problem (i.e. no prede-
fined constraints on path type) on applicable rover power models, using insights gained
in the preliminary work. The mentioned phases are summarized hereunder:

1. Predefined class of paths: a path including two circular arcs (CC paths): This is
the simplest case that takes into account the turning radii (Fig. 5). Therefore, it was
considered as the first phase.

C 

B A 

Figure 5: A path including two circular arcs

Applied approach: The Karush-Kuhn-Tucker (KKT) conditions were used to ana-
lytically obtain the stationary points. Then, the global minimum was chosen from
the set of local minimums. The results are reported in subsection 6.1.2.

2. Predefined class of paths: A path including two circular arcs and a line segment
(CLC paths): Since in many cases (e.g. long distance between A and C) it is not
reasonable to consider long circular arcs, a combination of circular arcs and a line
segment were considered (Fig. 6).
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A 

C 

Figure 6: A path including two circular arcs and a line segment

Applied approach: The stationary points were obtained by the use of Karush-
Kuhn-Tucker (KKT) conditions. Finally, the global minimum was chosen from the
set of local minimums. The results are presented in subsection 6.1.2.

3. Non-predefined class of paths: A general arc-based paths (Fig. 7): To obtain this
type of the paths, no further assumptions are considered beyond those described in
the problem statement (chapter 2). Chapters 3, 4, and 5 are devoted to these types
of paths. After obtaining all the extremal trajectories for the energy-efficient path
planning problem, it became clear that the extremal paths include circular arcs with
the turning radius of R′20 , lines, or combinations thereof.

C 

A 

Figure 7: A general arc-based path (non-predefined class of paths)

Applied approach: As it is shown in Fig. 8, there are two options to solve the
problem:

• Directly applying the Pontryagin’s minimum principle.

• Using the equivalency theorem and obtaining an equivalent time-optimal problem
for the main energy-optimal problem.

As will be more explained in subsection 3.1, the second approach is chosen in this
thesis. Based on the equivalency theorem (see Theorem 2), there are several veloc-
ity constraints such as “constant power velocity constraint” which give the same
optimal path for the energy-efficient path planning problem. In this thesis, the
constraint is applied to convert the energy-optimal problem to an equivalent time-
optimal path planning problem. Then, the theorems21 developed by A. Furtuna [62]

20Except the whirls that will be explained in the mentioned chapters.
21Recall, these theorems are built upon the basis of Pontryagin’s minimum principle.
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for “Minimum Time Kinematic Trajectories for Self-Propelled Rigid Bodies in the Unob-
structed Plane” are used to obtain all the extremal paths. Accordingly, the energy-
optimal path planning problem is solved and all the extremals are obtained analyt-
ically.

It should be mentioned that Fig. 8 presents a concept map of the research performed
in this thesis. It will be presented at the start of key chapters to link the work presented
there to this overall “big picture”.

Theorems for 
Time-Optimal 
Problems**  

 

  

 

 

 

  

 

  

 

 

 

 

 

   

 

 

  

     

Optimal Traction 

Energy-Efficient Trajectory 
Planning for Skid-Steer Rovers 

Energy-Efficient 
Path Planning 

Problem 

Pontryagin’s 
Minimum 
Principle* 

Equivalency 
Theorem 

Optimal Traction Forces 

Equal “Friction 
Requirement” 

All the Extremals 

Optimal Paths 

Equivalent 
Time-Optimal 
Path Planning 

Problem 

Figure 8: Concept map of the research performed in this thesis.

*In this approach, the similar process and theorems presented in A. Furtuna’s PhD the-
sis [62] should be regenerated and revised/adjusted for the energy-optimal problem.**Several
theorems are generated for skid-steer rovers; and other theorems are taken from A. Furtuna’s
PhD thesis. It should be mentioned that directly applying the Pontryagin’s minimum principle
to the energy-efficient path planning problem is another approach that could be used instead of
solving the equivalent time-optimal problem.

The research in this thesis has resulted in the following journal and conference publi-
cations:

Journals:

• M. Effati, J. Fiset, and K. Skonieczny, “Considering slip track for energy-efficient
paths of skid-steer rovers,” Journal of intelligent and robotic systems, 2020.
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Link: https://doi.org/10.1007/s10846-020-01173-5

• M. Effati and K. Skonieczny, “Optimal traction forces for four-wheel rovers on
rough terrain,” Canadian Journal of Electrical and Computer Engineering, vol. 42,
no. 4, pp. 215–224, 2019.

• M. Effati and K. Skonieczny, “Optimally energy-efficient path planning for skid-
steer rovers,” In preparation, targeting the Journal of Autonomous Robots.

• J. Fiset,M. Effati, and K. Skonieczny, “Effect of turning radius on power and energy
consumption of skid-steer rovers on loose soil,” In preparation, targeting the Journal
of Field Robotics.

• M. Effati, K. Skonieczny, and D. J. Balkcom, “Energy-efficient path planning for
skid-steer rovers using equivalency theorem,” In preparation, targeting the Interna-
tional Journal of Robotics Research.

Conferences:

• J. Fiset, M. Effati, and K. Skonieczny, “Effects of turning radius on skid-steered
wheeled robot power consumption on loose soil,” in 12th Conference on Field and
Service Robotics (FSR). Springer, 2019.

• M. Effati and K. Skonieczny, “Circular arc-based optimal path planning for skid-
steer rovers,” in 2018 IEEE Canadian Conference on Electrical and Computer Engineer-
ing (CCECE). IEEE, 2018, pp. 1–4.

Conference Posters/Presentations:

• M. Effati, J. Fiset, and K. Skonieczny, “Energy-efficient path planning for skid-steer
rovers on flat ground,” ECE Graduate Student Research (GSR) Conference, 2019.

• K. Skonieczny, M. Effati, J. Fiset, and M. Faragalli, “Energy-efficient path planning
for skid-steer rovers,” 19th Astronautics Conference of the Canadian Aeronautics and
Space Institute (ASTRO), 2019.

• J. Fiset,M. Effati, and K. Skonieczny, “Towards a skid-steered wheeled robot power
model for loose soil: 2d slip-sinkage,” ECE Graduate Student Research (GSR) Confer-
ence, 2019.

Accordingly, in chapter 2 the energy-efficient path planning problem is defined and the
related assumptions are presented. Then, chapter 3 introduces the equivalency theorem,
which converts the energy-efficient problem to an equivalent time-optimal problem. Also,
the equivalent time-optimal problem is defined in the chapter. Afterwards, all the extremal
trajectories for the equivalent time-optimal problem are obtained in chapter 4. Moreover,
a numerical scenario is solved in chapter 5 and the minimum time path of the equivalent
problem, which is the minimum energy path of the original problem as well, is obtained for
the scenario. In chapter 6 the focus is on the numerical/analytical/experimental works
for predefined classes of paths (CC and CLC). Also, some initial investigations on revising
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the existing power model are presented in this chapter. Then, the research on optimal
traction forces for four-wheel rovers on rough terrain is presented in chapter 7. Finally,
chapter 8 is a conclusion for all the performed research. Also, it makes suggestions for
future work.
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2 Problem Statement
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Pontryagin’s 

Minimum 
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Equivalency 
Theorem 

Energy-Efficient Trajectory 
Planning for Skid-Steer Rovers 
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Path Planning 

Problem 

Equal “Friction 
Requirement” 

All the Extremals 

Optimal Paths Optimal Traction Forces 

Equivalent 
Time-Optimal 
Path Planning 

Problem 

Figure 9: The task in this chapter is the problem statement of energy-efficient path plan-
ning (highlighted) for skid-steer rovers.

Firstly, the energy-efficient path planning problem is defined in subsection 2.1. It is im-
portant to note that the solution to this problem is sought for any and all proper velocity
constraints that may, or may not, be applied. Then, 2.2 introduces and analyzes a well-
known existing power model for skid-steer rovers. This power model is utilized for all the
analysis in this thesis. Finally, in subsection 2.3 a new particular constraint on the veloc-
ity of skid-steer rovers is proposed and the behavior of these rovers under this constraint
is explained.

2.1 Problem

The problem is to find an energy-efficient22 trajectory (Fig. 10) between a given starting
(A) and end pose (C), where the starting and end angle for the rover are θ0 and θf , respec-
tively. It should be mentioned that θ0, θf as well as the position of A and C are known in

22In this thesis energy-efficient and energy-optimal are used interchangeably.
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advance. In other words, if x = [x,y,θ]T , then x(t = 0) = x0 and x(t = tf ) = xf . Where (x, y)
and θ are the position and heading angle of the rover in the global coordinate system,
respectively. In addition, Vl and Vr are the left and right wheel velocities, respectively.
It is noted that Vl and Vr are the control inputs. Also, t is time. Moreover, tf is the final
time which is free. Therefore, the optimization problem is:

minimize
Vr , Vl , tf

∫ tf

0
P dt

subject to ẋ = Vr +Vl

2
cosθ

ẏ = Vr +Vl

2
sinθ

θ̇ = Vr −Vl

Bs

x(0) = x0, y(0) = y0, θ(0) = θ0

x(tf ) = xf , y(tf ) = yf , θ(tf ) = θf

(2)

where P is the power which will be developed in Eq. (20). Also, Bs is slip track that will
be explained in the next subsection (Eq. (10)).

  
C 

A A
,  ,  

Figure 10: The general arc-based path (non-predefined class of paths) with the specified
start and end pose.

The assumptions for the problems are listed in the following:
Assumptions:

• The rover is skid-steer

• The rover can do point turns or go forward or backward with any turning radius

• The rover moves on hard flat ground

• There are no obstacles

• The rover center of mass is located at its centroid

• The trajectory is piecewise C2 differentiable

• Recall that no specific velocity constraints are required. Practical constraints to
consider include motor saturation (∣Vr ∣ < vmax, ∣Vl ∣ < vmax), constant vc (see 2.3), and
velocities that maintain constant power (see chapter 3).
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The power model utilized for P (Eq. (20)) and the way to obtain its parameters are
explained in the following subsection.

2.2 Power Modeling

Firstly, the kinematics for skid-steer rovers are stated in subsection 2.2.1. Then, the kine-
matics are incorporated into a popular existing power model in subsection 2.2.2.

2.2.1 Skid-Steer Rovers Kinematics

Rover kinematics can be defined based on the concept of Instantaneous Centers of Ro-
tation (ICR) [88]. The parameters (xICRv,yICRv), (xICRr ,yICRr), and (xICRl ,yICRl) are the
vehicle, right hand-side, and left hand-side ICR positions, respectively. These parameters
are shown in Fig. 11 and are as follows:

xICRv = − vy
ωz

(3)

xICRl = Vl −vy
ωz

(4)

xICRr = Vr −vy
ωz

(5)

yICRv = yICRl = yICRr = vx
ωz

(6)

vy = VrxICRl −VlxICRr
xICRl −xICRr (7)

vx = (Vl −Vr)yICRv
xICRl −xICRr (8)

ωz = Vl −Vr

xICRl −xICRr (9)

Moreover, vx, vy , and ωz are the velocity in X, velocity in Y , and angular velocity
around Z axes of the rover’s body frame, respectively. Recall that Vr and Vl are the right
and left wheel velocities (i.e. wheel angular velocities multiplied by wheel radius), re-
spectively, and are control inputs. Martinez et al. [89] show that the positions of ICRs
can be assumed to be approximately constant for a particular terrain type. They can
be estimated by taking experimental measurements (as is done in this work, see subsec-
tion 6.2.3.2) or via dynamics simulations, for a particular soil type and narrow range of
speeds.

Moreover, W and L are the distance between the center of left and right wheels in
the X direction and the distance between the center of front and rear wheels in the Y
direction, respectively. Also, the slip track (Bs) is defined as follows:

Bs = xICRr −xICRl (10)

19



 
 

 

 

 

 

  

 

 

 

( , 
) 

( ,
)  

  

( , 
) 

   

Figure 11: A schematic figure of a skid-steer rover and its associated instantaneous cen-
ters of rotation (ICRs).

and can also be seen in Fig. 11. It should be mentioned that Bs is constant for a specific
terrain type and skid-steer rover. For example, Bs for Husky UGV on hard ground is
estimated to be 1.3 m. The method to calculate it is explained in subsection 6.2.3.2.

Based on the assumptions listed before, the rover center of mass is located at its cen-
troid. Accordingly, the following equations are derived:

xICRr = −xICRl (11)

yICRv = yICRl = yICRr = 0 (12)

Hence, from Eq. (7) through Eq. (12) it can be concluded that

vx = 0 (13)

v = vy = Vr +Vl

2
(14)

ωz = Vr −Vl

Bs
(15)

xICRr = Bs

2
(16)

xICRl = −Bs

2
(17)

From the fact that ∣v∣ =R∣ωz∣ as well as equations (14) and (15), the turning radius can
be expressed as:

R = Bs

2
∣Vr +Vl

Vr −Vl
∣ ,Vr ≠Vl (18)
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Lemma 1 R =R′ is the boundary between the separate cases where Vr and Vl are either of equal
or opposite sign.

Proof: Asmentioned before, R′ is the turning radius at which a skid-steer rover’s inner
wheels are not commanded to turn. Without loss of generality consider the right wheel
as the inner wheel. Therefore, at R′ the right velocity should be zero (Vr=0). It should be
mentioned that Vr = 0 is the boundary between when Vr is positive and negative. Hence,
by using Eq. (18) the following relation for R′ is obtained:

R′ = Bs

2
∣ Vl−Vl

∣ = Bs

2
(19)

∎
Definition 1 R′ is half of the slip-track (R′ = Bs

2
).

Note: Because of the importance of R′, Definition 1 is written. This definition is verified
by the results of Lemma 1. Moreover, based on Martinez et al. [89], the positions of left
and right ICRs are bounded and may be assumed constant for a specific terrain. Hence,
Bs (Eq. (10)) and thus R′ are constant.

In the next subsection, an existing power model is explained. Also, the presented
kinematics will be incorporated into the power model.

2.2.2 Power Model

This part adapts a popular existing skid-steer power model for usage according to the
problem definition and assumptions given in subsection 2.1. This model is based on a
frictional wheel-terrain contact assumption. This power model, developed by Morales et
al. [87,90] and used by Pentzer et al. [35,91], is as follows:

P = μ∣ωz∣ N∑
n=1

(pn∣∣a⃗n − C⃗r,l ∣∣) +G(∣Vr ∣ + ∣Vl ∣) (20)

where P is power consumed, μ is the friction coefficient, ωz is the angular velocity, pn is
the normal force on each wheel, Vr and Vl are right and left wheel velocities, ∣∣a⃗n − C⃗r,l ∣∣
(Fig. 12) is the distance from the right or left ICR to a wheel, G is the internal and rolling
resistance coefficient, and N is the number of wheels. Also, Vr and Vl are the control
inputs for the power model. This power model, using Fig. 12, along with the center-of-
mass at centroid assumption, is expanded as follows:
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P = μ∣ωz∣p⎛⎝
√(L

2
+yICRr)2 +(W2 −xICRr)2

+√(L
2
−yICRr)2 +(W2 −xICRr)2

+√(L
2
+yICRl)2 +(W2 +xICRl)2

+√(L
2
−yICRl)2 +(W2 +xICRl)2⎞⎠+G(∣Vr ∣ + ∣Vl ∣)

(21)

where p is the equal normal force applied to each wheel. The other parameters are as
defined before. Using Eq. (12), (16) and (17), the power model can be simplified as
follows:

P = 2μ∣ωz∣p√L2 +(W −Bs)2 +G(∣Vr ∣ + ∣Vl ∣) (22)

or,
P = k∣ωz∣ +G(∣Vr ∣ + ∣Vl ∣) (23)

where k is
k = 2μp√L2 +(W −Bs)2 (24)

 

( , ) 

 

 

 

 

 

  

 

 

 

 

Figure 12: Distance of a wheel from ICR. To calculate ∣∣a⃗n − C⃗r,l ∣∣ for each wheel, the ICR
on the same side as the wheel is always considered (i.e. for the wheels in the right hand
side of the rover, C⃗r should be considered.)

In the next subsection, a practical constraint on Vl and Vr for skid-steer rovers is ex-
plained. This constraint enables the skid-steer rover to have constant angular velocity for
0 ≤R <R′ and constant forward velocity for R ≥ 0.
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2.3 Proposing a Practical Velocity Constraint, Constant vc, for Skid-
Steer Rovers

As mentioned in the literature review (see subsection 1.2.3) considering constant forward
velocity constraint is not practical for skid-steer rovers. As turning radius approaches
zero, constant forward velocity requires angular velocity, and Vl and Vr , to approach
infinity, which is impossible for real systems.

In order to allow all the turning radii that skid-steer rovers make possible, including
point turns, a novel variation on the common constant velocity constraint is introduced
here. Namely: ∣Vl ∣ + ∣Vr ∣

2
= vc (Constant) (25)

When Vl and Vr are both positive, this is obviously the same as the constant forward
velocity constraint. However, in tight turns, where the wheels rotate in opposite direc-
tions, the control inputs remain bounded and point turns (where Vl = −Vr) are also ad-
missible. It will be shown below that when Vl and Vr are of opposite sign this constraint
is equivalent to constant angular velocity. The control space for the constraint is shown
in Fig. 13.

 

 

  

 

  

Figure 13: The control space obtained from ∣Vr ∣ + ∣Vl ∣ = 2vc constraint.
Under the constraint of ∣Vr ∣ + ∣Vl ∣ = 2vc, Theorem 1 is concluded. Accordingly, the

more realistic constant vc constraint is equivalent to constant forward velocity when both
wheels are turning forward, but at small turning radii where one of the wheels is in
rotating backward, the sign switch makes it instead correspond to a constant angular
velocity constraint.

Theorem 1 For a skid-steer rover moving on flat ground with slip track of Bs under the con-
straint of ∣Vr ∣+ ∣Vl ∣ = 2vc (Eq. (25)): (1) The forward velocity (v) is constant for R ≥R′. (2) The
angular velocity (ωz) is constant for 0 ≤R <R′.
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Proof:
The control space related to ∣Vr ∣ + ∣Vl ∣ = 2vc is shown in Fig. 13. Based on the figure,

R ≥R′ happens in the first and third quadrant. Also, 0 ≤R <R′ is related to the second and
fourth quadrant. Accordingly, each quadrant is elaborated separately in the following:

First quadrant of Fig. 13 (Vr > 0 & Vl ≥ 0):∣Vr ∣ + ∣Vl ∣ = 2vc ⇒Vr +Vl = 2vc (26)

v = Vr +Vl

2
⇒ v = vc (27)

Therefore, v is constant. It is known that for Vr =Vl (straight line motion), R is +∞. Also,
for Vr ≠Vl , R is Eq. (18). Therefore,

R = Bsvc∣Vr −Vl ∣ , Vr ≠Vl (28)

It is clear that in the first quadrant of Fig. 13:

∣Vr −Vl ∣ ≤ ∣Vr +Vl ∣ ⇒ ∣Vr −Vl ∣ ≤ 2vc (29)

Hence,

R ≥ Bs

2
⇒ R ≥R′ (30)

Third quadrant of Fig. 13 (Vr ≤ 0 & Vl < 0):
∣Vr ∣ + ∣Vl ∣ = 2vc ⇒Vr +Vl = −2vc (31)

v = Vr +Vl

2
⇒ v = −vc (32)

Therefore, v is constant. By the same method explained for the first quadrant, the follow-
ing relation for the third quadrant is obtained:

R ≥R′ (33)

Second quadrant of Fig. 13 (Vr > 0 & Vl < 0):∣Vr ∣ + ∣Vl ∣ = 2vc ⇒Vr −Vl = 2vc (34)

ωz = Vr −Vl

Bs
⇒ωz = 2vc

Bs
⇒ ωz = vc

R′
(35)

Therefore, ωz is constant.
Note: The reasons that Bs is constant are presented in the explanations for Eq. (10).
It is clear that in the second quadrant of Fig. 13:

∣Vr +Vl ∣ < ∣Vr −Vl ∣ ⇒ ∣Vr +Vl ∣ < 2vc (36)

Also, from Eq. (18) it is clear that in the second quadrant R ≥ 0. Hence, by using Eq. (18):

R = Bs∣Vr +Vl ∣
4vc

(37)
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Therefore,

0 ≤R < Bs

2
⇒ 0 ≤R <R′ (38)

Fourth quadrant of Fig. 13 (Vr < 0 & Vl > 0):∣Vr ∣ + ∣Vl ∣ = 2vc ⇒−Vr +Vl = 2vc (39)

ωz = Vr −Vl

Bs
⇒ωz = −2vc

Bs
⇒ ωz = −vc

R′
(40)

Therefore, ωz is constant. Utilizing the same analysis explained for the second quadrant,
the following result is obtained for the fourth quadrant:

0 ≤R < Bs

2
⇒ 0 ≤R <R′ (41)

∎
Note that the absolute value functions presented in Eq. (23), in conjunction with the

definition of ωz and R (Eq. (15) and Eq. (18)), as well as Definition 1 motivate looking at
the boundary between these separate cases (i.e. when either Vr = 0 or Vl = 0) correspond-
ing to R =R′. Lemma 2 thus splits the consideration of turning radii between those below
or above R′.

Lemma 2 Using the power model of P = k∣ωz∣ +G(∣Vr ∣ + ∣Vl ∣) (Eq. (23)) and the constraint of∣Vl ∣ + ∣Vr ∣ = 2vc (Eq. (25)), the power becomes as follows:

P = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
P0 if 0 ≤R <R′
R′

R
(P0 −P∞)+P∞ if R ≥R′ (42)

where, P0 and P∞ are constant:

P∞ = 2Gvc (43)

P0 = kvc
R′

+2Gvc (44)

Proof: As proved in Theorem 1, under the constraint of ∣Vl ∣ + ∣Vr ∣ = 2vc:
• ∣ωz∣ = vc

R′
(Eq. (35) and Eq. (40)) is constant for 0 ≤R <R′.

Therefore, by considering Definition 1, it can be easily verified that P is constant
and

P0 = kvc
R′

+2Gvc (45)

• ∣v∣ = vc (Eq. (27) and Eq. (32)) is constant for R ≥R′.
It is known that ωz = v

R
. Hence,

lim
R→∞

∣ωz∣ = lim
R→∞

vc
R

= 0 (46)
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As a result, it is proved that
lim
R→∞

P = P∞ = 2Gvc (47)

By substituting the obtained relations for P0 and P∞, as well as using ∣ωz∣ = vc
R

and

Definition 1, the following equality is proved:

Bs

2R
(P0 −P∞)+P∞ = k∣ωz∣ +G(∣Vr ∣ + ∣Vl ∣) (48)

Using Eq. (42) for power, Fig. 14 is sketched:

 

 

 

 

Power 

Figure 14: The power changes according to the turning radius.

∎
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3 Equivalency Theorem
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Figure 15: The tasks performed in this chapter are highlighted.

Firstly, the equivalency theorem is proved in subsection 3.1. This theorem shows that all
minimum-energy trajectories follow the same path irrespective of velocity constraints
that may or may not be imposed. This non-intuitive result stems from the fact that for
the defined power model, the total energy is fully parametrized by the geometry of the
path alone, as will be shown in Lemma 3. In this thesis, the theorem is utilized to obtain
an equivalent time-optimal problem. The equivalent problem will be solved to obtain the
optimal path, which is the general answer to the energy-efficient path planning problem
as well. Moreover, a practical example for the equivalency theorem is provided in subsec-
tion 3.2.

3.1 Equivalency Theorem

Definition 2 A general path is a sequential set of connected point turns, straight lines, and/or
curves parametrized by R(s).
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It is known that energy (E) can be obtained by the following equation.

E = ∫ tf

0
Pdt (49)

where t is time. In addition, along a general path (Fig. 17), the related time can be
obtained from the following relations:

t = ∫ θf

θ0
∣dθ
ωz

∣ (50)

t = ∫ LP

0
∣ds
v
∣ (51)

where dθ and ds are the differential of angle and displacement of the rover, respectively.
Also, LP is the length of a path with R(s) > 0 for all s. Note that Eq. (50) is particularly
useful for R = 0, while (51) is valid for all other R.

The mentioned relations are used in the following lemma to show that the energy for
skid-steer rovers going along a general path can be written as a function of geometric
path parameters of Δθ, Δs, and R(s).
Lemma 3 The energy for the skid-steer rover when going along a general path (Fig. 17) while
using the power model of Eq. (23) is equal to:

E =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(k +GBs)∣Δθ∣, if R = 0(k +2GR′)∫ LP
0

1
R(s)ds, if 0 <R(s) <R′

∫ LP
0 ( k

R(s) +2G)ds, if R(s) ≥R′
2GΔs if straight line

(52)

Proof: The energy for each interval of R is proved separately.

(I) R = 0:
Starting with the power model, Eq. (23), and the general equations (49) and (50),
gives:

E = ∫ θf

θ0
(k∣ωz∣ +G(∣Vr ∣ + ∣Vl ∣)) ∣dθωz

∣
= ∫ θf

θ0
(k +G ∣Vr ∣ + ∣Vl ∣∣ωz∣ ) ∣dθ∣ (53)

Using (15), this becomes:

E = ∫ θf

θ0
(k +GBs

∣Vr ∣ + ∣Vl ∣∣Vr −Vl ∣ ) ∣dθ∣ (54)
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The definition of R′ ensures that for R = 0, Vr and Vl are of opposite sign. Therefore,
the following relation can be verified:∣Vr −Vl ∣ = ∣Vr ∣ + ∣Vl ∣ (55)

So, ∣Vr ∣ + ∣Vl ∣∣Vr −Vl ∣ = 1 (56)

Hence, the energy is:

E = ∫ θf

θ0
(k +GBs)∣dθ∣

= (k +GBs)∫ θf

θ0
∣dθ∣

= (k +GBs)∣Δθ∣, for R = 0
(57)

Therefore the energy for any turn with R = 0 is a constant times ∣Δθ∣.
(II) 0 < R(s) < R′: Starting with the power model, (23), and the general equations (49)

and (51), gives:

E = ∫ LP

0
(k∣ωz∣ +G (∣Vr ∣ + ∣Vl ∣)) ∣dsv ∣

= ∫ LP

0
(k∣ωz

v
∣ +G ∣Vr ∣ + ∣Vl ∣∣v∣ )ds (58)

Using Eq. (14), this becomes:

E = ∫ LP

0
(k∣ωz

v
∣ +2G ∣Vr ∣ + ∣Vl ∣∣Vr +Vl ∣ )ds (59)

Since Vr and Vl have the opposite sign in 0 < R(s) < R′, the following relation can
again be verified: ∣Vr −Vl ∣ = ∣Vr ∣ + ∣Vl ∣ (60)

Therefore, using Eq. (18), the following relations are obtained:

R =R′ ∣Vr +Vl

Vr −Vl
∣ =R′ ∣Vr +Vl ∣∣Vr ∣ + ∣Vl ∣ ,Vr ≠Vl (61)

So, ∣Vr ∣ + ∣Vl ∣∣Vr +Vl ∣ = R′

R
(62)

Also, it is known that ∣v∣ =R∣ωz∣. Therefore,
E =∫ LP

0
( k
R(s) +2G R′

R(s))ds (63)
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Hence,

E =∫ LP

0

1
R(s) (k +2GR′)ds (64)

Since k +2GR′ is constant,

E =(k +2GR′)∫ LP

0

1
R(s)ds (65)

(III) R(s) ≥R′:
Since Vr and Vl have the same sign, the following relation can be easily verified:

∣Vr +Vl ∣ = ∣Vr ∣ + ∣Vl ∣ (66)

So, the following relation is true:

∣Vr ∣ + ∣Vl ∣∣Vr +Vl ∣ = 1 (67)

Also, it is known that ∣v∣ =R∣ωz∣. Therefore, using Eq. (59):

E =∫ LP

0
( k
R(s) +2G)ds (68)

(IV) Straight line:

In the specific case of a straight line Vr=Vl , ωz = 0 and thus E = ∫ LP
0 2Gds = 2GΔs

with Δs = LP. ∎
The lemma will be used to prove the equivalency theorem (see Theorem 2).

Definition 3 A proper constraint is one that does not place a limit on a skid-steer rover’s
turning radii; i.e. one that allows point turns, straight lines, and 0 < R < ∞. Note that this
includes the case of unconstrained velocities. Some velocity constraints that will be shown to
be proper include:

• Constant vc ( ∣Vl ∣ + ∣Vr ∣ = 2vc, where vc is constant)

• ∣Vi ∣ < ∣vmax∣, i = {r, l} and vmax is constant

• Unconstrained velocity

• Constant power velocity constraint (see Fig. 16)

Definition 4 Optimal controls are a solution {V ∗r ,V ∗l } to the energy optimization problem
stated in chapter 2 (Eq. (2)).
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Definition 5 An optimal path is the general path produced by applying optimal controls {V ∗r ,V ∗l }.
Theorem 2 Equivalency Theorem: An optimal path found for energy optimization with a
proper velocity constraint is also an optimal path for energy optimization with any other proper
velocity constraint.

Proof: As can be seen in Lemma 3, the energy consumption along a general path can
be fully parameterized by geometric path parameters (Δθ, Δs, R(s)) and is not directly
dependent on Vr , Vl .

Also, any general path can be achieved by a skid-steer rover with a proper velocity
constraint. This follows directly from the definitions of a general path and a proper
velocity constraint, respectively.

Moreover, there are no general paths that can result in lower energy consumption
than an optimal path. Furthermore, a proper velocity constraint ensures that controls
generating any such hypothetically lower-energy general path would have been included
in the search space.

An energy-optimal path is thus energy-optimal regardless of velocity constraints, as
long as the velocity constraints are proper. Only the particular optimal controls used
to follow such an optimal path vary between problems with different proper velocity
constraints. ∎

In the following more explanations are provided to clarify Theorem 2. Based on Eq.
(18) it is known that the turning radius is a function of the control inputs. Therefore,

R(s) =R′ ∣Vr(s)+Vl(s)
Vr(s)−Vl(s)∣ ,Vr(s) ≠Vl(s) (69)

Also, from the above-mentioned equation for R(s) it is seen that in the case of un-
constrained velocities there are infinite {Vl(s);Vr(s)} that can produce a R(s), i.e. all the{aVl(s);aVr(s)} for the real number a ≠ 0 produce the same R(s).

The next step is showing that the above-mentioned velocity constraints do not limit
the R(s) values and are thus proper. Each constraint is evaluated separately in the fol-
lowing:

1. Constant vc: Using the related figure (see Fig. 13) and the equation for the turning
radius (Eq. (18)) it is evident that for (Vl,Vr) ∈ {(−vc,vc),(vc,−vc)}, the turning
radius is zero (R(s) = 0). In addition, when (Vl,Vr) is infinitesimally close to the
middle of line segments in the first or third quadrant of the figure (i.e. (Vl,Vr) ≊(vc,vc) or (−vc,−vc)), the turning radius approaches to infinity (R(s) → ∞). It is
apparent that for other values of Vl and Vr , the range of (0,+∞)will be obtained for
R(s).

2. ∣Vi ∣ < ∣vmax∣, i = r, l: Using Eq. (18), when Vl = −Vr , the turning radius is zero (R(s) =
0). Also, when Vr and Vl are almost equal, the turning radius approaches infinity
(R(s) →∞).

3. Unconstrained velocity: The similar explanation in part 2 is applicable for uncon-
strained velocity.
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4. Constant power: It is proved in Appendix A that to have constant power (P = Pc
where Pc is a constant), the Vr and Vl should have the symmetric control space
shown in Fig. 16. By considering Fig. 16 and Eq. (18), when (Vl,Vr) is the mid-
dle point of line segments in second or fourth quadrant of the figure23, the turning
radius becomes zero (R(s) = 0). In addition, when (Vl,Vr) is infinitesimally close to
the middle of line segments in the first or third quadrant of the figure (i.e. (Vl,Vr)≊ ( Pc

2G
,
Pc
2G

) or (− Pc
2G

,− Pc
2G

)), the R(s) →∞. Apparently, the range of (0,+∞) will be

obtained for R(s) by taking other values of Vl and Vr .

This means the same path that is optimal for constant vc, is optimal for ∣Vi ∣ < ∣vmax∣
(i = r, l), is optimal for UNCONSTRAINED velocity and is optimal for constant power’s
velocity constraints.

 

 

 

 

 

 

 

 

 

Figure 16: Control Space for Constant Power of Pc

Accordingly, to solve the energy efficient path planning problem (see Eq. (2)) there are
two approaches:

1. To directly apply Pontryagin’s minimum principle and then prove several theorems spec-
ified for skid-steer rovers to obtain all the extremal paths for the energy-efficient path
planning problem: In this approach theorems and processes analogous to those per-

23(Vl ,Vr) ∈
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎝
− Pc

2(G+ k

Bs
)
,

Pc

2(G+ k

Bs
)

⎞⎟⎟⎟⎠
,

⎛⎜⎜⎜⎝
Pc

2(G+ k

Bs
)
,− Pc

2(G+ k

Bs
)

⎞⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

32



formed by A. Furtuna 24 [62] should be regenerated and then be revised/adjusted
for our problem (Eq. (2)). As an example, applying Pontryagin’s minimum princi-
ple to the “constant vc” energy-efficient path planning problem is explained in Ap-
pendix B.2. Then, the difficulties for solving the problem are explained in Appendix
B.3.

2. To use the “constant power” constraint and find an equivalent time-optimal problem for
the energy-efficient problem (Eq. (2)): Based on the equivalency theorem, “constant
power” is one of the several proper constraints that could be considered to obtain
the optimal path for the energy efficient path planning problem. Accordingly, the con-
straint can be used to convert the energy-efficiency to an equivalent time-efficiency
problem.25 Hence, the theorems that are proved by A. Furtuna [62] can be used di-
rectly for solving the equivalent time-optimal problem. Therefore, the optimal paths
for the energy-efficient path planning problem will be obtained.

In this thesis, the second approach, which is considering “constant power” and its
related velocity constraints, is utilized to solve the energy efficient path planning problem
(see Eq. (2)).

As explained in subsection 2.3, “constant vc” is an important practical constraint.
Moreover, based on the equivalency theorem (Theorem 2), both “constant vc” and “con-
stant power” constraints give the same optimal path. Accordingly, next subsection (see
Theorem 3) is explaining an example, about equivalency of “constant vc” and “constant
power” energy-efficient path planning problem, to provide more insight to the “equiv-
alency theorem”. By choosing proper parameters for the constraints (see Fig. 19) it is
shown that the costs of two problems are the same. Therefore, they can be used inter-
changeably to obtain the optimal path with the same cost.

3.2 A Practical Example for the Equivalency Theorem

Firstly, Theorem 3 is proved. This theorem provides a practical example for the equiva-
lency theorem (Theorem 2) explained in the previous subsection. Furthermore, Theorem 3
shows that there is an equivalent time-optimal for the constant vc energy-efficient problem
(see Eq. (70)) with the same cost. It should be mentioned that based on the equivalency
theorem, there is a single optimal path for the Energy-Efficient Problem (see Eq. (2)) con-
sidering:

• Constant vc ( ∣Vl ∣ + ∣Vr ∣ = 2vc, where vc is constant),

• Constant power velocity constraint resulting in equivalent time-optimal problem (see
Eq. (71))

24In his PhD dissertation, several theorems are proved for time-optimal path planning of a rigid body.
These theorems are for obtaining the extremal control inputs, categorizing different type of paths, limiting
the number of extremals, determining the switch points of the extremals, and defining length/periodicity
of the correspondent extremal paths.

25 From Eq. (49) it is known that E = ∫ tf0 Pdt. For the “constant power” constraint, since P is constant, the
relation can be written as E = Ptf . Therefore, E is proportional to the total time (tf ) of the problem. Hence,
if the total time (tf ) is minimized, the cost (E) will be minimized.
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Afterwards, Lemma 4 converts the axes of the equivalent time-optimal problem’s control
space from (Ṽl , Ṽr) axis (see Fig. 19) to (ṽ, ω̃) axis (see Fig. 20). It should be noted that
the converted control space (Fig. 20) is required to use Theorem 5 in the next chapter to
obtain the extremal trajectories.

Note: In all of the following equations, Vr =Vr(t), Vl =Vl(t), and R =R(t) are implied.

Theorem 3 A Practical Example for the Equivalency Theorem: The following optimiza-
tion problems for a general path going from the same starting pose to the end pose (Fig. 17) are
equivalent.

Constant vc Energy-Efficient Problem:

minimize
Vr , Vl , tf

E = ∫ tf

0
Pdt, where P = k∣ωz∣ +G(∣Vr ∣ + ∣Vl ∣)

subject to ∣Vl ∣ + ∣Vr ∣ = 2vc (see Fig.18)
ẋ = Vr +Vl

2
cosθ

ẏ = Vr +Vl

2
sinθ

θ̇ = Vr −Vl

Bs

x(0) = x0, y(0) = y0, θ(0) = θ0

x(tf ) = xf , y(tf ) = yf , θ(tf ) = θf

(70)

Equivalent Time-Optimal Problem:

minimize
Ṽr , Ṽl , t̃f

Ẽ = ∫ t̃f

0
P0dt, P0 is a positive constant(see Lemma2)

subject to Ṽr(s) = fc(Ṽl(s)) (see Eq.(72))
˙̃x = Ṽr + Ṽl

2
cos θ̃

˙̃y = Ṽr + Ṽl

2
sin θ̃

˙̃θ = Ṽr − Ṽl

Bs

x̃(0) = x0, ỹ(0) = y0, θ̃(0) = θ0

x̃(t̃f ) = xf , y(t̃f ) = yf , θ̃(t̃f ) = θf

(71)

34



fc(Ṽl(s)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P0
P0 −2P∞ (Ṽl(s)−2vc) , 2vc ≤ Ṽl(s) < P0vc

P∞
Ṽl(s)(1− 2P∞

P0
)+2vc, 0 ≤ Ṽl(s) < P0vc

P∞
Ṽl(s)+2vc, −2vc ≤ Ṽl(s) < 0

P0
P0 −2P∞ (Ṽl(s)+2vc) , −P0vc

P∞
≤ Ṽl(s) < −2vc

Ṽl(s)(1− 2P∞
P0

)−2vc, −P0vc
P∞

≤ Ṽl(s) < 0
Ṽl(s)−2vc, 0 ≤ Ṽl(s) < 2vc

(72)

Note: Eq. (72) is the piecewise function of the control space shown in Fig. 19.

  

Figure 17: A general path going from a starting (x0,y0,θ0) to an end pose (xf ,yf ,θf ). The
length of path is LP.
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Figure 18: The control space obtained from ∣Vr ∣+∣Vl ∣ = 2vc constraint. Note that this figure
is the same as Fig. 13 and just for simplicity in following the process is repeated in this
section.
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Line 4 
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Line 6 

Figure 19: The control space of the equivalent time-optimal problem.

Proof: The proof steps are as follows:
Step 1: It will be proved that for the non-predefined path (Fig. 17), the costs of the

optimization problems (Eq. (70) and Eq. (71)) under the constraint of their correspondent
control spaces are equal:
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E

s.t. ∣Vl ∣ + ∣Vr ∣ = 2vc = Ẽ

s.t. Ṽr(s) = fc(Ṽl(s)) (73)

Step 2: It will be explained that for the non-predefined path (Fig. 17), how the differ-
ential relations in Eq. (70) and Eq. (71) are related together.

• In the following, Step 1 is performed.

Firstly, E in Eq. (70) will be expanded. Then, it will be proved that E = Ẽ.
E = ∫ tf

0
Pdt (74)

In Lemma 2 (also see Fig. 14), it is proved that:

P = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
P0 if 0 ≤R <R′
kvc
R

+2Gvc if R ≥R′ (75)

Therefore,

E =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ θf
θ0

P0
dθ
ωz

, if R(s) = 0
∫ LP
0 P0

ds∣v∣ , if 0 <R(s) <R′
∫ LP
0 ( kvc

R(s) +2Gvc) ds∣v∣ , if R(s) ≥R′
, where R(s) =R′ ∣Vr(s)+Vl(s)∣∣Vr(s)−Vl(s)∣ (76)

where LP is the length of the path in Fig. 17. In addition, in Theorem 1 (Eq. (35)
and Eq. (40)) it is proved that for 0 ≤R(s) <R′:

ωz = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
vc
R′

in the second quadrant of Fig. 18−vc
R′

in the fourth quadrant of Fig.18
(77)

and for R(s) ≥R′ (see Eq. (27) and Eq. (32)):

∣v∣ = vc (78)

Also, for 0 <R(s) <R′ (see Eq. (14)):
∣v∣ = ∣Vr(s)+Vl(s)∣

2
(79)

Therefore,
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E =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(θf −θ0)P0
ωz

, if R(s) = 0,where ωz is Eq.(77)

∫ LP
0

2P0∣Vr(s)+Vl(s)∣ds, if 0 <R(s) <R′
∫ LP
0 ( k

R(s) +2G)ds, if R(s) ≥R′,where R(s) =R′ ∣Vr(s)+Vl(s)∣∣Vr(s)−Vl(s)∣
(80)

Also, using the fact that ∣Vr −Vl ∣ = 2vc for 0 ≤ R < R′ (Eq. (34) and Eq. (39)) and
utilizing the relation for R (Eq. (18)), E is obtained as follows:

E =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(θf −θ0)P0
ωz

, if R(s) = 0,where ωz is Eq.(77)

∫ LP
0

R′P0
R(s)vcds, if 0 <R(s) <R′

∫ LP
0 ( k

R(s) +2G)ds, if R(s) ≥R′,where R(s) =R′ ∣Vr(s)+Vl(s)∣∣Vr(s)−Vl(s)∣
(81)

Therefore, Eq. (81) is the expanded E in Eq. (74). In the following it will be proved
that E = Ẽ for R(s) = 0, 0 <R(s) <R′, and R(s) ≥R′.
(I) For R(s) = 0:

When R(s) = 0, a skid-steer rover does a point turn which means Vr(s) = −Vl(s)
and Ṽr(s) = −Ṽl(s). Therefore, the middle point of the lines in the second and
fourth quadrant of Fig. 18 and Fig.19 should be taken into account. Firstly,
the second quadrant is considered. Then, the process for the fourth quadrant is
explained.
Second Quadrant of Fig. 19: In the middle point of Line 3, Ṽl(s) = −vc and
Ṽr(s) = vc. The mentioned point corresponds to the middle point of the line
in 2nd quadrant of Fig. 18. Hence, by using Eq. (15) the following relation is
obtained:

ω̃z = 2vc
Bs

= vc
R′

(82)

Also, from Eq. (71) it is known that:

Ẽ = ∫ t̃f

0
P0dt (83)

Therefore,

Ẽ = ∫ θf

θ0
P0

dθ
ω̃z

(84)

which means:

Ẽ = (θf −θ0)P0R′
vc

(85)
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From Eq. (77) and Eq. (81) it is obtained that for R(s) = 0,
E = (θf −θ0)P0R′

vc
(86)

Therefore, comparing Eq. (85) and Eq. (86),

Ẽ = E (87)

The similar process can be performed for the fourth quadrant.

(II) For 0 <R(s) <R′:
In this range for R, right and left wheel velocities have different signs. Hence,
the lines in 2nd and 4th quadrants (except their middle points which is investi-
gated in part (I)) of Fig. 18 and 19 are related to this range.
Firstly, Line 3 of Fig. 19 is considered which corresponds to the line in the 2nd

quadrant of Fig. 18.
It is known that

ṽ(s) =R(s)ω̃(s) (88)

Also, Eq. (15) gives: ∣ω̃∣ = ∣Ṽr − Ṽl ∣
2R′

(89)

In addition, the equation of Line 3 in Fig. 19 gives:

∣Ṽr − Ṽl ∣ = 2vc (90)

Hence, from Eq. (88) to Eq. (90) it is obtained that

ṽ(s) =R(s)vc
R′

(91)

Moreover, from Eq. (71) the following relation is calculated:

Ẽ = ∫ LP

0
P0

ds∣ṽ(s)∣ (92)

Hence, using Eq. (91) and Eq. (92) it is obtained that

Ẽ = ∫ LP

0

R′P0
R(s)vcds (93)

As a result, comparing Eq. (93) to Eq. (81) it is concluded that

Ẽ = E (94)

Note that for 0 < R(s) < R′, P is constant (Eq. (75)). So, it is not surprising that
the equivalent time-optimal (Eq. (71)) problem is the same as energy-efficient
(Eq. (70)) problem with no modifications required to the control space.
The similar process can be performed for Line 6.
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(III) For R(s) ≥R′
Line 1:
The equation of Line 1 and the equation for the turning radius (Eq. (18)) are
presented hereunder:

Ṽl(s)− Ṽr(s) = −2P∞P0 Ṽr(s)+2vc (95)

R(s) =R′ Ṽr(s)+ Ṽl(s)
Ṽl(s)− Ṽr(s) , Ṽr(s) ≠ Ṽl(s) (96)

R(s) → +∞, Ṽr(s) = Ṽl(s) (97)

Solving Eq. (95) and Eq. (96) for Ṽr(s) and Ṽl(s), gives the following relations:

Ṽl(s) = P0vc(R(s)+R′)
P∞R(s)+P0R′ −P∞R′ (98)

Ṽr(s) = P0vc(R(s)−R′)
P∞R(s)+P0R′ −P∞R′ (99)

Substituting Eq. (98) and Eq. (99) in the following relation (which is obtained
from Eq. (14) and Eq. (92)),

Ẽ = ∫ LP

0
2P0

ds

Ṽl(s)+ Ṽr(s) (100)

gives

Ẽ = ∫ LP

0

P∞R(s)+P0R′ −P∞R′
R(s)vc ds (101)

Finally, by substituting P0 and P∞ (see lemma 2) in Eq. (101), the following
relation is obtained:

Ẽ = ∫ LP

0
( k
R(s) +2G)ds (102)

Therefore, comparing Eq. (102) to Eq. (81) it is concluded that

Ẽ = E (103)

Now, R(s) → +∞ is investigated. Using Eq. (97) and Fig. 19 it is obtained that

Ṽr=Ṽl=
P0vc
P∞

. Therefore, by utilizing Eq. (100) and the relation of P∞ = 2Gvc

(see Lemma 2) it is obtained:

Ẽ = ∫ LP

0
2Gds = 2GLP (104)

Also, from Eq. (81) it can be easily verified that for R(s) → +∞:

E = 2GLP (105)
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Therefore,
Ẽ = E (106)

Line 2:
The equation of Line 2 and the equation for turning radius (Eq. (18)) are as
follows:

Ṽr(s)− Ṽl(s) = −2P∞P0 Ṽl(s)+2vc (107)

R(s) =R′ Ṽr(s)+ Ṽl(s)
Ṽr(s)− Ṽl(s) , Ṽr(s) ≠ Ṽl(s) (108)

R(s) → +∞, Ṽr(s) = Ṽl(s) (109)

Solving Eq. (107) and Eq. (108) for Ṽr(s) and Ṽl(s), using the results for P0 and
P∞ in lemma 2, and substituting them in the following equation,

Ẽ = ∫ LP

0
2P0

ds

Ṽl(s)+ Ṽr(s) (110)

the following relation is again obtained:

Ẽ = ∫ LP

0
( k
R(s) +2G)ds (111)

Also, for Ṽr=Ṽl ( see Eq. (109))

Ẽ = 2GLp (112)

Therefore,

Ẽ = E (113)

Accordingly, the similar process can be performed for Line 4 and Line 5 to
obtain the same result for Ẽ.

• In the following, Step 2 is explained.

Since the path of both optimization problems (Eq. (70) and Eq. (71)) is the non-
predefined path (Fig. 17), R(s) is the same for both problems. Hence, using Eq.
(18), the following relations are obtained:

R(s) = Bs

2
∣Vr(s)+Vl(s)
Vr(s)−Vl(s)∣ ,Vr(s) ≠Vl(s) (114)

R(s) = Bs

2
∣Ṽr(s)+ Ṽl(s)
Ṽr(s)− Ṽl(s)∣ , Ṽr(s) ≠ Ṽl(s) (115)
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It is known that for both Ṽr(s) = Ṽl(s) and Vr(s) =Vl(s) cases:
R(s) → +∞ (116)

Therefore, considering any pair of (Vr(s),Vl(s)) in Fig. 18 , the correspondent R(s)
can be obtained from Eq. (114) or Eq. (116). Using the R(s), Eq. (115) or Eq. (116),
and the equations of the line segments in Fig. 19, the correspondent (Ṽr(s), Ṽl(s))
will be obtained. In conclusion, considering the optimization problems, for any pair
of (Vr(s),Vl(s)) there is a correspondent (Ṽr(s), Ṽl(s)). Hence, for the differential
equations of Eq. (117) there is the correspondent differential equation of Eq. (118).

ẋ = Vr +Vl

2
cosθ

ẏ = Vr +Vl

2
sinθ

θ̇ = Vr −Vl

Bs

(117)

˙̃x = Ṽr + Ṽl

2
cos θ̃

˙̃y = Ṽr + Ṽl

2
sin θ̃

˙̃θ = Ṽr − Ṽl

Bs

(118)

∎
In the following lemma, it is shown that Fig. 20 with the axes of ṽ and ω̃ is obtained

from Fig. 19 with the axes of Ṽl and Ṽr . Therefore, the figures can be used interchange-
ably.

Lemma 4 By using Eq. (14) and Eq. (15), Fig. 20 is obtained from Fig. 19.

where
ṽR′ = vc (119)

ṽmax = P0vc
P∞

(120)

ω̃max = 2vc
Bs

(121)
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Figure 20: Control space of a skid-steer rover for the equivalent time-optimal problem.

Proof: Since Fig. 19 is symmetric, the following corners from the figure are consid-
ered:

• (P0vc
P∞

,
P0vc
P∞

) in Fig. 19 which is correspondent to (ṽmax,0) in Fig. 20

• (0,2vc) which is correspondent to (ṽR′ , ω̃max) in Fig. 20

Hence, by considering Eq. (14) and Eq. (15), the following relations are written:

ṽmax =
P0vc
P∞

+ P0vc
P∞

2
= P0vc

P∞
(122)

ṽR′ = 2vc +0
2

= vc (123)

ω̃max = 2vc −0
Bs

= 2vc
Bs

(124)∎
In the following chapter, by using Theorem 2 and several theorems presented in Fur-

tuna’s thesis [62], the extremal trajectories for the defined equivalent time-optimal problem
will be obtained.
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4 Extremal Trajectories for the Equivalent Time-Optimal
Problem
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Problems 

 

  

 

 

 

  

 

  

 

 

 

 

  

   

 

 

 

     

Equivalency 
Theorem 

Energy-Efficient Trajectory 
Planning for Skid-Steer Rovers 

Energy-Efficient 
Path Planning 

Problem 

Optimal Traction 

Equal “Friction 
Requirement” 

All the Extremals 

Optimal Paths Optimal Traction Forces 

Equivalent 
Time-Optimal 
Path Planning 

Problem 

Pontryagin’s 
Minimum 
Principle 

Figure 21: The tasks performed in this chapter are highlighted.

Firstly, Pontryagin’s Minimum Principle for time-optimal problems is presented in sub-
section 4.1. This theorem is required to obtain Hamiltonian level sets. Then, the optimal
control inputs are calculated in subsection 4.2 by the use of a theorem taken from Ref. [62].
Afterwards, subsection 4.3 is specified to plot the Hamiltonian level sets which give the
visual notion to categorize the extremal paths. Finally, subsection 4.4 and subsection 4.5
are related to restricting the number of periods and giving the complete table of the ex-
tremal paths, respectively. These finite number of extremal paths are enumerated and
compared to find the optimal solution as will be shown in Chapter 5.

4.1 Pontryagin’s Minimum Principle for Time-Optimal Problems

Pontryagin’s Minimum Principle for time-optimal problems (Theorem 4) is taken from
Ref. [92]. This theorem is required for this research to

• define the Hamiltonian using the theorem
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• use the concept of constant maximum of negative Hamiltonian (presented in the
theorem) to obtain the Hamiltonian level sets in subsection 4.3

Theorem 4 Let x(t) = (x(t), ...,xm(t)) be a trajectory and u(t) mapping the time interval
t0 ≤ t ≤ t1 to U:

u(t) = (u1(t), ...,un(t)) (125)

be the correspondent admissible (i.e., piecewise continuous) control input for transferring from
x(t0) = x0 to x(t1) = x1. The necessary condition for u(t) and x(t) to be time-optimal is as
follows:

A nontrivial continuous adjoint function of λ(t) = (λ1(t),λ2(t), ...,λm(t)) which is in Rm

exists that satisfies the adjoint equation:

λ̇i(t) = −∂H∂xi , i = 1..m (126)

where H ∶Rm ×SE2 ×U →R is the Hamiltonian:

H(x(t),u(t),λ(t)) = ⟨λ(t), ẋ(x(t),u(t))⟩ (127)

ẋ = ∂H
∂λ

(128)

Conditions for optimality:

(I) For all t, t0 ≤ t ≤ t1, the maximum of −H(x(t),u(t),λ(t)), which is the function of
the variable u ∈U , is at the point u = u(t):

max(−H(x(t),u(t),λ(t))) =M(λ(t),x(t)) (129)

(II) M(λ(t),x(t)) = λ0 is constant if λ(t), x(t), and u(t) satisfy Eq. (126), Eq. (128), and
condition (I). Thus, λ0 satisfies the following condition for t0 ≤ t ≤ t1:

λ0 ≥ 0 (130)

Proof: The proof of the theorem is presented in Ref. [92]. ∎
The following relations for the first derivatives of the states are known:

ẋ(t) = v(t)cos(θ(t)) (131)

θ̇(t) =ωz(t) (132)

ẏ(t) = v(t)sin(θ(t)) (133)

Note: All the following relations and variables in this subsection are the function of time
(t) that for simplicity the time variable is not written.
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Using Eq. (127) and Eq. (131) through Eq. (133) gives the following relation for
Hamiltonian:

H = λ1v cos(θ)+λ2v sin(θ)+λ3ωz (134)

Also, using Eq. (126) gives:

λ̇ = (0,0,λ1ẏ −λ2ẋ) (135)

After integrating to solve for λ:

λ = (c1,c2,η(x,y)) (136)

where ci (i = 1,2,3) are the constants obtained by integration and they are not zero simul-
taneously. Also, η is as follows:

η(x,y) = c1y − c2x+ c3 (137)

Substituting Eq. (136) into Hamiltonian results in the following relation:

H = v(c1 cosθ + c2 sinθ)+ωz(c1 y − c2 x+ c3) (138)

Based on the Pontryagin’s minimum principle, the adjoint equation (Eq. (126)) cannot
be identically zero. In other words, c1, c2, and c3 are not all zero. Hence, the following
two cases are considered:

1. c1=c2=0

2. One of c1 or c2 is not zero. Therefore, for simplicity and without loss of generality
it is assumed26 that c21 + c22 = 1. It should be mentioned that this assumption is
considered by A. Furtuna [62] as well.

The paths that are obtained for the case when c1 and c2 are both zero, are called whirls
by A. Furtuna [62]. Hence, the rest of paths are non-whirls27. Whirls for a skid-steer rover
have maximum value of angular velocity (∣ωz∣ = 2vc/Bs) while their speed (∣v∣) is in [0, vc].
This is equivalent to paths with maximum ∣ωz∣ when R ∈ [0,R′]. It should be mentioned
that the structure of whirls consists of rolls and a catch [62]. The rolls are circular arcs by
R =R′. The catch part is a circular arc by R ∈ [0,R′) that put the rover in the final pose.

In the following the second case is investigated when the following condition is held:

c21 + c22 = 1 (139)

Lemma 5 For a line in the plane given by the equation ax + by + c = 0, where a, b, and c are
real constants with a and b not both zero, the perpendicular distance of a point (x0,y0) from
the line is as follows [93]:

26As it is known for Pontryagin’s minimum principle and it is mentioned by A. Furtuna [62], the condi-
tions of the principle are invariant to the scaling of the adjoint with a positive number.

27In A. Furtuna’s thesis, non-whirls are called control line trajectories.
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distance = ∣ax0 +by0 + c∣√
a2 +b2 (140)

Considering Eq. (137) for η(x,y), assuming Eq. (139), and using Lemma 5 it is con-
cluded that η(x,y) is the signed distance of the robot’s centroid from a line which is
named η-line 28. For simplicity it is assumed that the center of mass and centroid of the
robot are the same. The η-line (see Fig. 22) is a hypothetical control line in 2D and dis-
tance to it determines the path type; there is more discussion about it in Ref. [50] and
subsection 4.4 of this thesis.

 

 

Figure 22: Schematic figure to show the η-line and the related parameters. β is the orien-
tation of rover with respect to the η-line.

Lemma 6 If β (see Fig. 22) is defined as Eq. (141), the Hamiltonian (Eq. (138)) will be
converted to Eq. (142), while Eq. (137) and Eq. (139) are considered.

β = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
θ −arctan2(−c2,−c1) if c1 ≠ 0
θ −arctan2(−c2,−c1) if c1 = 0 and c2 < 0
θ −arctan2(c2,c1) if c1 = 0 and c2 > 0 (141)

−H = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
v cosβ −ωzη if c1 ≠ 0
v cosβ −ωzη if c1 = 0 and c2 < 0−v cosβ −ωzη if c1 = 0 and c2 > 0 (142)

Proof: The proof for c1 ≠ 0 as well as c1 = 0 & c2 < 0 exist in [50]. It should be mentioned
that there is a typo in Eq. (79) of [50]. It should be written in the format of β = θ −
arctan2(−c2,−c1). Then, the results presented in the paper for the mentioned conditions
of c1 and c2 are valid. The only remained part is c1 = 0 & c2 > 0 which is elaborated
hereunder:

28The naming convention of η-line is taken from Ref. [50]. Also, the η-line is named control line in [62].
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It is known that for two variables of x and y the definition of arctan2(y,x) [94, 95] is
as follows:

arctan2(y,x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan(y
x
) if x > 0

arctan(y
x
)+π if x < 0 and y ≥ 0

arctan(y
x
)−π if x < 0 and y < 0+π/2 if x = 0 and y > 0−π/2 if x = 0 and y < 0

undefined if x = 0 and y = 0
(143)

Therefore, the following relation is concluded for the condition of c1 = 0 & c2 > 0:
arctan2(c2,c1) = +π2 (144)

Eq. (141) ⇒ cosβ = cos(θ − π
2
) = sin(θ) (145)

Eq. (142)⇒−H = −v sinθ −ωzη (146)

Also, for c1 = 0 & c2 > 0 and considering c21 +c22 = 1 (Eq. (139)), it is obtained that c2 = 1.
As a result, Eq. (138) is converted to:

H = v sinθ +ωzη (147)

As it is seen, Eq. (146) and Eq. (147) are the same. ∎
Eq. (142) and the optimal control inputs that will be obtained in subsection 4.2, will

be utilized to graph the Hamiltonian level sets in subsection 4.3.

4.2 Time-Optimal Control Inputs

The following theorem is Theorem 2 (page 29) of Andrei Furtuna’s thesis [62]. This theo-
rem is utilized to obtain the optimal control inputs (ṽ∗, ω̃∗) for the equivalent time-optimal
problem.

Theorem 5 The problem is time-optimal control of an autonomous rigid body and the assump-
tions are:

• moving in the Euclidean plane without obstacles;

• the state vector of x = (x,y,θ) gives the configuration of the rigid body in the plane. Where(x,y) is the position of the rigid body and θ is its orientation with respect to the x axis;

• the model is fully kinematic, assuming that acceleration happens so fast that its time can
be neglected29;

• it is assumed that the control set U is a convex polyhedron in R3;

29Note: this is a common assumption for rovers of low speeds
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• U fully specifies the vehicle’s capabilities.

For the control set U, there is canonical finite subset Uc that includes the vertices of U and at
most one point on each face or edge U that intersects the θ̇ = 0 plane, such that any mentioned
optimal control problem has a solution that is a control policy which

1. is piecewise continuous

2. only takes values in Uc

A comparison between the assumptions which are stated in chapter 2 and Theorem 5
shows that the theorem is applicable for the equivalent time-optimal problem if it is proved
that the control space in Fig. 13, thus Fig. 20, is a convex polyhedron in R3.

It can be considered that ∣Vr ∣+ ∣Vl ∣ ≤ 2vc without causing any problem for the theorems
proved in the previous chapter. In other words, here we allow more admissible controls,∣Vr ∣+∣Vl ∣ ≤ 2vc, for the purpose of this thorem. However, once we find the optimal controls
we confirm that they in fact satisfy the original constraint ∣Vr ∣ + ∣Vl ∣ = 2vc. As a result,
Fig. 13 and thus Fig. 20 becomes a convex polyhedron in R3. Hence, Theorem 5 will be
utilized for the equivalent time-optimal problem. Therefore, by using Fig. 20 and Theorem
5 the canonical finite subset for the equivalent time-optimal problem is:

Uc = {(ṽmax,0),(−ṽmax,0),(ṽR′ , ω̃max),(−ṽR′ , ω̃max),(ṽR′ ,−ω̃max),(−ṽR′ ,−ω̃max)} (148)

In the following subsection, Uc (Eq. (148)) will be used to obtain the Hamiltonian
level sets for the equivalent time-optimal problem.

4.3 Hamiltonian Level Sets

Firstly the Hamiltonian level sets for the following conditions

• c1 ≠ 0
• c1 = 0 & c2 < 0

are obtained in subsection 4.3.1. Then, the Hamiltonian level sets for c1 = 0 & c2 > 0 are
explained in subsection 4.3.2. Hence, the Hamiltonian level sets for the equivalent time-
optimal problem (Eq. (71) of Theorem 2) are obtained. These level sets will be used in
obtaining the extremal paths in subsection. 4.5.

4.3.1 Hamiltonian Level Sets for c1 ≠ 0 or c1 = 0 & c2 < 0
λ0 is defined as the maximum of Eq. (142). Therefore,

λ0 =max(−H(t)) (149)

It is mentioned in Theorem 4 that λ0 is constant. Also, Eq. (149) is a dot product of
the following vectors:

Vu = (ṽ∗, ω̃∗) (150)
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and,
Vη = (cosβ,−η) (151)

where ṽ∗ and ω̃∗ are the time-optimal control inputs. Also, Vu is the control vector, and
Vη is called characteristic vector (the naming convention is taken from Balckom Masom
paper [50]).

λ0 =⟨Vu,Vη⟩=ṽ∗ cosβ − ω̃∗η (152)

As mentioned before, λ0 is constant for the equivalent time-optimal problem. Also,(ṽ∗, ω̃∗) are the time-optimal control inputs that should be chosen from Uc (Eq. (148)).
Moreover, it is known that the optimal control inputs are the vertices of the control space
shown in Fig. 20. For example, if (ṽ∗, ω̃∗)=(ṽmax,0) is considered, the λ0 becomes:

λ0 = ṽmax cosβ (153)

Since λ0 is constant, cosβ becomes constant; which means constant angle with respect
to the η-line. So, for λ0 ≤ ṽmax a straight forward motion is the maneuver that should be
considered30. By using the same process all the Hamiltonian level sets can be obtained
utilizing Eq. (152), which is explained in the following. Firstly, single maneuvers taken
from Uc (Eq. (148)) and their related symbols are introduced in Table 1.

Table 1: Symbols and the related maneuvers. CCW and CW stand for Counter Clockwise
and Clockwise, respectively.

Index Symbol Maneuver
1 ⇑ Straight forward with (ṽ∗, ω̃∗) = (ṽmax,0)
2 ⇓ Straight backward with (ṽ∗, ω̃∗) = (−ṽmax,0)
3 ↶ CCW forward turn with (ṽ∗, ω̃∗) = (ṽR′ , ω̃max)
4 ↷ CW forward turn with (ṽ∗, ω̃∗) = (ṽR′ ,−ω̃max)
5

b↶ CCW backward turn with (ṽ∗, ω̃∗) = (−ṽR′ , ω̃max)
6

b↷ CW backward turn with (ṽ∗, ω̃∗) = (−ṽR′ ,−ω̃max)
It should be mentioned that all the turns (Index 3 through 6) in Table 1 have the

turning radius of R′.31 Then, using Eq. (148) and Eq. (152) the following results are
obtained for the level sets:

1. (ṽ∗, ω̃∗) = (ṽmax,0)
λ0 = ṽmax cosβ⇒ cosβ = λ0

ṽmax
(154)

30In both Fig. 25 and Fig. 26, which will be more explained in the next pages, the level set related to
straight forward maneuver ⇑ falls to the side of (ṽmax,0) point of control space.

31Compare Fig. 19 and Fig. 20 while considering the fact that in R′ just one of Ṽr or Ṽl should be zero.
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2. (ṽ∗, ω̃∗) = (−ṽmax,0)
λ0 = −ṽmax cosβ⇒ cosβ = −λ0

ṽmax
(155)

3. (ṽ∗, ω̃∗) = (ṽR′ , ω̃max)
λ0 = ṽR′ cosβ − ω̃maxη ⇒−η = λ0 − ṽR′ cosβ

ω̃max
(156)

4. (ṽ∗, ω̃∗) = (ṽR′ ,−ω̃max)
λ0 = ṽR′ cosβ + ω̃maxη ⇒−η = ṽR′ cosβ −λ0

ω̃max
(157)

5. (ṽ∗, ω̃∗) = (−ṽR′ , ω̃max)
λ0 = −ṽR′ cosβ − ω̃maxη ⇒−η = λ0 + ṽR′ cosβ

ω̃max
(158)

6. (ṽ∗, ω̃∗) = (−ṽR′ ,−ω̃max)
λ0 = −ṽR′ cosβ + ω̃maxη ⇒−η = −ṽR′ cosβ −λ0

ω̃max
(159)

It is known that cosβ ∈ [−1,1]. Therefore, from Eq. (154) and Eq. (155) it is concluded
that if λ0 > ṽmax, there are no ⇑ and ⇓ maneuvers. However, for λ0 ≤ ṽmax all the reported
maneuvers in Table 1 are possible. In addition, it is known that λ0 > 0 (Theorem 4).32

Therefore, the following categories for λ0 are considered:

(i) λ0 > ṽmax

Feasible Maneuvers:↶,↷,
b↶, and

b↷
(ii) λ0 = ṽmax

Feasible Maneuvers: ⇑, ⇓,↶,↷,
b↶, and

b↷
(iii) 0 < λ0 < ṽmax

Feasible Maneuvers: ⇑, ⇓,↶,↷,
b↶, and

b↷
The feasible equations, considering the above categories for λ0, from amongst Eq.

(154) through Eq. (159) are considered. Hence, the following conclusions are obtained
for Hamiltonian level sets:

32 If λ0 = 0, the Hamiltonian level set becomes a point at the origin (see Fig. 26). Therefore, no path will
be produced. This point is more discussed in Lemma 8 which will be proved in the next chapter.
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• The Hamiltonian level set for λ0 > ṽmax is shown in Fig. 24

• The Hamiltonian level set for λ0 = ṽmax is shown in Fig. 25

• The Hamiltonian level set for 0 < λ0 < ṽmax is shown in Fig. 26

It should be noted that for the figures (Fig. 24 through 26), the line segments of
Hamiltonian level set closest to the origin are kept. Because λ0 = max(−H(t)) (see Eq.
(149)), for the farther part of a level set’s line, always there is another line with higher λ0.
For example, consider the dashed line which is extension of P1P2 (level set’s line) in Fig.
23. There are other level set’s lines, which are parallel to P2P3, with higher λ0, i.e. the
line segment that crosses the dashed line at PCross. Therefore, the dashed line shouldn’t
be sketched/considered. Hence, by the similar explanation, the other line segments for
the Hamiltonian level sets in Fig. 24 through Fig. 26 are obtained.

~v; cos-

~!
;!
2

P1

P2

P3

P4

P5

P6

 

0 

Figure 23: An example to show why the level set’s lines shouldn’t be extended in Fig. 24.

Pi , i = 1..6 (Table 2) are the vertices of the Hamiltonian level sets (see Fig. 24 through
Fig. 26). Depending on the value of λ0 these points move on the plane.
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Table 2: The vertices of Hamiltonian level set in Fig. 24 through Fig. 26.

Point (cosβ,−η) for Fig. 24 and 25 (cosβ,−η) for Fig. 26
P1 (1, λ0 − ṽR′

ω̃max
) ( λ0

ṽmax
,
λ0 − ṽR′ cosβ

ω̃max
)

P2 (0, λ0

ω̃max
) (0, λ0

ω̃max
)

P3 (−1, λ0 − ṽR′
ω̃max

) (− λ0

ṽmax
,
λ0 − ṽR′ cosβ

ω̃max
)

P4 (1, ṽR′ −λ0

ω̃max
) ( λ0

ṽmax
,
ṽR′ cosβ −λ0

ω̃max
)

P5 (0, −λ0

ω̃max
) (0, −λ0

ω̃max
)

P6 (−1, ṽR′ −λ0

ω̃max
) (− λ0

ṽmax
,
ṽR′ cosβ −λ0

ω̃max
)

~v; cos-

~!
;!
2

P1

P2

P3

P4

P5

P6

0 

Figure 24: The level set (black lines) for λ0 > ṽmax. The blue hexagon is the control space
shown in Fig. 20.
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~v; cos-

~!
;!
2

0 

Figure 25: The level set (black hexagon) for λ0 = ṽmax. The blue hexagon is the control space
shown in Fig. 20.

~v; cos-

~!
;!
2

0 

Figure 26: The level set (black hexagon) for 0 < λ0 < ṽmax. The blue hexagon is the control
space shown in Fig. 20.
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4.3.2 Hamiltonian Level Sets for c1 = 0 & c2 > 0
If the same process that was explained in subsection 4.3.1 is followed for the Hamiltonian
level sets, Fig. 24 to Fig. 26 will be mirrored with respect to the cosβ = 0 line. The reason
for being mirrored is the negative sign which is multiplied to cosβ (see −H equation for
the condition of c1 = 0 & c2 > 0 in Eq. (142)). For example in Fig. 26, the hexagonal
shape level set is mirrored with respect to the vertical orange line. Therefore, Fig. 27 is
obtained.

~v; cos-

~!
;!
2

0 

Figure 27: The level set (black hexagon) for 0 < λ0 < ṽmax and the condition of c1 = 0 & c2 > 0.
The blue hexagon is the control space shown in Fig. 20.

The Hamiltonian level sets will be used to obtain the shape of the extremal paths
in subsection 4.4 and 4.5. Also, some constraints on the period of the paths should be
considered which are explained in subsection 4.4.

4.4 Restricting the Number of Periods for the Obtained Paths

Using the obtained Hamiltonian level sets and the geometrical interpretation presented
in Ref. [50], the extremal paths can be obtained. Actually, the distance of the rover’s
centroid to the η-line determines the control policy [50]. Therefore, different paths that
are shown in Fig. 28 are obtained from the level sets that were shown in Fig. 24, Fig. 25,
and Fig. 26. As it is shown in Fig. 28, there are 3 types of paths:

• Generic Turns which consist of only turns

• Singular paths
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• Generic TST which stands for generic paths with sequences of Turns, Straight lines,
and Turns

It should be noted that the naming convention of Generic and Singular paths are taken
from Ref. [50] and [62].

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

Singular Point 

 

 

Singular 

Generic Turns 

Generic TST 

Figure 28: Different path types based on the λ0 categories.

Also, the difference between the above-mentioned paths is explained in the following:
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For Generics (Generic Turns and Generic TST) the position of the η−line uniquely
determines the optimal control inputs. Therefore, the paths will be unique.

However, Singulars are the paths that may include singularities. As it can be seen in
Fig. 28, since in the singular points the angle of the robot with respect to the η−line
is 0 or 180o, the robot can maintain its straight line motions or can switch to turns at
any particular point in time. Specifically, Singulars are the paths that their straight line
motions (⇑, ⇓) are parallel to the η−line.

Now, by using Fig. 28 all the paths will be obtained. However, the period of paths
should be restricted. Accordingly, the following theorems are proved/presented.

Theorem 6 The generic (non-singular) paths contain no more than one period if the following
conditions are held:

1. The image of θ(t) is not S1

2. θ̇(0) ≠ 0
Proof: It is proved in page 46 (Lemma 16) of Furtuna’s thesis [62]. ∎

All the generic TST paths which will be reported in Table 3, except those extremal
trajectories that start with a straight line motions (i.e. ⇑↷π

2

b↷π
2
⇓ b↷π

2
↷π

2
), are satisfying

the conditions in Theorem 6. Moreover, based on Theorem 5 of [60], it is concluded that
the generic TST paths starting with a straight line motion should be less than one period,
as well. 33

Theorem 7 The total turning angle of singular paths is less than 3π.

Proof: As it is shown in Fig. 28 for singular paths there are three types of singular paths,
based on the starting maneuver:

(I) CCLCCLCC..., i.e. ↶ b↶π
2
⇓ b↶π

2
↶π

2
⇑↶π

2

b↶
(II) CLCCLCCL..., i.e.

b↶⇓ b↶π
2
↶π

2
⇑↶π

2

b↶
(III) LCCLCCLC..., i.e. ⇑↶π

2

b↶π
2
⇓ b↶π

2
↶π

2

In the following each type is elaborated separately.

(I) CCLCCLCC...

• If the turning of starting ‘C’ is less than
π
2
, the maximum length optimal Type(I)

path is CCLCCLCC which the turning of the last ’C’ is less then
π
2
:

33It can be easily verified that if the path is extended to ⇑↷π
2

b↷π
2
⇓ b↷π

2
↷π

2
⇑, it can be replaced by

⇑↷π
2

b↷π
2
⇓ b↷π

2
↷π

2
.

57



Without loss of generality, let’s consider ↶ b↶π
2
⇓ b↶π

2
↶π

2
⇑↶π

2

b↶ where the turn-

ing of each↶ and
b↶ is less than

π
2
. If the path is extended to↶ b↶π

2
⇓ b↶π

2
↶π

2
⇑↶π

2

b↶π
2
,

it can be replaced by ↶ b↶π
2
⇓. As straight lines are commanded at ṽmax and are

by definition the shortest path between two points, a ⇑ is always more time op-
timal than a path that includes turns. It should be noted that in singular paths
the length of straight line motions (⇑,⇓) is in [0,+∞). By the similar expla-
nation, it can be verified that always there is a subset of ↶ b↶π

2
⇓ b↶π

2
↶π

2
⇑↶π

2

b↶
which can be replaced by any extension of it (↶ b↶π

2
⇓ b↶π

2
↶π

2
⇑↶π

2

b↶).

• If the turning of starting ‘C’ is equal to
π
2
, the maximum length optimal Type(I) path

is CCLCC which the turning of the last ‘C’ is less then
π
2
: Without loss of general-

ity let’s consider ↶π
2

b↶π
2
⇓ b↶π

2
↶. If the path is extended to ↶π

2

b↶π
2
⇓ b↶π

2
↶π

2
. The

extended path easily can be replaced by ⇑. Utilizing the similar approach, any
extension can be replaced with a shortest path.

(II) CLCCLCCL...

The maximum length optimal Type(II) path is CLCCLCC which the turning of last ‘C’
is less than

π
2
. It should be mentioned that the turning of the starting ’C’ can be less or

equal than
π
2
:

Without loss of generality let’s consider
b↶⇓ b↶π

2
↶π

2
⇑↶π

2

b↶. The extended path is
b↶⇓ b↶π

2
↶π

2
⇑↶π

2

b↶π
2
which can be replaced by

b↶⇓. Utilizing the similar approach,

any extension can be replaced by a subset of the path.

(III) LCCLCCLC...

The maximum length optimal Type(III) path is LCCLCC which the turning of last ‘C’
is less than

π
2
: Without loss of generality let’s consider ⇑↶π

2

b↶π
2
⇓ b↶π

2
↶. If the path

is extended to ⇑↶π
2

b↶π
2
⇓ b↶π

2
↶π

2
, it can be replaced by ⇑. Utilizing the similar ap-

proach, any extension can be replaced by a subset of the path.

∎
Theorem 8 The total turning of Generic Turns should be less than 3π.

Proof: Considering Fig. 28, it could be concluded that Generic Turns are Singularities
without considering the straight line motions (⇑, ⇓). Accordingly, the total turning of
Generic Turns should be less than 3π (see Theorem 7). ∎

58



4.5 Extremal Paths Table

From Theorem 5, the set of the optimal control inputs (Uc) is obtained. The control
inputs are utilized to obtain and draw Hamiltonian level sets (Fig. 24 through Fig. 26).
A sample for the related path to each level set is shown in Fig. 28. Then, Theorem 6
through Theorem 8 are utilized to constrain the number of periods for the Generics and
Singulars. Hence, the following table for the extremal paths is obtained:

Table 3: Extremal paths for the equivalent time-optimal problem.

Path Type Paths

Generic Turns ↶ b↶π↶π
b↶ b↶↶π

b↶π↶ ↷ b↷π↷π
b↷

b↷↷π
b↷π↷

Singular ⇓ b↶π
2
↶π

2
⇑↶π

2

b↶ ⇑↶π
2

b↶π
2
⇓ b↶π

2
↶ ⇓ b↷π

2
↷π

2
⇑↷π

2

b↷⇑↷π
2

b↷π
2
⇓ b↷π

2
↷ b↶⇓ b↶π

2
↶π

2
⇑↶π

2

b↶ ↶⇑↶π
2

b↶π
2
⇓ b↶π

2
↶

b↷⇓ b↷π
2
↷π

2
⇑↷π

2

b↷ ↷⇑↷π
2

b↷π
2
⇓ b↷π

2
↷ b↶↶π

2
⇑↶π

2

b↶π
2
⇓ b↶π

2
↶↶ b↶π

2
⇓ b↶π

2
↶π

2
⇑↶π

2

b↶ b↷↷π
2
⇑↷π

2

b↷π
2
⇓ b↷π

2
↷ ↷ b↷π

2
⇓ b↷π

2
↷π

2
⇑↷π

2

b↷
Generic TST ⇑↶ b↶ ⇓ b↷↷ ↶ b↶ ⇓ b↷↷⇑↶ b↶ ⇓ b↷↷⇑ ↶ b↶⇓ b↷↷⇑↶ b↶ b↷↷⇑↶ b↶⇓ b↷ ↷⇑↶ b↶⇓ b↷↷↷ b↷ ⇓ b↶↶⇑↷ ⇑↷ b↷ ⇓ b↶↶ ↶⇑↷ b↷⇓ b↶↶

b↶↶⇑↷ b↷⇓ b↶ ⇓ b↶↶⇑↷ b↷ b↷ ⇓ b↶↶⇑↷ b↷
All the shown paths and their subpaths should be evaluated to obtain the optimal path

for a given start and end pose. In the following chapter, a numerical scenario is solved
for the above-mentioned table. In addition, some of the paths in the table are visualized.
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5 Numerical Scenario
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Problems 
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Theorem 

Energy-Efficient Trajectory 
Planning for Skid-Steer Rovers 

Energy-Efficient 
Path Planning 

Problem 

Optimal Traction 

Equal “Friction 
Requirement” 

All the Extremals 

Optimal Paths Optimal Traction Forces 

Equivalent 
Time-Optimal 
Path Planning 

Problem 

Pontryagin’s 
Minimum 
Principle A Particular Scenario is 

Considered to Indicate How 
the Obtained Extremals 

Should be Utilized to Obtain 
the Optimal Path  

Figure 29: The tasks performed in this chapter are Highlighted.

The goal of this chapter is solving a numerical example to show how Table 3 should
be used for a particular scenario. Firstly, in subsection 5.1, two lemmas are presented
which will be used to calculate the length of straight lines for generic TST paths. Then,
the scenario for the numerical example is explained in 5.2. Afterwards, the algorithms
to obtain the feasibility region for the extremal paths are explained in subsection 5.3.
These regions show the feasible starting points of the extremal paths for the considered
scenario. Finally, the goal of 5.4 is to draw a map (see Fig. 41) for the particular scenario
(Table 4) that shows which extremal path is optimal at each starting point in the 2D plane.
The costs of the finite number of extremal paths are enumerated and compared to draw
the map.

5.1 Length of Straight Lines in Generic TST Paths

Firstly, a complete maneuver is explained in Definition 6. Then, the length of complete ⇑
or ⇓ for generic TST paths (see Fig. 28) is mathematically obtained in Lemma 7.
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Definition 6 For the maneuvers shown in Table 1, a complete maneuver for a particular λ0
includes all the possible η and cosβ for its related line segment of the level set (i.e. from one
switching point to the other).

For example, ⇑ in Fig. 30 is a complete maneuver if its related level set’s line segment in-
cludes all the points between A and B inclusive. It should be noted that point A is the switching
point between↷ and ⇑. Also, B is the switching point between ⇑ and↶.

~v; cos-

~!
;!
2 B 

A 

0 

C 

Figure 30: The level set for explaining a complete maneuver.

Lemma 7 The length of a complete ⇑ or ⇓ maneuver for Generic TST paths is

LD = 2ηc
sinβc

, βc ≠ 0 (160)

where, ηc is the maximum distance of the maneuver from the η−line. Also, βc is the acute angle
between the maneuver and η−line. Note that for generic TST paths, cosβ < 1.34 The parameters
are shown in Fig. 31 and are obtained from the following relations:

βc = cos−1( λ0

ṽmax
) (161)

ηc = λ0

ω̃max
(1− ṽR′

ṽmax
) (162)

ṽmax, ṽR′ , and ω̃max were indicated in Fig. 20.
Proof:

34See Fig. 26 and Fig. 28
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In the following, the analysis is done for complete ⇑maneuver that the similar evalu-
ation can be performed for complete ⇓maneuver.

 

 

 
 

Figure 31: Complete ⇑maneuver for a generic TST path in Fig. 28.

From the symmetry of the level sets (Fig. 28) it is known that the η−line crosses the
middle of a complete ⇑. Hence, by considering Fig. 31 the following relation is obtained:

sinβc = 2ηc
LD

(163)

Therefore,

LD = 2ηc
sinβc

, βc ≠ 0 (164)

Since ⇑ is a complete maneuver, ηc occurs at the switching point of↷⇑ or ⇑↶ path. In
the following each one is analyzed separately:

• Switching point of↷⇑
Eq. (154) and Eq. (157) give the following relations at the switching point:

λ0 = ṽmax cosβs1 (165)

λ0 = ṽR′ cosβs1 + ω̃maxηs1 (166)

where ηs1 and βs1 are the η and β at the switching point of↷ ⇑, respectively. By
solving the above two equations, the following results are obtained for ηs1 and βs1:

ηs1 = λ0

ω̃max
(1− ṽR′

ṽmax
) (167)

βs1 = cos−1( λ0

ṽmax
) (168)

Therefore, ηc is the absolute value of ηs1. Also, it is known that ṽR′ < ṽmax (see Fig.
20). Hence,

ηc = ∣ηs1 ∣ = λ0

ω̃max
(1− ṽR′

ṽmax
) (169)
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For generic TST paths, it is known that 0 < λ0 < ṽmax (see Fig. 26. Thus, 0 < βs1 < π
2

(βs1 is acute). So,

βc = ∣βs1 ∣ = cos−1( λ0

ṽmax
) (170)

• Switching point of ⇑↶
Eq. (154) and Eq. (156) give the following relations at the switching point:

λ0 = ṽmax cosβs2 (171)

λ0 = ṽR′ cosβs2 − ω̃maxηs2 (172)

where ηs2 and βs2 are the η and β at the switching point of ⇑ ↶, respectively. By
solving the above two equations, the following results are obtained for ηs2 and βs2:

ηs2 = λ0

ω̃max
( ṽR′
ṽmax

−1) (173)

βs2 = cos−1( λ0

ṽmax
) (174)

Hence, ηc and is the absolute value of ηs2. Accordingly,

ηc = ∣ηs2 ∣ = λ0

ω̃max
(1− ṽR′

ṽmax
) (175)

Also,
βs1 = βs2 = βc (176)

∎
Lemma 8 For Generic TST paths:

λ0 ≠ 0 (177)

Proof: Consider Eq. (160) through Eq. (162). If λ0=0, it will result in βc=
π
2

and ηc=0.

Hence, LD=0. Therefore, the Hamiltonian level set becomes a point at the origin of Fig 26
(or see Fig. 28 for generic TST paths). As a result, no Generic TST path will be produced.
Therefore, λ0 should not be zero. ∎

The proved lemmas will be used in Algorithm 1 to create a table. Before that step, the
scenario will be defined in the following subsection.
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5.2 Particular Scenario and Steps to Find the Optimal Paths

Scenario: To go from start poses anywhere in the x − y plane (at the start orientation of
π/4) to the origin (see Table 4) in minimum time while constrained to the control space
in Fig. 32. Also, the considered Bs is 1.32 m which is the measured Bs for Husky UGV on
hard ground. Therefore,

R′ = Bs

2
= 0.66 m (178)

Table 4: The start (S) and end (E) pose of the considered scenario. This type of particular
scenario is useful for illustrating the kind of paths that are optimal depending on where
the rover starts relative to a desired goal.

Point Coordination

(xS,yS,θS) (x,y, π
4
)

(xE,yE,θE) (0,0,0)
Inspecting Fig. 20 and Fig. 32 reveals that:

ṽmax = 1
ṽR′ = 2

3
ω̃max = 1

(179)

 

     

  

 

(-1,0) 

 

(1,0) 

 

 

Figure 32: The example control space considered for the numerical scenario
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There are three main steps for producing the optimal map shown in Fig. 41:

I Generating all the extremal paths reported in Table 3 and their subpaths by using
turtle library in Python.

II Finding the feasibility region for each of the paths for the considered scenario. Also,
calculating the cost of the paths.

III Comparing the cost of the paths and drawing the optimal map.

Step I and step II are explained in subsection 5.3. Also, Step III is performed in subsec-
tion 5.4.

5.3 Generating Extremals and Finding the Feasibility Regions

An example for a subpath of each generic Turns, singular, and generic TST paths are plotted
in Fig. 33, Fig. 34, and Fig. 35, respectively. Also, a sample of a CLC path which is
a subpath of generic TST paths is shown in Fig. 36. All of these paths are generated by
using turtle library in Python.

Figure 33: ↶π
2

b↶π↶π
2
path. It is going from (x,y,0) to (0,0,0) which is denoted by .

Figure 34: ⇓ b↶π
2
↶π

2
⇑↶π

2

b↶π
2
path. It is going from (x,y,0) to (0,0,0) which is denoted by .
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Figure 35: ⇑↷ b↷ ⇓ b↶↶ path. It is going from (x,y,θ) to (0,0,0) which is denoted by .

Figure 36: ↷⇑↶ path. It is going from (x,y,θ) to (0,0,0) which is denoted by .

Feasibility Regions: To obtain the feasibility region the end pose of the paths are
forced to be at (xE,yE,θE)=(0,0,0). Then, the turns and straight line maneuvers are
allowed to vary in their acceptable range for the considered path. Afterwards, θS is
checked. If θS is π/4 with an small error (εth = 0.1 degree which is εth = 0.0006π radian),(xS,yS) is saved. Therefore, the feasibility regions/lines for each of the generic Turns, singu-
lar, and generic TST paths or their subpaths are obtained.

In the following the algorithms utilized to obtain the feasibility regions/lines for the
paths (and their subpaths) shown in Fig. 33, Fig. 34, and Fig. 35 are explained. The
algorithms of all remaining paths and their subpaths are obtained with the same method-
ology.

Algorithm 1 uses Lemma 7 to generate a table including LD and the related βc. The
table produced by this algorithm is used in Algorithm 4 which calculates the feasibility
regions for subpaths of Fig. 35 (an example of generic TST paths). In addition, Algorithm
2 and Algorithm 3 are utilized to obtain the feasibility region/line for subpaths of Fig.
33 (an example of generic Turns) and subpaths of Fig. 34 (an example of singular) paths,
respectively. In all these cases, subpaths are defined such that the first and last maneuvers
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need not be complete (by Definition 6).

Algorithm 1: Algorithm to create the LD table
Result: A table that includes the angles with respect to the η−line and their

related straight line lenght, for complete manuevers of various λ0.
for λ0 in (0,1) do

βc= Eq. (161) for the given λ0;
ηc= Eq. (162) for the given λ0;
LD= Eq. (160) for the caluclated βc and ηc;
Save [βc,LD]

end

Algorithm 2: Algorithm to obtain the feasibility line shown in Fig. 37

Result: Feasibility line and the related costs for ↶ b↶π↶ path (subpaths of Fig. 33)
Note: Δθ1, Δθ2, and Δθ3 are the turns for ↶,

b↶π, and ↶, respectively.;

for Δθ1 in [0, π
2
] do

for Δθ3 in [0, π
2
] do

Δθ2 =π;
Generate the ↶ b↶π↶ path by using Python turtle while the end point is
forced to have (xE,yE,θE)=(0,0,0) ;
Get {xS,yS,θS} of the generated path;

if ∣θS − π
4
∣ < εth then

Save the {xS,yS};
Costa=Δθ1+Δθ2+Δθ3;
Save the Cost;

end
end

end

aRecall, for all turns, ωz=ω̃max = 1 rad
s

.

67



Algorithm 3: Algorithm to obtain the feasibility line shown in Fig. 38

Result: Feasibility line and the related costs for ⇓ b↶π
2
↶π

2
⇑↶π

2

b↶ path (subpath of

Fig. 34)
Note: Δθ1, Δθ2, Δθ3, and Δθ4 are the turns for

b↶π
2
, ↶π

2
, ↶π

2
, and

b↶, respectively.

Also, ΔD1 and ΔD2 are the length for ⇓ and ⇑, respectively. Furthermore, in the
following algorithm +∞ is replaced with a sufficiently large number to avoid an
infinite loop.;

for Δθ4 in [0, π
2
] do

for ΔD1 in [0,+∞) do
for ΔD2 in [0,+∞) do

Δθ1=Δθ2=Δθ3 = π
2
;

Generate the ⇓ b↶π
2
↶π

2
⇑↶π

2

b↶ path by using Python turtle while the end

point is forced to have (xE,yE,θE)=(0,0,0) ;
Get {xS,yS,θS} of the generated path;

if ∣θS − π
4
∣ < εth then

Save the {xS,yS};
Cost∗=Δθ1+Δθ2+Δθ3+Δθ4+ΔD1+ΔD2;
Save the Cost;

end
end

end
end

*Recall, for ⇑ and ⇓, v=ṽmax = 1 m
s
. Also, for all turns, ωz=ω̃max = 1rads .
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Algorithm 4: Algorithm to obtain the feasibility region shown in Fig. 39

Result: Feasibility region and the related costs for ⇑↷ b↷ ⇓ b↶↶ path
Note: Δθ1, Δθ2, Δθ3, and Δθ4 are the turns for ↷,

b↷,
b↶, and ↶, respectively. Also,

ΔD1 and ΔD2 are the length for ⇑ and ⇓, respectively. Also, Δθ1, Δθ2, Δθ3, and
ΔD2 are complete maneuvers. ;

for Δθ1 in (0, π
2
) do

LD is obtained by lookup table (Algorithm 1) for the βc=
π
2
−Δθ1.∗;

ΔD2=LD;
for ΔD1 in [0,ΔD2] do

for Δθ4 in [0,Δθ1] do
Δθ2=Δθ3=Δθ1;

Generate the ⇑↷ b↷ ⇓ b↶↶ path by using Python turtle while the end point
is forced to have (xE,yE,θE)=(0,0,0) ;
Get {xS,yS,θS} of the generated path;

if ∣θS − π
4
∣ < εth then

Save the {xS,yS};
Cost∗∗=Δθ1+Δθ2+Δθ3+Δθ4+ΔD1+ΔD2;
Save the Cost;

end
end

end
end
*Consider the complete ↷maneuver in Fig. 30. Over the course of the complete↷, β changes from

π
2
to βc. Therefore, Δθ1 = π

2
−βc, or equivalently βc = π

2
−Δθ1.

**Recall, for ⇑ and ⇓, v=ṽmax = 1 m
s
. Also, for all turns, ωz=ω̃max = 1rads .
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Figure 37: Resulting feasibility line for all subpaths of ↶ b↶π↶.

Figure 38: Resulting feasibility line for all subpaths of ⇓ b↶π
2
↶π

2
⇑↶π

2

b↶. The plot is

trimmed for y values.
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Figure 39: Resulting feasibility region for all subpaths of ⇑↷ b↷ ⇓ b↶↶. The plot is trimmed
for y values.

Also, the feasibility region for the CLC (Fig. 36) staring points is shown in Fig. 40.

Figure 40: Resulting feasibility region for all subpaths of ↷⇑↶. The plot is trimmed for x
values.
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As explained in subsection 4.1, whirls have the structure of ‘roll-and-catch’. Rolls are
R′-circular arcs that finally will be followed by a catch which is a circular arc by R ∈ [0,R′).
Therefore, the feasibility region for the whirls should be produced by varying the angles
for each part (for rolls and catch) while considering their proper turning radii.

Considering the scenario, the feasibility regions for the starting points of the extremals
are sketched and the related costs are calculated. In the following subsection, the costs
are compared to determine the path with the minimum cost when starting in different
parts of the x−y plane in 2D.

5.4 Map of the Optimal Paths

The subsequent process for the considered scenario is followed to compare the costs and
draw the map (Fig. 41) of the optimal paths:

• The parameters reported in Table 5 are considered for the scenario (that was intro-
duced in subsection 5.2).

• Algorithm 5 is applied to all the feasibility regions obtained in subsection 5.3: in
order to compare the costs of extremal paths, they should have the same (x,y) for
the samples/grids. Therefore, this algorithm is used to create those samples/grids
by using the data of the existing samples in the feasibility region of each path.

• Algorithm 6 is applied to the data produced in the previous step. Therefore, the
minimum-cost path for each (x,y) is chosen and plotted in Fig. 41.

Table 5: The parameters considered for the algorithms to obtain the map (Fig 41).

Parameter Value

xstep 0.1 m

ystep 0.1 m

{xmin,ymin} {−5 m,5 m}
{xmax,ymax} {−5 m,5 m}

nNN 5-10
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Algorithm 5: Grid producing algorithm for an extremal path.

Load the data of feasibility region for the extremal path;
for x in [xstep.f loor(xminfeas/xstep),xmaxfeas]∗ with xstep do

for y in [ystep.f loor(yminfeas/ystep),ymaxfeas] with ystep do
if (x,y) is inside of the feasibility region then

Select nNN nearest neighbors and get their Δθs and ΔDs;

Do a local search to obtain an extremal path that goes from (x,y, π
4
) to(0,0,0).**;

Save the position and cost ({x,y, cost}) of the found extremal path;
end

end
end
*{xminfeas,yminfeas} and {xmaxfeas,ymaxfeas} are the minimum and maximum {x,y}
for the feasibility region of the extremal path.;
**The errors considered to terminate the local search are 0.05 m for the distance
and 0.05o for the heading angle.;

Algorithm 6: Comparing the costs and drawing the optimal map.

Apply Algorithm 5 to all the feasibility regions obtained in subsection 5.3;
for x in [xstep.f loor(xmin/xstep),xmax] with xstep do

for y in [ystep.f loor(ymin/ystep),ymax] with ystep do
Find all the extremal paths that have (x,y) and make a list of them;
Choose the path from the list with minimum cost;
Plot the (x,y) and assign it to the selected path;

end
end
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Figure 41: Map indicating the optimal paths to the origin when starting at different(x,y, π
4
) on the x−y plane.

The legends for the optimal paths shown in Fig. 41 are indicated in Table 6 by using
the maneuver symbols defined in Table 1. As it can be seen from the map, there are three
types of paths that cover the largest areas of the figure and extend to its boundaries. They
are as follows:

• CLC

• CCLC

• CLCC

where ”C” stands for R′-circular arcs and ”L” stands for lines. To interpret the map,
consider as an example the coordination of (4,1). Based on the map, the optimal path
to go from (4,1,π/4) to (0,0,0) is a CLC path. It should be mentioned that each of the
categories for the paths that were mentioned includes several path types. For example,
the CLC (true blue region) path in the map includes all the path types that are reported
in Table 6 and shown in Fig. 42.

74



x 

y 

Figure 42: The paths related to the true blue region (CLC) in Fig. 41

Table 6: The correspondent maneuver symbols for the paths shown in Fig. 41.

Path Arrows

CLC
b↷ ⇓ b↶ ↶ ⇑↷
b↶ ⇓ b↷ ↷ ⇑↶
b↷ ⇓ b↷ ↷ ⇑↷

CCL
b↷↷ ⇑ ↷ b↷⇓

LCCL ⇓ b↷↷ ⇑ ⇑↷ b↷⇓
CLCC

b↶ ⇓ b↷↷ ↶ ⇑↷ b↷
CCLC ↷ b↷ ⇓ b↶ b↷↷ ⇑↶
CCLCC

b↷↷ ⇑↶ b↶ ↷ b↷ ⇓ b↶↶
LCCLCC ⇓ b↷↷ ⇑↶ b↶ ⇑↷ b↷ ⇓ b↶↶
LCCLC ⇓ b↷↷ ⇑↶ ⇑↷ b↷ ⇓ b↶
CLCCL

b↶ ⇓ b↷↷⇑ ↶ ⇑↷ b↷⇓
Whirls and their feasibility regions are explained in subsection 4.1 and 5.3, respec-

tively. As mentioned before, whirls have the structure of ‘roll-and-catch’; R′-circular arcs,
starting from the initial pose, eventually followed by a turning by R ∈ [0,R′) which puts
the rover to the final pose. The Cyan color in the map (see Fig. 41) includes two types of
whirls:

• Whirls that are closer to the origin just consist of catch part
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• The other whirls which are far enough from the origin include a roll (a circular arc
with R′) and a catch part.

More discussion on the map: Since there are some similarities between the dynamic
of differential drive rovers and skid-steer rovers, and also Balkcom Mason in [50] per-
formed the similar scenario of Table 4 for differential drive rovers, in the following sim-
ilarities and differences between the results are discussed to provide more notion to the
path planning problem. Accordingly, the map (Fig. 41) and figure 12 of ref. [50] are
compared. In both figures, there is a type of path which is dominant (covers the most
region): PLP for differential drive and CLC for skid-steer rovers. Also, the comparison
reveals that instead of R′-circular arcs (‘C’), differential drive rovers do point turns (‘P’).
Moreover, it seems that the behavior of the paths are almost similar. For example, instead
of Line-Point turn-Line (LPL) for differential drive, the skid-steer rovers perform LCCL.
Also, instead of PLPL for differential drive rovers, skid-steer rovers do CLCCL.

Expectation/Prediction about other scenarios: We expect that for other scenarios,
different than the scenario that wasmentioned in Table 4, the CLC paths will be dominant
in the correspondent optimal map. The reason is that avoiding extra turnings and instead
doing straight lines will result in more efficient paths. Therefore, for those regions that
CLC paths are feasible, they should be the most efficient path. It should be mentioned
that the explained regions will happen when the starting pose is far enough from the goal
pose.

As mentioned, CLC paths are one of the most prevalent path types in the optimal map
(Fig. 41). Also, separate earlier phase of this research focused on predefined classes of
paths (CC and CLC). Furthermore, there are several experimental tests’ results for the
predefined class of paths. Hence, in the following chapter, the analytical approach and
experimental results for the predefined class of paths are discussed.
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6 Energy-Efficient Path Planning for the Predefined Class
of Paths
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Figure 43: The tasks performed in this chapter are highlighted.

This chapter reports all the analytical, numerical, and experimental research on predefined
classes of paths (CC and CLC).

In subsection 6.1 path planning on hard ground without lateral slippage is discussed.
In this subsection the analytical approach is used to find the energy-efficient path for the
predefined class of paths. Subsection 6.2 covers both theoretical and experimental results
for the energy-efficient path planning problem. It should be mentioned that the lateral
slippage is considered in the analyses and all the tests are performed on hard ground. Also,
there are some discussions about the experimentally obtained power for skid-steer rovers
on hard ground.

Since all the theoretical and analytical approaches performed in this thesis use the
existing power model which is designed for hard ground, several experimental tests are
performed on another terrain, loose soil, and compared to the results of the approaches to
show the differences (subsection 6.3). These comparisons can be used as a proper starting
point for future work for energy-efficient path planning of skid-steer rovers on loose soil.
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6.1 Energy-Efficient Path Planning onHardGround byUsingKKTCon-
ditions without Considering the Lateral Slippage

The contributions and the work of this subsection are stated in the following:

• A thorough analytical approach using Karush-Kuhn-Tucker (KKT) [96] conditions
is developed for finding energy-efficient paths for skid-steer rovers. The globally
optimal answer from among a predefined class of paths can be obtained for each
scenario by comparing the KKT candidates.

• It is shown by analysis that there are scenarios in which CLC paths are more energy-
efficient than PLP paths.

• It is shown that when optimizing CLC paths using KKT conditions analytically (uti-
lizing an existing power model developed by Morales et al. ( [87] [90]) circular arcs
of radius W/2 (where W is the distance between two wheels’ centers along the rover
width) make up the optimal ’C’ segments. With no lateral slippage, W/2=R′.

In 6.1.1 the optimal path planning problem is defined and the assumptions are pre-
sented. In 6.1.2 this optimization problem is solved analytically. Subsection 6.1.3 presents
numerical as well as experimental results comparing CLC paths to PLP paths. Finally,
6.1.4 summarizes the conclusions.

6.1.1 Problem Statement

Problem: The following optimization problem is investigated to obtain the optimally
energy-efficient path.

 
C 

   
 

 

 

 
A 

Figure 44: A CLC path including two circular arcs and a line segment

minimize
R1,R2,θB1

E

subject to hi = 0, i = 1..n
gj ≤ 0, j = 1..m
and it is assumed that ∣Vl ∣ + ∣Vr ∣ = 2vc

(180)

where E, hi , and gj are the energy consumed during the path, and the equality constraints
and inequality constraints (defined in subsequent subsections of section 6.1.2), respec-
tively. Also, n and m are the numbers of equality and inequality constraints, respectively.
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In addition, Rk (k = 1,2) and θB1 are the turning radii of the circles and angle of the
straight line (with respect to a path-defined coordinate system) in Fig. 44, respectively.

Assumptions: The assumptions are the same of those mentioned in subsection 2.1.
Except that just forward motion is allowed for the CLC paths in the following analysis.
Also, a further assumption is employed purely to simplify the analysis of the example
cases studied:

• Both θA and θC are in the same quadrant

It should be mentioned again that before finding general arc-based paths (Chapter 2
to 5 ), the solutions were restricted to predefined classes of paths that are combinations
of circular arcs and line segments (i.e. circle-line-circle, CLC, paths and circle-circle, CC,
paths).

6.1.2 Analytical Approach to Find anOptimal Path for the PredefinedClasses of CLC
and CC Paths

In the following, first the power model is described. Then, the analytical approach to find
optimally energy-efficient CLC and CC paths is presented.

6.1.2.1 Power and EnergyModel for a Circular Arc When there is no lateral slippage,
Bs is equal to W. Therefore, Eq. (42) is converted to:

P = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
4μ

vc
W

pL+2Gvc if 0 ≤R ≤ W
2

2μ
vc
R
pL+2Gvc if R > W

2

(181)

From Theorem 1, it is known that for the skid-steer rover, when 0 ≤ R <W/2, Vr and
Vl have opposite signs. Therefore, ωz and P (Eq. (181)) are constant. Also, when R >W/2
(i.e. forward motion) Vr and Vl have the same sign. Hence, v is constant and P is a
function of R.

In addition it is known that the energy is E = ∫ P dt. Thus, by using Eq. (181) the
energy for a circular arc (with constant turning radius) is obtained as follows:

EC =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(4μvc

W
pL+2Gvc)∣Δθωz

∣ if 0 ≤R ≤ W
2

(2μvc
R
pL+2Gvc)∣RΔθvc

∣ if R > W
2

(182)

Note: More general definition of EC (when considering the lateral slippage) is presented in
6.2.2.1.

6.1.2.2 Mathematical Formulations of Circle-Line-Circle Paths The CLC path is shown
in Fig. 45. Using Eq. (181), the energy for the path including energy of circle 1 (EC1), en-
ergy of line (EL), and energy of circle 2 (EC2) is obtained as follows:

ECLC = EC1 +EL +EC2 (183)
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with EC1 and EC2 computed using Eq. (182). As EC is not differentiable at R = W/2
(see Eq. (182)), paths with different possible combinations of R1 and R2 (see Table 7) must
be optimized and compared to select the globally minimum energy path.

C 

 
 

A 

 

 

 

C  

A 

 

 

Figure 45: CLC paths between a starting and end point in the global and path-defined
coordinate system. The axes xP and yP indicate the path-defined coordinate system. Also,
axes x and y indicate the global coordinate system.

Table 7: Different intervals for the turning radii

Combination R1 R2

1st (0,W/2] (0,W/2]
2nd (0,W/2] (W/2,+∞)
3rd (W/2,+∞) (0,W/2]
4th (W/2,+∞) (W/2,+∞)

To show how the mathematical calculations should be performed, the optimization
problem for the 1st combination (Eq. (184)) is described in the following. Using the
same method, the optimization problem for the other combinations (2nd, 3rd, and 4th) are
solved.

minimize
R1,R2,θP

B1

ECLC

subject to hi = 0, i = 1,2
0 < kθP

B1
≤ π
2
,0 <Rj ≤ W

2
(j = 1,2)

(184)
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The inequality constraints on R1 and R2 are considered based on the combination
mentioned in Table 7. The inequality constraint on θP

B1
is based on the constraints im-

posed on start and end poses (Eq. (188)) and inspection of the resulting paths (Fig. 45);
θP
B1

angles outside these bounds cannot smoothly connect circle 1 to circle 2, and addi-
tional loops (∣θP

B1
∣ > 2π) are obviously not optimal and need not be considered. In addi-

tion, ECLC (which is obtained from Eq. (182) and Eq. (183) when 0 < Rj ≤W/2 ) and the
equality constraints (hi) which define the path shape are as follows:

ECLC = (4μvc
W

pL+2Gvc)22222222222
θP
B1
−θP

A

ωz

22222222222+(4μvc
W

pL+2Gvc)22222222222
θP
B1
−θP

C

ωz

22222222222+2G√(xPB1
−xPB2

)2 +(yPB1
−yPB2

)2
(185)

h1 =(xPB2
−xPB1

)2− cos2θP
B1
((xPB2

−xPB1
)2 +(yPB2

−yPB1
)2)

h2 =yPB2
−yPB1

−(xPB2
−xPB1

)tanθP
B1

(186)

where
xPB1

= xPA + kR1(−sinθP
A + sinθP

B1
)

yPB1
= yPA + kR1(cosθP

A − cosθP
B1
)

xPB2
= xPC + kR2(sinθP

C − sinθP
B1
)

yPB2
= yPC + kR2(−cosθP

C + cosθP
B2
)

(187)

k = − sinθP
A∣sinθP
A∣ , θP

A ≠ 0
{θP

A, θ
P
C ∈ (0, π

2
]} Or {θP

A, θ
P
C ∈ [−π

2
,0)} (188)

which means θP
A and θP

C are either both in the first or both in the fourth quadrant of path-
defined coordinate system (see Fig. 45). Karush-Kuhn-Tucker (KKT) [96] conditions are
used to find the optimal value for the energy.

As KKT conditions are only necessary (but not sufficient) for optimality, all the candi-
date cases obtained for our problem are evaluated to identify the best candidate.

The Lagrange equation [96] is written as follows:

L =ECLC +λ1h1 +λ2h2 +μ1(ε1 − kθB1)+μ2(kθB1 − π
2
)

+μ3(ε2 −R1)+μ4(ε3 −R2)+μ5(R1 −W
2
)+

μ6(R2 −W
2
), μi ≥ 0, i = 1..4

(189)
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It should be noted that εj(j = 1,2,3) are infinitesimal values that in their limits ap-
proach to zero. They are considered to convert the strict to non-strict inequities. For
example, ε1 converts the inequality equation of 0 < kθP

B1
to ε1 ≤ kθP

B1
for using in KKT

conditions.
Therefore, to find the stationary points the following equations should be solved to-

gether:

∂L
∂R1

= 0, ∂L
∂R2

= 0, ∂L
∂λ1

= 0, ∂L
∂λ2

= 0, ∂L

∂θP
B1

= 0,
μ1(ε1 − kθB1) = 0,μ2(kθB1 − π

2
) = 0,

μ3(ε2 −R1) = 0,μ4(ε3 −R2) = 0,μ5(R1 −W
2
),

μ6(R2 −W
2
) = 0

μ1 ≥ 0, μ2 ≥ 0, μ3 ≥ 0, μ4 ≥ 0, μ5 ≥ 0, μ6 ≥ 0,
(190)

6.1.2.3 Logical Analysis of KKT Conditions for the CLC Paths To solve Eq. (190), a
logical evaluation should be done for the inequality constraints. Nominally, 64 (26) cases
are to be considered covering each i (i = 1...6) (see Eq. (190)) being either greater than or
equal to zero. However, some of these cases can immediately be deemed impossible in
general (R cannot simultaneously both approach 0 and W/2, θ cannot both simultane-
ously approach 0 and π/2). As a result, it is impossible for more than 3 μ’s to be non-zero
simultaneously. Similarly, there are only 8 (23) combinations of valid cases with exactly 3
non-zero μ’s, and 12 (2×22 +2×21) valid cases with exactly 2 non-zero μ’s. All six possi-
ble cases with exactly 1 non-zero μ are generally admissible. Table 8 summarizes which
candidate solutions to the optimization are potentially valid, based on this reasoning.
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Table 8: Logical Table for the Inequality Coefficients

Case μ1 μ2 μ3 μ4 μ5 μ6
1 0 0 0 0 0 0
2 0 0 0 + 0 0
3 0 0 + 0 0 0
4 0 + 0 0 0 0
5 + 0 0 0 0 0
6 0 0 + + 0 0
7 0 + 0 + 0 0
8 + 0 0 + 0 0
9 + 0 + 0 0 0
10 0 + + 0 0 0
11 + 0 + + 0 0
12 0 + + + 0 0
13 0 0 0 0 + 0
14 0 0 0 + + 0
15 0 + 0 0 + 0
16 + 0 0 0 + 0
17 0 + 0 + + 0
18 + 0 0 + + 0
19 0 0 0 0 0 +
20 0 0 + 0 0 +
21 0 + 0 0 0 +
22 + 0 0 0 0 +
23 + 0 + 0 0 +
24 0 + + 0 0 +
25 0 0 0 0 + +
26 0 + 0 0 + +
27 + 0 0 0 + +

Three of the cases (see Table 8) are explained in the following and the rest are elabo-
rated in Appendix C.

Case 1: (μ1 = 0,μ2 = 0,μ3 = 0,μ4 = 0,μ5 = 0,μ6 = 0)
Eq. (190) should be solved for μ1 = 0, μ2 = 0, μ3 = 0, μ4 = 0, μ5 = 0, and μ6 = 0. Then, the
answers should be checked for

0 < kθB1 ≤ π
2
, 0 <R1 ≤ W

2
,0 <R2 ≤ W

2
(191)

Accordingly, R∗1, R
∗

2, and θ∗PB1
will be obtained.

Case 2: (μ1 = 0,μ2 = 0,μ3 = 0,μ4 > 0,μ5 = 0,μ6 = 0)
μ4 > 0⇒R∗2 = ε3 (192)

83



Eq. (190) should be solved while μ1 = 0, μ2 = 0, μ3 = 0, R2 = ε3, μ5 = 0, and μ6 = 0. Also, the
following conditions should be checked.

0 < kθB1 ≤ π
2
, 0 <R1 ≤ W

2
,μ4 > 0 (193)

Accordingly, R∗1, R
∗

2, and θ∗PB1
will be obtained.

Case 3: (μ1 = 0,μ2 = 0,μ3 > 0,μ4 = 0,μ5 = 0,μ6 = 0)
μ3 > 0⇒R∗1 = ε2 (194)

Eq. (190) should be solved while μ1 = 0, μ2 = 0, R1 = ε2, μ4 = 0, μ5 = 0, and μ6 = 0. Also, the
following conditions should be checked.

0 < kθB1 ≤ π
2
, 0 <R1 ≤ W

2
,μ3 > 0 (195)

Accordingly, R∗1, R
∗

2, and θ∗PB1
will be obtained.

6.1.2.4 Mathematical Formulations of CCOptimal Paths CC path is a special case of
the problem stated in subsection 6.1.2.2, when there is no straight line motion. Hence,
using Eq. (185), the following optimization problem is defined for the first combination
(see Table 7) of CC paths.

minimize
R1,R2,θP

B1

ECC

subject to h̃i = 0, i = 1,2
0 < kθP

B1
≤ π
2
,0 <Rj ≤ W

2
(j = 1,2)

(196)

where

ECC = (4μvc
W

pL+2Gvc)22222222222
θP
B1
−θP

A

ωz

22222222222+(4μvc
W

pL+2Gvc)22222222222
θP
B1
−θP

C

ωz

22222222222
(197)

h̃1 =xPC + kR2(sinθP
C − sinθP

B1
)−xPA − kR1(−sinθP

A + sinθP
B1
)

h̃2 =yPC + kR2(−cosθP
C + cosθP

B1
)−yPA − kR1(cosθP

A − cosθP
B1
)

(198)

k = − sinθP
A∣sinθP
A∣ , θP

A ≠ 0
{θP

A, θ
P
C ∈ (0, π

2
]} Or {θP

A, θ
P
C ∈ [−π

2
,0)} (199)

After obtaining the Lagrange equation and its derivatives, the same process described
in 6.1.2.3 should be followed to obtain the optimal path, which for brevity is not restated
here.
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6.1.3 Numerical Results

This part presents two solved example path-planning problems (CLC and CC) for the
same start and end pose for a Clearpath Husky UGV A200 rover. Numerical results for
the optimization method that was presented in subsection 6.1.2.2 (for CLC paths) and
subsection 6.1.2.4 (for CC paths) are summarized. Comparison of the results will show
that the energy consumption of the CLC path is less than the CC path. Then, experimen-
tal results focus on comparing CLC results to PLP.

6.1.3.1 Numerical Example for CLC Paths The example path-planning problem to be
solved is defined by the start (A) and end (C) pose, as well as rover specifications, given
in Table 9. For a convenient visual summary of the results, Table 10 introduces arrow
notations for various parts of the CLC and PLP paths.

Table 9: Path and Rover Parameters for the Example Problem

Parameter A C θP
A θP

C μ G vc L W m g p

Value [0,0] [10,0] π/4 π/4 1.00 64.49 0.3 0.52 0.55 63 9.81 mg/4
Unit m m rad rad - N m/s m m kgm/s2 N

The optimization process for the 1st combination of turning radii (see Table 7) gives
the results reported in Table 11 (an the summary in Table 12). In the table, CW

2
is a circle

with turning radius of W/2, L is a straight line, and P is a point turn.
Several of the cases that may be admissible in general are not valid for this particular

set of start and end poses (case 4, 7, 10, 12, 15, 17, 21, 24, 26, 27), for reasons given in
the table. The solutions that are valid actually take only one of four possible forms, as
summarized in Table 12. The lowest energy is found in Case 1 where both R∗1 and R∗2 are
equal to W/2.

A similar process to the one described above is followed for the 2nd, 3rd, and 4th

combinations of turning radii (Table 7). The final answers for each optimization pro-
cess are reported in Table 13. As it is clear, all of them have converged to the same
optimal answer which shows that the optimally energy-efficient CLC path is a path with

R∗1 =R∗2 = W
2
= 0.275 m.

Note that PLP is one of the candidate solutions identified by the KKT conditions, but
the analysis predicts a higher total energy for that candidate solution.

6.1.3.2 Numerical Solution for CC Paths Using the same process explained in 6.1.2.3,
the optimization problem stated in Eq. (196) to Eq. (199) (section 6.1.2.4) and using the
initial conditions stated in Table 9, the problem is solved and the answers are reported
in Table 14. Based on the results the minimum energy happens for the case where both
turning radii are equal to 3.535 m.
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Comparing the energy-efficient results of Table 13 and Table 15 indicates that the
CW

2
LCW

2
path has 21% less energy consumption than the CC path.

Table 10: Arrow representations for basic maneuvers

Arrow Maneuver↷ Clockwise Circular-Arc↶ Counter Clockwise Circular-Arc↻ Clockwise Point Turn↺ Counter Clockwise Point Turn⇑ Straight Line

6.1.4 Conclusions of the Subsection

Energy-efficient path planning from among predefined classes of paths (CC and CLC)
for skid-steer rovers are investigated in the absence of lateral slippage. As the power
consumption of a skid-steer rover is highly dependent on the path’s turning radius, it is
considered explicitly in our calculation of consumed energy. The assumptions are that the
rover moves forward on flat ground with a constraint on the right and left wheels’ veloc-
ities. Karush-Kuhn-Tucker conditions are used and different candidates for the energy-
efficient CLC and CC paths on hard ground (using the existing power model) are ob-
tained. Then, a scenario is considered and the candidates are considered to analytically
obtain the optimally energy-efficient CLC and CC paths. The results show that for the
scenario there are just four types of path as optimal candidates for among the CLC class
of paths: CW

2
LCW

2
, CW

2
LP, PLCW

2
, and PLP. Also, CC, CP, and PC are the optimal can-

didates for the circle-circle class of paths. The numerical analysis indicates that CW
2
LCW

2
and CC have the lowest energy-consumption among their related candidates. Then, it
is shown that for the scenario the CW

2
LCW

2
has 21 % less energy consumption than CC.

Note that in the absence of lateral slippage, W /2 =R′.
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Table 11: Candidate solutions obtained for CLC paths according to the different cases
for inequality constraints’ coefficients (for example problem), when 0 < R1 ≤ (W/2) and
0 <R2 ≤ (W/2)

Case (R∗1(m),R∗2(m),θ∗PB1
(rad)) Energy (J)

1 ( 0.275, 0.275, -0.0168 ) 1553.352
2 ( 0.275, 0.000, -0.008) 1575.759
3 (0.000 , 0.275, -0.008) 1575.759

4 θP
B1

cannot be −π
2

�

5 (0.000, 0.000, 0.000) 1597.942
6 (0.000, 0.000, 0.000) 1597.942

7 θP
B1

cannot be −π
2

�

8 (0.000, 0.000, 0.000) 1597.942
9 (0.000, 0.000, 0.000) 1597.942

10 θP
B1

cannot be −π
2

�

11 (0.000, 0.000, 0.000) 1597.942

12 θP
B1

cannot be −π
2

�

13 ( 0.275, 0.000, -0.008) 1575.759
14 ( 0.275, 0.000, -0.008) 1575.759

15 θP
B1

cannot be −π
2

�

16 ( 0.275, 0.000, -0.008) 1575.759

17 θP
B1

cannot be −π
2

�

18 ( 0.275, 0.000, -0.008) 1575.759
19 (0.000 , 0.275, -0.008) 1575.759
20 (0.000 , 0.275, -0.008) 1575.759

21 θP
B1

cannot be −π
2

�

22 (0.000 , 0.275, -0.008) 1575.759
23 (0.000 , 0.275, -0.008) 1575.759

24 θP
B1

cannot be −π
2

�

25 ( 0.275, 0.275, -0.0168 ) 1553.352

26 θP
B1

cannot be −π
2

�

27 if R1 =R2 = W
2

�⇒ θP
B1

cannot be infinitesimal
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Table 12: Summary of Table 11.

Case Type Maneuver (R∗1(m),R∗2(m),θ∗PB1
(rad),E(J))

1,25 CW
2
LCW

2
↷⇑↶ (W/2, W/2, -0.0168, 1553.352)

5, 6, 8, 9, 11 PLP ↻⇑↺ (0.000, 0.000, 0.000,1597.942)

2, 13, 14, 16, 18 CW
2
LP ↷⇑↺ (W/2, 0.000, -0.008, 1575.759)

3, 19, 20, 22, 23 PLCW
2

↺⇑↷ (0.000 , W/2, -0.008, 1575.759)
Table 13: The results for the four different combinations of the turning radii for CLC
paths

Com. R1 R2 (R∗1(m),R∗2(m),θ∗PB1
(rad),E(J))

1st (0,W/2] (0,W/2] (W/2, W/2, -0.0168, 1553.352)
2nd (0,W/2] (W/2,+∞) (W/2, W/2, -0.0168, 1553.352)
3rd (W/2,+∞) (0,W/2] (W/2, W/2, -0.0168, 1553.352)
4th (W/2,+∞) (W/2,+∞) (W/2, W/2, -0.0168, 1553.352)

Table 14: Summary of candidate solutions obtained for CC paths according to the dif-
ferent cases for inequality constraints’ coefficients (for example problem), when 0 < R1 ≤(W/2) and 0 <R2 ≤ (W/2)

Type (R∗1(m),R∗2(m),θ∗PB1
(rad),E(J)) Maneuver

CC (3.535,3.535,−π/4,1937.268) ↷↶
PC (0.00,7.070,−π/4,1992.942 ↻↶
CP (7.070,0.00,−π/4,1992.942 ↷↺

Table 15: The results for the four different combinations of the turning radii for CC paths

Com. R1 R2 (R∗1(m),R∗2(m),θ∗PB1
(rad),E(J))

1st (0,W/2] (0,W/2] (3.535,3.535,−π/4,1937.268)
2nd (0,W/2] (W/2,+∞) (3.535,3.535,−π/4,1937.268)
3rd (W/2,+∞) (0,W/2] (3.535,3.535,−π/4,1937.268)
4th (W/2,+∞)(W/2,+∞) (3.535,3.535,−π/4,1937.268)
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6.2 Energy-Efficient Path Planning, Theoretical and Experimental, on
Hard Ground while Considering the Lateral Slippage

This subsection is published in Journal of Intelligent and Robotic Systems. It is slightly
revised to fit into the rest of this thesis.

The contributions and organization of this subsection are summarized in the following:
A key contribution of this subsection is a detailed exposition of the importance of R′,

including its use in optimally energy-efficient local path planning on hard ground. It
should be noted that:

• R′=
Bs

2
when the lateral slippage is considered

• R′=
W
2

when the lateral slippage is ignored

When considering with respect to a popular power model for skid-steer rovers [87],
R′ corresponds to an important transition for energy consumption: based on Eq. (42) and
Fig. 14, below R′ (for radii 0 ≤ R < R′) energy consumption is not a function of turning
radius while above R′ it is. CLC paths, with the ‘C’ segments consisting of circular arcs of
radius R′, are found to be optimally energy efficient in both simulation and experiments
on hard ground.

In addition, it is explicitly shown that there are CLC paths that are more energy-
efficient than point turn-line-point turn (PLP) paths on hard ground. Thus R′-CLC paths
(CLC paths with R = R′) should be used as “optimistic” (see the 3rd paragraph of 1.2.1.1)
estimates of cost to a goal, rather than PLP paths.

In subsection 6.2.1, the problem of theoretical and experimental investigation for
skid-steer rovers’ energy-efficient CLC paths are defined. The kinematics and power
model of the problem are also introduced. Then, section 6.2.2 specifies the energy-
efficient CLC path planning problem. Section 6.2.3 reports the numerical analysis and
experimental tests for comparison of energy-efficient CLC with PLP paths. Finally, sec-
tion 6.2.4 reports conclusions regarding the optimality of R′ and the conditions in which
energy-efficient CLC paths consume less energy than PLP.

6.2.1 Problem Statement and System Definition

To investigate the significance of R′, the usefulness of CLC paths, and the relationship
between these two contributions, the following problem is studied:

Problem: Finding energy-efficient CLC (Fig. 44) paths for skid-steer rovers while con-
sidering the lateral slippage both theoretically by using the existing power model and ex-
perimentally by commanding different CLC paths with a Husky UGV. The sub-problems
are summarized as follows:

i Computing the optimally energy-efficient CLC path by theoretical analysis, and
comparing these results to PLP (Fig. 46) paths (shortest path).

ii Experimentallymeasuring the energy required to perform PLP paths and CLC paths
with turning radii at and around those suggested by the analysis in Problem-i, on
hard ground.
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iii Comparing the results of Problem-i and Problem-ii.

C A 

Figure 46: A PLP path consisting of two point turns and a line segment

Problem-i is further explicitly defined here: This problem and its assumptions are
almost the same as subsection 6.1.1. Just the assumption of considering the lateral slip-
page should be added. Also, there is no assumption of ∣Vl ∣ + ∣Vr ∣ = 2vc in all the theoretical
analysis in this subsection (6.2 ), which result in more general investigation of CLC paths
as well as the importance of R′ (see Theorem 9) for skid-steer rovers.

6.2.1.1 Skid-Steer Rover Kinematics and Power Model The kinematics and power
model were presented in subsection 2.2.

6.2.2 Energy-Efficient CLC Paths

This subsection focuses on the mathematical formulation of Problem-i (see subsection
6.2.1). Accordingly, the energy consumptions of a skid-steer rover during a circular-arc
path segment and a straight line motion are formulated. Then, using these equations,
the optimization problem for an energy-efficient CLC path with all of its equality and
inequality constraints is defined.

6.2.2.1 Energy Consumption During a Circular-arc and a Straight Line It is known
that energy (E) can be obtained by the following equation.

E = ∫ tf

t0
Pdt (200)

where t is time. In addition, along a circular arc and a straight line, the related time is
respectively equal to:

t = ∫ θf

θ0
∣dθ
ωz

∣ (201)

t = ∫ LS

0
∣ds
v
∣ (202)

where dθ and ds are the differential of angle and displacement of the rover, respectively.
Also, LS is the length of straight line.

Theorem 9 The energy for the skid-steer rover when doing a circular arc maneuver (using the
power model of Eq. (23)) is equal to:
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EC = ⎧⎪⎪⎨⎪⎪⎩(k +GBs)∣Δθ∣, if 0 ≤R ≤R′(k +2RG)∣Δθ∣, if R >R′ (203)

Proof: Starting with the power model, (23), and the general equations (200) and (201),
gives:

EC = ∫ θf

θ0
(k∣ωz∣ +G(∣Vr ∣ + ∣Vl ∣)) ∣dθωz

∣
= ∫ θf

θ0
(k +G ∣Vr ∣ + ∣Vl ∣∣ωz∣ ) ∣dθ∣ (204)

Using (15), this becomes:

EC = ∫ θf

θ0
(k +GBs

∣Vr ∣ + ∣Vl ∣∣Vr −Vl ∣ ) ∣dθ∣ (205)

The definition of R′ ensures that in the region 0 ≤ R < R′, Vr and Vl are of opposite sign.
Therefore, the following relation is always true:

∣Vr ∣ + ∣Vl ∣∣Vr −Vl ∣ = 1 (206)

Without loss of generality, consider Vr positive. Then, ∣Vr ∣ = Vr and ∣Vl ∣ = −Vl . Hence, Eq.
(206) can be proved. As a result, the energy is:

EC = ∫ θf

θ0
(k +GBs)∣dθ∣

= (k +GBs)∫ θf

θ0
∣dθ∣

= (k +GBs)∣Δθ∣, for 0 ≤R ≤R′
(207)

Therefore the energy for any turn with 0 ≤R <R′ is a constant times ∣Δθ∣. When R >R′, it is
known that both Vr and Vl have the same sign (both are positive or negative). Accordingly,
it can be proved that equation (18) can be written in the following format:

R = Bs

2
∣Vr ∣ + ∣Vl ∣∣Vr −Vl ∣ (208)

Hence, using Eq. (205), the energy for a constant radius arc is as follows:

EC = ∫ θf

θ0
(k +2RG)∣dθ∣

= (k +2RG)∫ θf

θ0
∣dθ∣

= (k +2RG)∣Δθ∣, for R >R′
(209)
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∎
Accordingly, using Theorem 9, the energy function for arc of a circle with turning

radius of R can be written as follows:

EC =(k +GBs)∣Δθ∣(H[R]−H[R−R′])+ (k +2GR)∣Δθ∣H[R−R′] (210)

where the Heaviside function for real numbers, n, is as follows:

H[n] = ⎧⎪⎪⎨⎪⎪⎩0, if n ≤ 0
1, if n > 0 (211)

After more simplifications, the energy equation presented by Eq. (210) becomes as
follows:

EC = a′1 ∣Δθ∣ H[R]+ (−a′2 +a′3R) ∣Δθ∣ H[R−R′] (212)

where
a′1 = k +GBs (213)

a′2 =GBs (214)

a′3 = 2G (215)

Lemma 9 The energy for the skid-steer rover when doing a straight line maneuver (using the
power model of Eq. (23)) is equal to:

EL = 2G√(xPB1
−xPB2

)2 +(yPB1
−yPB2

)2 (216)

where (xB1 ,yB1) and (xB2 ,yB2) are the start and end of straight linemaneuver, respectively.
Proof: It is known that ωz = 0 for a straight line motion. Hence, starting with the power
model, (23), and the general equations (200) and (202), gives:

EL = ∫ LS

0
(G (∣Vr ∣ + ∣Vl ∣)) ∣dsv ∣

= ∫ LS

0
(G ∣Vr ∣ + ∣Vl ∣∣v∣ ) ∣ds∣ (217)

Using Eq. (14), this becomes:

EL = ∫ LS

0
(2G ∣Vr ∣ + ∣Vl ∣∣Vr +Vl ∣ ) ∣ds∣ (218)

Since Vr and Vl have the same sign at the straight line motion, the following relation
is always true: ∣Vr ∣ + ∣Vl ∣∣Vr +Vl ∣ = 1 (219)
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Therefore,

EL =2G∫ LS

0
∣ds∣=2GLS=2G√(xPB1
−xPB2

)2 +(yPB1
−yPB2

)2
(220)

∎
6.2.2.2 Mathematical Formulations ofOptimal CLCPaths This subsection is similar to
6.1.2.2. The only difference is that in this subsection the lateral slippage is taken into account.
This subsection sets up the optimization problem for finding energy-efficient CLC paths
(Fig. 45). The notation is based on prior work optimizing Circle-Circle (CC) paths [97]; as
points A and C grow farther apart, the motivation for this present work adding a straight
line segment becomes clear.

By using Eq. (212), Lemma 9, and the assumptions described in section 6.2.1 the
energy for the full path is obtained as follows:

E = EAB1 +EB1B2 +EB2C (221)

E = (a′1 H[R1]+ (−a′2 +a′3R1)H[R1 −R′]) ∣θP
B1
−θP

A∣+(a′1 H[R2]+ (−a′2 +a′3R2)H[R2 −R′]) ∣θP
B1
−θP

C ∣+2G√(xPB1
−xPB2

)2 +(yPB1
−yPB2

)2 (222)

As mentioned in the previous sections, R1 and R2 are the radii of the first and second
circles (Fig. 45), respectively. Also, θP

B1
, θP

A, and θP
C are the heading angles of the path at

points B1, A, and C in the path-defined coordinate system (see Fig. 44 also), respectively.
In addition, (xPB1

,yPB1
) and (xPB2

,yPB2
) are the position of points B1 and B2 in the path-

defined coordinate system.
The optimally energy-efficient CLC path problem defined in section 6.2.1 can be writ-

ten as follows:

minimize
R1,R2,θP

B

E

subject to hi = 0, i = 1,2
0 < kθP

B1
≤ π
2

Rj ≥ 0, j = 1,2
(223)

To avoid searching for θP
B1
> 2π or θP

B1
< −2π in the optimization process, the inequality

constraints in (223) are written; it is clear when (227), written based on the simplifying

assumption mentioned in the problem statement, is held then 0 < kθP
B1
≤ π
2
is required for

minimum energy. Also, E is given by (222), and the equality constraints (hi) which define
the CLC paths are as follows:

h1 = xPB2
−xPB1

− cosθP
B1

√(xPB2
−xPB1

)2 +(yPB2
−yPB1

)2 (224)
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h2 = yPB2
−yPB1

−(xPB2
−xPB1

)tanθP
B1

(225)

where

xPB1
=xPA + kR1(−sinθP

A + sinθP
B1
)

yPB1
=yPA + kR1(cosθP

A − cosθP
B1
)

xPB2
=xPC + kR2(sinθP

C − sinθP
B1
)

yPB2
=yPC + kR2(−cosθP

C + cosθP
B1
)

k =− sinθP
A∣sinθP
A∣ , θP

A ≠ 0
(226)

and {θP
A, θ

P
C ∈ (0, π

2
]} Or {θP

A, θ
P
C ∈ [−π

2
,0)} (227)

which means θP
A and θP

C are both in the first or both in the fourth quadrant of path-
defined coordinate system (see Fig. 45). It should be mentioned that h1 and h2 are re-
quired to ensure that different segments of the CLC path, including two circles and a
line, are connected.

6.2.3 Simulation and Experimental Results of CLC and PLP Paths

This part presents simulation and experimental results for optimizing CLC paths (i.e.
Problem-ii in section 6.2.1). Numerical results of the optimization set up in the preceding
section are presented. The CLC paths are performed experimentally on hard ground with
a Husky rover, shown in Figure 47, in addition to PLP paths with the same start/end poses
for comparison. Furthermore, some of the performed experimental tests are discussed in
additional detail, as are the results of experiments exploring power consumption as a
function of turning radius.

Figure 47: Husky UGV Rover on hard ground.
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Relevant rover parameters are given in Table 16. Note that a weight (bin filled with
sand) is attached to the rover such that the resulting center of mass is at the rover’s geo-
metric center; this increases the rover’s total mass.

Table 16: Husky Rover Parameters on Hard Ground (HG) used in the Numerical Compu-
tations

Parameter μ G ∣Vl ∣ + ∣Vr ∣ L W m g p Bs

Value 0.74 30.85 0.6 0.52 0.55 63 9.81 mg/4 1.29

Unit - Ws/m m/s m m kg m/s2 N m

6.2.3.1 Test Plan This subsection provides the plan for both the numerical and exper-
imental tests. Because of the skid-steer rovers’ ability to do point turns the simplest way
to traverse a distance between two points is by doing a PLP. However, we will show that
CLC paths can consume less energy than PLP paths. Accordingly, different scenarios for
CLC and PLP paths are considered for the Husky, in simulation and in experiments on
hard ground (concrete).

The test plan is shown in Table 17. Two scenarios are studied on hard ground, one with
equal start and end angle, relative to the path-defined coordinate system (whose x-axis is
aligned with the line connecting points A and C), and another with different start and end
angles. Because in practice the specified distances are not exactly achieved, the actually
displaced Euclidian distance from start (A) to end (C) pose (measured using a laser total
station that returns the 3D point location of a tracked prism in a global coordinate frame,
shown in Fig. 48) in the CLC path is used to prescribe the distance for the PLP path. The
final displacements from start to end poses for CLC and PLP paths are confirmed to be
within 0.5% of one another, to ensure a fair comparison.
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Figure 48: The laser total station (red box) and the prism on the rover (blue box) used for
tracking rover motion.

Table 17: Husky Rover Test Plan on Hard Ground

Terrain Maneuver (θP
A,θ

P
C) Commanded ∥99→AC ∥ for Husky

Concrete CLC
(45o,45o) 10 m

(60o,30o) 8 m

Concrete PLP
(45o,45o) Measured Dis. for CLC (45o,45o)
(60o,30o) Measured Dis. for CLC (60o,30o)

6.2.3.2 Numerical Solutions of the Optimization Problem This subsection addresses
the numerical optimization of CLC paths by utilizing the optimization problem formu-
lated in subsection 6.2.2.2.

Parameters used to compute energy for the various scenarios listed in the test plan
(Table 17) are provided in Table 16 for the Husky on hard ground. The parameters μ
(friction coefficient), G (internal/rolling resistance coefficient), and Bs (slip track) are ob-
tained experimentally, and are dependent on rover-terrain combination. Bs is calculated
from the experimental data by using an Extended Kalman Filter, according to the proce-
dure outlined by Pentzer et al. [91]. G is obtained from straight-line maneuvers given Vl ,
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Vr and the measured power, using (22). Then, CLC maneuvers are utilized to calculate μ
by using (22) and the calculated G.

To solve the constrained optimization problem presented by (223) in 6.2.2.2, the min-
imize function from the scipy.optimize package in python is used. In the minimize func-
tion, Sequential Least Squares Programming (SLSQP) algorithm is chosen. The optimiza-
tion results are presented in the rows marked ‘CLC’ in Table 18 for the Husky on hard
ground. Comparing the optimal turning radii returned by the optimization, in Table 18
to the Bs input parameter in Table 16, it is clear that, for the tested start/end conditions,

R∗1 =R∗2 = Bs

2
=R′. The fact that R′ is the optimal turning radius predicted by these numer-

ical analyses highlights its importance.

Table 18: Numerically Computed Energy-Efficient CLC Paths for Husky Rover on Hard
Ground

Path Type (θo
A,θ

o
C) Distance (m) (R1(m),R2(m),θB(rad)) Energy (J)

CLC (45,45) 10 (0.645, 0.645, -0.0417) 965.83
PLP (45,45) 10 (0,0,0) 1004.38
CLC (60,30) 8 (0.645, 0.645, -0.0577) 851.21
PLP (60,30) 8 (0,0,0) 880.98

Table 18 also provides the computed energy for PLP paths that achieve the same dis-
placement from start to end pose. In both cases, the optimal CLC path is predicted to re-
quire less energy than the corresponding PLP path. The numerically computed CLC path
energy is lower than the computed PLP path energy by no more than 3.5% in the cases
studied in Table 18. It could be conceivable that uncertainties ignored by the theoretical
model (i.e. Eq. (22)) could in reality obscure advantages of this magnitude. However,
as will be shown in the experimental results in the next subsection, rather than identi-
fying small theoretical differences that are obscured in reality, the simplifications of the
theoretical model actually somewhat downplay the real advantages of CLC paths (partic-
ularly with R′ circular arcs) relative to PLP paths.

6.2.3.3 Experimental Results on Hard Ground This subsection studies the scenarios
presented in Table 17 experimentally. For both CLC and PLP paths the constraint on the
right and left wheel velocities is ∣Vl ∣ + ∣Vr ∣ = 0.6m/s, the same constraint that is mentioned
in Table 16. When driving straight, the commanded linear velocity is 0.3 m/s. When
performing a point turn, each side is commanded at 0.3 m/s but in opposite directions.
When performing an R′ circular arc, the outer wheel is commanded at 0.6 m/s and the
inner wheel is not commanded to move. The constraint enforces that the commanded
angular velocity is constant, at 0.55 rad/s, for any turn with 0 ≤ R ≤ R′. To command
a CLC path experimentally, the total desired Euclidean distance (between points A and
C), the start and end angles, and the commanded radii R1 and R2 are used to find the
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required angle subtended by each circular arc (at the center of the corresponding circle).
Each circular arc is commanded until the rover’s Inertial Measurement Unit (a VectorNav
VN-100R) shows the required turn angle has been achieved. The straight line segments
are commanded via dead-reckoning that accounts for an empirically estimated slip ratio.
Because in practice the specified distances are not exactly achieved, the actually displaced
Euclidean distance from start to end pose (measured using a laser total station shown in
Fig. 48) in the CLC path is used to prescribe the distance for the PLP path. The final
displacements from start to end poses for CLC and PLP paths are confirmed to be within
0.5% of one another, to ensure a fair comparison.

The power consumption of the rover is measured with two Texas Instruments INA226
bidirectional current and power sensors on the Husky. These sensors measure the current
and voltage of the left and right motor drivers. Accordingly, the instantaneous power is
obtained by multiplying the measured current and voltage.

The following definitions are given to distinguish between the commanded and mea-
sured turning radii for the Husky UGV:

Definition 7 R′Hc
is the commanded turning radius for the Husky UGV that results in the

inner wheels receiving a commanded velocity of 0. R′Hc
= 0.55m.

Definition 8 R′H is the actual turning radius that the Husky follows when R′Hc
is commanded

to it.

Definition 9 Re is the actual turning radius that a rover follows during any generic circular
arc, as measured experimentally. As will be explained in this subsection, the commanded R1
and R2 are equal for all the experimental tests. The measured R1 (Rm

1 ) and measured R2 (Rm
2 )

will also be equal. So, Re=Rm
1 =R

m
2 .

It is worth noting that the R′Hc
of 0.55 m accounts for the fact that the rover will

generally experience lateral slip. Clearpath Robotics have programmed a slip track, Bs, of
1.1 m into the Husky’s controls for converting paired v and ωz commands into Vr and Vl
control inputs according to (14) and (15). For hypothetical operation without lateral slip,
the slip track would have been exactly equal to the rover width, but this programmed slip
track is twice the rover width; this highlights the important distinction between Rc =W /2
and R′ = Bs/2. Clearpath’s programmed slip track is presumably based on some average
slip track measured from tests on reference terrain(s). In practice, the actual slip track
differs from this value.

In the case where the Husky is commanded with R′Hc
, Re = R′H . However, other turn-

ing radii can also be, and are, explored experimentally. For each test, the actual turn-
ing radius driven was derived from laser total station and IMU measurements. Because
the offset between the total station prism (attached to the rover) and the rover center is
known and constant, the rover center location can be computed by a simple transforma-
tion knowing the prism location and rover heading angle. A circle is fit to the rover center
data points to find an actual turning radius. Note that the associated timestamps can fur-
ther be used to compute the rover’s forward velocity, angular velocity, and the velocity of
its left and right sides. On concrete R′H = 0.645 m.
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In subsection 6.2.3.2, it is shown that the minimum energy is always numerically pre-
dicted at R1 =R2 =R′ (R′H for Husky). Therefore, several CLC maneuvers are commanded
around R′Hc

for the Husky UGV. Specifically, tests are performed with the following com-
manded turning radii: 0.5R′Hc

,R′Hc
,1.5R′Hc

, 2R′Hc
. Each of these tests is compared to its

own respective PLP test35 for the fairest possible comparison, as described earlier. In
these tests, the difference in total distance for all the CLC/PLP pairs was always kept
small, with the PLP path being around 0.5% shorter than CLC.

The energy consumption of each CLC path (ECLC) is compared to the energy consump-
tion of the corresponding PLP path (EPLP), quantified as a percentage difference given by
the following equation:

ΔE = ECLC −EPLP

EPLP
×100% (228)

In cases where the above metric is negative, the energy consumed by the CLC path
is lower than the corresponding PLP path. Using Eq. (228), Figure 49 and Figure 50
are plotted to show the experimental results for the hard ground experiments described
in the test plan, Table 17. For each example path, 3 runs were conducted at each com-
manded turning radius, for a total of 12 CLC paths; 12 corresponding PLP paths were
also run. For both example paths studied, the lowest energy consumption on average
is observed for CLC paths with turning radii R′H , exactly as predicted by the numerical
analysis (see Table 18). The experimental results for CLC paths with turning radii R′H on
average consume almost 10% less energy than corresponding PLP paths. The numerical
results, on the other hand, only predicted reductions no greater than 3.5%. One of the
important possible explanations for this is that internal frictional losses as well as elec-
trical losses (e.g. consumed by the motor controller) are not modeled. At R′ the inner
wheels are not commanded to drive at all and thus these internal losses, present dur-
ing other maneuvers, are avoided resulting in relatively more energy savings. Another
possible source of difference between experimental and theoretical results is uncertainty
in selecting model parameters such as μ, G, and Bs, or even other unmodeled aspects;
however, there is no particular reason to believe any of these associated errors would in
general bias in favor of lower experimental energy consumption.

35i.e. commanded turning radius of 0
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Figure 49: Comparison of experimentally measured energy consumption for CLC paths
vs. PLP paths for the Husky rover on hard ground. Start and end angle 45o; distance 10
m. Lowest energy is observed for CLC paths with turning radius R′H .
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Figure 50: Comparison of experimentally measured energy consumption for CLC paths
vs. PLP paths for the Husky rover on hard ground. Start angle 60o; end angle 30o; dis-
tance 8 m. Lowest energy is observed for CLC paths with turning radius R′H .

Figure 51 compares the power consumption profiles for a PLP path versus its corre-
sponding CLC path with R =R′H . The example shown is Run 1 from Fig. 49 (at Re/R′H = 1),
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i.e. with start and end angles of 45o and a displacement of 10 m. The total time required
for the CLC maneuver is shorter, because the straight line segment is shorter due to the
R′ turn contributing to forward progress (as opposed to a point turn). The average power
during the R′ turns is also lower than point turns on this terrain, by about 20%, while the
time required to complete each arc is less than 10% longer than it takes to complete the
point turn. Taken together, the total energy is approximately 10% lower for the CLC path
with R =R′ (which we can call the R′-CLC path) compared to the PLP path, as can be seen
again in Fig. 49.
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Figure 51: Comparison of experimentally measured power consumption vs. time for a
CLC path (with R =R′H ) and PLP path for the Husky rover on hard ground.

6.2.3.4 Experimental Power for Husky UGV This subsection presents power data
measured experimentally for a skid-steer rover on hard ground, and discusses nuanced
differences observed between this data and points discussed in prior literature.

A Husky UGV was commanded to execute 90 degree turns at various turning radii,
subject to a constant forward velocity of 0.3m/s, on hard ground (concrete). Power was
measured for both the left and right motors using a Texas Instruments INA226 bidirec-
tional current and power sensor, and the total power was averaged over the duration of
the 90 degree turn. The turns start at the commanded R′Hc

and explore left and right
power consumption as the turning radius is increased towards infinity.

Experimental data collected on hard ground (Figure 52) shows approximate corre-
spondence with observations made in prior literature. It can also be seen that inner wheel
power consumption becomes negative after R′, as observed previously above Rc by Dogru
and Marques [85,86]. However, once the turning radius increases past a certain point (17
m on this particular terrain), inner wheel power consumption becomes positive again.
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This is consistent with a reasonable expectation that power consumption changes grad-
ually at large turning radii, rather than jumping suddenly to be negative as soon as left
and right wheel velocities become unequal (i.e. the power does not remain negative for
all of R′ <R <∞, but rather for R′ <R <RT , where RT ≪∞ is a threshold radius).
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Figure 52: Husky UGV power consumption as a function of commanded turning radii
bigger than R′. The tests are performed on hard ground consisting of concrete.

6.2.3.5 Interpretation and Generalization of Optimization Results The simulated
and experimental results on hard ground both show that optimal energy consumption
with CLC paths occurs with turning radii of R′. It is instructive to now re-examine theory
presented earlier in light of this result.

For 0 ≤ R ≤ R′, Theorem (9) shows that energy consumed by a turn is a constant times∣Δθ∣. In other words, the energy required to change heading is the same regardless of
whether a point turn or R′ turn is employed. However, when constructing a CLC path
this choice affects the length of the straight line, and thus EB1B2. In general, R′-CLC paths
require more ∣Δθ∣ than PLP paths, but as the distance between the start and end points
is increased, the difference in ∣Δθ∣ approaches zero. On the other hand, because the R′

turns also make forward progress, the line in a CLC path will be shorter than a PLP path.
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This is exactly what is seen in the simulations and experiments explored in the preceding
subsections.

The experimental energy consumption data generally support the observations dis-
cussed here, but with a caveat. As can be seen in Figure 53, below R′ the energy con-
sumed over the course of a 90 degree turn is roughly constant: all the points would fall
within the confidence bounds based on the variance of the others, and there is no clear
trend in the Run 1 or Run 3 data even though Run 2 demonstrates a slight positive slope.
On the other hand, at R′ there is a notable drop in energy consumption, which is not
something predicted by the theoretical model. As was discussed in Section 6.2.3.3, this
can be explained by additional unmodeled energy savings from avoiding internal fric-
tion and electrical losses when the inner wheel is not commanded. Above R′ the energy
consumption rises proportionally to R, as predicted by Theorem (9).

Figure 53: Comparison of experimentally measured energy consumption over a 90 degree
turn as a function of turning radius.

Note that the argument introduced above does not necessarily hold for small distances
between A and C, and future work will explore the threshold at which R′-CLC curves stop
being the optimal choice.
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6.2.4 Conclusions of the Subsection

This subsection identifies R′, equal to half a skid-steer rover’s slip track and also the
radius at which the inner wheels are not commanded to turn, as a crucial concept in
understanding the energy-efficiency of skid-steer rovers. When considered with respect
to a popular power model for skid-steer rovers, R′ corresponds to an important transition
for energy consumption: below R′ energy consumption is not a function of turning radius
while above R′ it is.

This research searches, both in numerical simulation and in experiments on hard
ground, for the most energy-efficient path from among CLC paths, a generalization of
PLP paths (PLP paths are the simplest path to execute for a skid-steer rover traversing
between general start and end poses). Because energy consumption is not a function of
R below R′, an R′ circular arc requires the same energy as a point turn through the same
angle, but also accomplishes displacement that shortens the straight line portion of the
path. Therefore, R′-CLC paths (or perhaps just straight lines) should be used as “opti-
mistic” estimates of cost to a goal, rather than PLP paths.

From the evaluations and investigations reported here, the following findings are con-
cluded:

• Numerically optimizing CLC paths for energy-efficiency shows that, for the existing
power model and all cases examined, R = R′ gives the minimum energy consump-
tion.

• Results obtained from experiments on hard ground (concrete) for CLC paths also
show minimum energy consumption with R = R′, thus agreeing with the numerical
predictions regarding the importance of this special turning radius.

• Experimental results indicate that in the example scenarios studied, with the end
goal several rover lengths away from the start point, there is always a CLC path that
can be found that is more efficient than its corresponding PLP path.

• When examining power consumption of inner and outer wheels during a skid-steer
turn, inner wheel power does not remain negative for all of R′ < R < ∞, but rather
for R′ <R <RT , where RT ≪∞ is a threshold radius.

6.3 Experimental ResultsObtained from the Tests Performed byHusky
UGV and Argo Rover on Loose Soil

All the theoretical and analytical investigations performed in the previous sections and
chapters are based on the assumption of moving on hard ground. In the following, ex-
perimental results obtained from the tests on loose soil are compared to the theoreti-
cal/analytical results on hard ground. This comparison will reveals the differences and it
can be utilized as the starting point of future work for the energy-efficient path planning
for skid-steer rovers on loose soil.

Therefore, the test plans that were designed to perform the tests are explained. Then,
several plots are given to compare the different predefined paths based on their energy
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consumption. In addition, numerical results of the optimization set up in the preceding
subsection are presented. Moreover, CLC paths are conducted experimentally with both
Husky and Argo J5 skid-steer rovers, in addition to PLP paths with the same start/end
poses for comparison. Furthermore, some of the performed experimental tests are dis-
cussed in additional detail.

Figure 54: The laser total station (red box) and the prism, it travels on the rover (yellow
box)

6.3.1 Test Plan

This subsection provides the plan for both of the numerical and experimental tests. Be-
cause of the skid-steer rovers’ ability to do point turns the simplest way to traverse a
distance between two points is by doing a PLP. However, we will show that CLC paths
can consume less energy than PLP paths. Accordingly, different scenarios for CLC and
PLP paths are considered for both the Husky and Argo J5 rovers, in simulation and in
experiments on sandy terrain at the Canadian Space Agency (CSA).

The test plan is shown in Table 19. All tests prescribe the same start and end an-
gle, relative to the path-defined coordinate system (whose x-axis is aligned with the line
connecting points A and C), for simplicity.

Three different angles of 10o, 45o, and 90o are chosen to consider small, medium, and
large angles. To command a CLC path experimentally, the total desired distace (between
points A and C), the start and end angles, and the commanded radii R1 and R2 are used to
find the required angle subtended by each circular arc (at the center of the corresponding
circle). Each circular arc is commanded until the rover’s Inertial Measurement Unit (a
VectorNav VN-100R) shows the required turn angle has been achieved. The straight line
segments are commanded via dead-reckoning that accounts for an empirically estimated
slip ratio. Because in practice the specified distances are not exactly achieved, the actual
traveled distance (measured using a laser total station shown in Fig. 54) in the CLC path
is used to prescribe the distance for the PLP path. The CLC and PLP distances actually
traveled are confirmed to be within 2% of one another, to ensure a fair comparison.
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Table 19: Husky and Argo Rover Test Plan

Maneuver (θP
A,θ

P
C) Commanded ∥99→AC ∥ for Husky Commanded ∥99→AC ∥ for Argo

CLC

(10o,10o)
(45o,45o) 10 m 12 m

(90o,90o)
PLP

Measured Dis. for CLC (10o,10o) Measured Dis. for CLC (10o,10o)
(0o,0o) Measured Dis. for CLC (45o,45o) Measured Dis. for CLC (45o,45o)

Measured Dis. for CLC (90o,90o) Measured Dis. for CLC (90o,90o)
6.3.2 Numerical Solution of the Optimization Problem

This subsection addresses the numerical analysis by utilizing the optimization problem
formulated in subsection 6.2.2.2. Using the test plan (Table 19) and for the parameters
given in Table 20 and Table 21, calculations of the total path energies for the Husky and
Argo rovers are performed.

Table 20: Argo Rover Parameters used in Numerical Computations

Parameter μA GA vc LA WA mA g pA BsA

Value 0.91 387.84 0.3 0.98 1.14 372 9.81 mg/4 1.68

Unit - Ws/m m/s m m kg m/s2 N m

Table 21: Husky Rover Parameters used in Numerical Computations

Parameter μH GH vc LH WH mH g pH BsH

Value 1.00 64.49 0.3 0.52 0.55 63 9.81 mg/4 0.65

Unit - Ws/m m/s m m kg m/s2 N m
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Table 22: Numerically Computed Energy-Efficient CLC Paths for Argo Rover

Path Type (θo
A,θ

o
C) Distance (m) (R1(m),R2(m),θB(rad)) Energy (J)

CLC (10,10) 12 (0.84, 0.84, -0.0022) 9966.04
PLP (10,10) 12 (0,0,0) 10184.14
CLC (45,45) 12 (0.84, 0.84, -0.0466) 12510.45
PLP (45,45) 12 (0,0,0) 13250.05
CLC (90,90) 12 (0.84, 0.84, -0.1670) 16615.65
PLP (90,90) 12 (0,0,0) 17191.94

Table 23: Numerically Computed Energy-Efficient CLC Paths for Husky Rover

Path Type (θo
A,θ

o
C) Distance (m) (R1(m),R2(m),θB(rad)) Energy (J)

CLC (10,10) 10 (0.325, 0.325, -0.0017) 1347.55
PLP (10,10) 10 (0,0,0) 1361.55
CLC (45,45) 10 (0.325, 0.325, -0.035) 1565.10
PLP (45,45) 10 (0,0,0) 1612.68
CLC (90,90) 10 (0.325, 0.325, -0.1239) 1895.18
PLP (90,90) 10 (0,0,0) 1935.56

It should be mentioned that μ and G for Husky UGV and Argo J5 rover (in Table 20
and 21) are obtained from experimental results. Bs is calculated by from the experimen-
tal data using an Extended Kalman Filter, according to the procedure outlined by Pentzer
et al. [91]. Using (22), G is obtained from straight-line maneuvers given vc and the mea-
sured power. Then, CLC maneuvers are utilized to calculate μ while using (22) and the
calculated G.

For solving the constrained optimization problem presented by (223), the minimize
function from the scipy.optimize package in python is used. In the minimize function,
Sequential Least Squares Programming (SLSQP) algorithm is chosen. The optimization
results are presented in the rows marked ‘CLC’ in Table 22 and Table 23 for the Argo
and Husky rover, respectively. Comparing the optimal turning radii returned by the
optimization, in Tables 22 and 23, to the Bs input parameters in Tables 20 and 21, it is

clear that for both rovers and for all tested start/end conditions, R∗1 = R∗2 = Bs

2
= R′. The

fact that R′ is the optimal turning radius highlights its importance.
Table 22 and Table 23 also provide the computed energy for PLP paths that achieve

the same displacement from start to end pose. In all cases, the optimal CLC path requires
less energy than the corresponding PLP path.

107



6.3.3 CLC and PLP Experimental Tests

Firstly, several important definitions are presented to distinguish between the commanded
and measured R′s for Husky UGV and Argo J5 rover:

Definition 10 R′Ac
is the commanded turning radius for the Argo J5 that results in the in-

ner wheels receiving a commanded velocity of 0, and the outer wheel receiving a commanded
velocity of 2vc. R′Ac

= 0.57m.

Definition 11 Using the definition of R′ and Table 21, then R′H = BsH

2
= 0.325 m. In other

words, R′H is the actual turning radius that the Husky follows when R′Hc
is commanded to it.

Definition 12 Using the definition of R′ and Table 20, then R′A = BsA

2
= 0.84 m. In other

words, R′A is the actual turning radius that the Argo J5 follows when R′Ac
is commanded to it.

In subsection 6.3.2, it is shown that the minimum energy always happens at R1 =R2 =
R′ (R′A for Argo J5 and R′H for Husky). Therefore, several CLCmaneuvers are commanded
at and around the commanded R′ (R′Ac

for Argo J5 and R′Hc
for Husky UGV). Specifically,

the tests in Table 19 are performed with the following commanded turning radii:

• 0.5R′Ac
and 0.5R′Hc

• R′Ac
and R′Hc

• 1.5R′Ac
and 1.5R′Hc

• 2R′Ac
and 2R′Hc

Figure 55: A CLC path performed by Husky rover
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For the Husky UGV, 2 tests each were conducted at each commanded turning radius
for (45o,45o) and (90o,90o) start /end angles. Only a single (10o,10o) test was performed
at R

′

Hc
. Also, for each of the CLC tests, a corresponding PLP test is performed. As an

example, one of the resulting CLC paths traversed by the Husky UGV is shown in Fig.
55.

For each test, the actual turning radius driven was derived from laser total station
measurements. These experimentally measured turning radii are denoted Re.

Fig. 56 shows the energy consumption of each CLC path (ECLC) compared to the
energy consumption of the corresponding PLP path (EPLP). Energy consumption over
each path is measured with the TI INA226 bidirectional current and power sensor on the
Husky, and onboard motor current and voltage sensors on the Argo. This comparison is
quantified as a percentage difference given by the following equation:
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Figure 56: Comparison of Husky and Argo experimental results

ECLC −EPLP

EPLP
×100 (229)

In cases where the above metric is negative, the energy consumed by the CLC path is
lower than the corresponding PLP path; these cases appear below the reference line in
Fig. 56. As it can be seen in the figure, the energy consumption of CLC is less than PLP
(the percentage < 0) for the following conditions:

• when (θA,θC) is (45o,45o) , for both Husky and Argo J5 the turning radius should
be R ≥R′.

• when (θA,θC) is (90o,90o), for both Husky and Argo J5 the turning radius should
be R > 1.5R′.
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• when (θA,θC) is (10o,10o), the performed tests show that R > 1.5R′ for Argo J5. No
tests at (θA,θC)= (10o,10o), when R >R′, for Husky UGV are performed.

It is worth noting that during one test at R
′

H and (θA,θC) = (90o,90o), ECLC is 80%
higher than EPLP. A high degree of slip occurred during this test. Also, as the figure
indicates, at almost Re = 3.2R′H the energy percentage a bit increases, compared to the
tests performed at Re = 1.8R′H . Therefore, it is possible that the minimum percentage
happens in the 1.8R′H < Re < 3.2R′H . However, more tests should be performed to provide
more precise results (future work).

Conclusion of the Subsection: CLC paths often consume less energy than PLP paths.
Such cases can be found for turning radii at or above R′ (R′H and R′A). However, CLC
paths at exactly R′ risk a possible significant increase in energy consumption. In Fig. 56
it can be seen that the best performance of CLC paths relative to PLP paths (consistent
energy savings of up to 10% and 20% for the Argo and Husky, respectively) is observed

just below { Re

R′H
,
Re

R′A
} = 2. Future work will study this region of the performance curve in

greater detail, and attempt to link the results to a experimental power curve.

6.3.4 Elaboration on Some of the Experimental Tests

Some of the experiments shown in Fig. 56 are further elaborated here. They correspond
to CLC and PLP tests of (45o,45o) tests at 0.5R′Hc

, R
′

Hc
, and 1.5R

′

Hc
with the Husky rover.

The energy consumption for these different scenarios are reported in Table 24.

Table 24: CLC and PLP tests of (45o,45o) tests at 0.5R′Hc
, R

′

Hc
, and 1.5R

′

Hc
with the Husky

rover

Scenario’s Index Path Type R1 (m) R2 (m) Energy (J)

1 CLC 0.5R
′

Hc
0.5R

′

Hc
2331.36

2 PLP 0 0 2202.57
3 CLC R

′

Hc
R
′

Hc
1975.263

4 PLP 0 0 2147.30
5 CLC 1.5R

′

Hc
1.5R

′

Hc
2055.845

6 PLP 0 0 2275.57
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Figure 57: Power consumptions for different scenarios reported in Table 24

Based on Table 24, CLC paths of Index 3 and 5 have 8% and 11% less energy con-
sumption compared to corresponding PLP paths of Index 4 and 6, respectively. These
two results confirm an aspect of the optimal solution obtained numerically in Table 23,
namely that the minimum energy consumption should happen for the path other than
PLP paths. Also, the power consumptions are shown in Fig. 57.

As Fig. 57 shows, both of the peak power and the total time duration of power con-
sumption for PLP paths of Index 4 and 6 are greater than CLC paths of Index 3 and 5,
respectively. Accordingly, the energy consumption for the PLP is greater than CLC paths;
Table 24 confirms this (2147.30 J > 1975.263 J and 2275.57 J > 2055.845 J).

6.3.5 Comparing the Theoretical and Experimental Results

The simulation results presented in subsection 6.3.2 predict that the minimum energy
consumption should happen at the CLC paths with the following specifications:

• Re=R′H for Husky UGV

• Re=R′A for Argo J5

However, the experimental tests (subsection 6.3.3 and 6.3.4) indicate that minimum
energy consumption occurs with CLC tests at turning radii in the following ranges:

• Re ∈ (1.5R′H,2R′H) for Husky UGV

• Re ∈ (1.5R′A,2R′A) for Argo J5

The difference between theoretical and experimental work is possibly due to (20) (the
existing power model) being designed for skid-steer rovers on hard flat ground. It does
not consider the bulldozing effect of skid-steer rover wheels on loose sands or any other
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potentially complex wheel-soil interactions (e.g. slip sinkage). Therefore, (20) can not
model the power around R′ on loose sands correctly. Hence, our future work is to re-
vise the existing power model by considering the accumulated sand from bulldozing the
ground with the rover’s wheels.

6.3.6 Conclusions of the Subsection

Energy-efficient path planning for skid-steer rovers is investigated in this research. As the
power consumption of a skid-steer rover is highly dependent on the path’s turning radius,
it is considered explicitly in our calculation of consumed energy. Based on some simpli-
fying assumptions, new path models are proposed. The assumptions are the rover moves
forward on flat ground with constant sum of absolute values of right and left velocity.
Numerical simulations are performed to find the optimal path from among a predefined
class of paths: a combination of circular arcs and line segments (CLC paths). Experiments
are conducted to compare against the theoretical predictions. From the evaluations and
investigations reported here, the following findings are concluded:

• Numerically optimizing CLC paths for energy-efficiency shows that, for the existing
power model and all cases examined, R = R′ gives the minimum energy consump-
tion.

• Results obtained from experiments show that turning radii slightly bigger than R′A
and R′B (up to twice these values) give minimum energy consumption for Argo J5
and Husky UGV, respectively.

• Experimental results indicate that CLC paths are more efficient than PLP in many
scenarios, and a CLC path with lower energy than its corresponding PLP path could
always be found for the start/end pose scenarios studied.

• The discrepancy between theoretical work and experiments is likely due to power
model deficiencies on loose sandy soil.

• A new power model is required for skid-steer rovers on sand.

Accordingly, future work is defined as follows:

• Revising the existing power model for skid-steer rovers by considering the effects
of accumulated sand and sinkage on the power consumption.

6.4 Sensitivity Analysis for the Power Model’s Coefficients

In the following, the sensitivity analysis for the Husky UGV, with the specifications in
Table 16, for the energy efficiency is provided. The considered scenario is a R′-CLC ma-

neuver going from (0,0, π
4
) to (10,0, π

4
). The utilized energy function is stated in Eq.

(222). The related parameters which are μ and G are varied with the ranges of [0,1] and[0,100], respectively. The ranges for the parameters are considered based on the exper-
iments performed with Husky UGV on hard ground and loose soil. Hence, using the
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energy equation while the parameters are changing in the mentioned ranges, the follow-
ing figure is obtained.

0

50

100

0

0.5

1

1.5
0

500

1000

1500

2000

2500

G (N)�

E
 (J

)

Figure 58: Sensitivity analysis for the energy consumption of a R′-CLC path

Since the power model (Eq. (20)) has a linear relation to both the parameters (μ and
G), the expectation is the linear relation between the energy (integral of power) and the
parameters. As it can be seen from Fig. 58, the figure is a plane.

Although we have not done sensitivity analysis for other path types, the fact that
the power model (Eq. (20)) is linear with respect to μ and G suggests that the sensitivity
analyses for the other path types are also likely to result in planes. So, it would be possible
to use those planes in an overall sensitivity analysis of the optimal map to see how the
optimal map changes with small changes to theese parameters. The mentioned analysis
is a suggestion for future work.
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7 Optimal Traction Forces for Four-Wheel Rovers onRough
Terrain

This chapter is published in Canadian Journal of Electrical and Computer Engineering. It is
slightly revised to fit into the rest of this thesis.
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Figure 59: The tasks performed in this chapter are highlighted.

This work addresses the minimization of the risk of wheel slippage for a popular
class of rovers. In the absence of any constraints on the system (e.g. force/torque bal-
ance, maximummotor torques), the optimal traction solution is known to be that with
equal “friction requirements” (ratios of tractive to normal force) for all wheels. Never-
theless, the current state-of-the-art is to routinely perform computationally expensive
constrained optimization, because of the presumed importance of the constraints in
a real system. The contribution of this work is a thorough investigation of the con-
figuration space for 4-wheel rovers, driving straight over rough terrain, in search of
configurations where the unconstrained optimal answer does or does not satisfy the
constraints, and thus, is or is not valid. Equal “friction requirements” are added to
the 4-wheel rover’s system of quasi-static equations and a valid solution is sought
to this augmented system of equations. It is found that the equal “friction require-
ments” solution is almost always valid, except for the case where two of the wheels

114



are wedged against opposing vertical faces, a highly unusual and unlikely scenario.
Therefore, we can conclude that computationally expensive constrained optimization
is not required to achieve traction control for 4-wheel rovers.

7.1 Introduction

It is highly desirable that wheeled rovers and vehicles sustain forward motion without
losing traction throughout their operations on rough terrain that each wheel may be en-
countering at different and continuously changing heights and local slope angles. Such
motion occurs in many fields including agriculture, construction, mining, forestry, search
and rescue, as well as planetary exploration. In many such cases, detailed terrain knowl-
edge is generally unknown beforehand.

In some related work, slip is controlled by adjusting the rover’s commanded wheel
velocities. In [98], a desired (low) slip value is commanded and feedback from measured
wheel rotation and overall rover forward motion is used to adjust the inputs to the wheel
motors, while also limiting motor inputs based on a maximum torque that the soil is
estimated to be able to support in shear. In [99], local terrain geometry is taken into
account to adjust each wheel’s speed individually to achieve more uniform slip between
the wheels and thus reduce it overall.

Another fundamental approach is to control wheel torque directly, in which case it is
possible to minimize the maximum ratio of the tangential to the normal force (“friction
requirement” [100] [101]) experienced by any of the wheels [102]. This idea results in
obtaining optimal traction for rough-terrain rovers to avoid wheel slippage. Assuming
homogeneous or generally unknown (and thus homogeneous by best guess) solid terrain
materials, this minimizes the chances of any of the wheel-terrain contacts exceeding the
friction coefficient and thus losing traction. It is important to note that although defined
in terms of frictional contacts, the concept has been extended and shown to be relevant
to soils as well [103], making the approach relevant in sum to a very wide range of the
applications mentioned above. In addition, this approach can be used to obtain the op-
timal traction forces not only for wheeled rovers, but also for legged robots and hybrid
wheel-leg rovers [104].

It is generally accepted that the solution to the minimization of maximum “friction
requirement” is to enact forces such that the “friction requirement” is the same for all
wheels [102] [105]. If a tangential force is reduced on any of the wheels, at least one of
the other wheels would need to increase its tangential force to maintain the quasi-static
force/moment balance. This solution is presented as analogous to an optimal frictional
grasping problem [102], for which equal ratios of tangential to normal forces (and thus
“friction requirements”) for all contact points is the optimal solution [106]. Krebs et
al. [107] apply the idea (used in [106]) on CRAB and present the preliminary results.
They show that the slippage is reduced at least 23% compared to using other methods
such as Wheel Velocity Synchronization. In [102] (specifically, in the explanations for
Eq. (3) of that paper) it is explicitly mentioned that the equations obtained from equal
“friction requirement” can be added to the existing forces and moments equations of the
rover to obtain the optimal traction forces of Gofor (a legged rover).

An important caveat, however, is that this set of forces can only be a true solution
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to the rover traction optimization problem if it satisfies all the constraints, such as the
force/moment balance for a particular rover. It has been shown that this cannot in gen-
eral be taken for granted [105]. Lamon et al. [105] analyzed their novel 6-wheel “Shrimp”
rover, and found that setting the torques to achieve equal “friction requirement” pro-
duces a valid solution only approximately 78% of the time (Figure 7 in [105], under the
validation block for the Fixed Point Method). They use Fixed Point method to solve an
unconstrained optimization problem to find the optimal tractions. Then, they check the
validity of the obtained values (e.g. whether traction forces can be produced by the mo-
tor). No further analysis was undertaken to identify general distinctions between the
configurations for which equal friction requirements did or did not produce valid opti-
mal traction solutions. For the cases that equal friction requirements do no end up to
valid solutions, they use Gradient Method to solve the constrained optimization problem
which is more computationally expensive than solving the unconstrained problem. Iag-
nemma and Dubowsky [103] routinely perform constrained optimization, without ever
explicitly checking the equal “friction requirements” solution.

This work investigates optimal traction forces for a 4-wheel rover. Specifically, the
situation studied is where the rover is attempting to drive forward on rough terrain with
all its wheels aligned pointing forward. Further, it is assumed that the rover is operating
at low enough speeds that quasi-static assumptions hold. The work focuses on rovers that
independently control wheel torque (i.e. motor torque) for each of their four wheels, and
that maintain contact between all the wheels and a rough terrain by means of a passive
rigid suspension. The latter is commonly achieved with a differencing bar/beam. An
example of a rover that meets these criteria is Scarab [108].

One important class of rover that falls within the scope of our work is a skid-steer
rover with four wheels (like Scarab, the example cited above). Such a rover, does not steer
its individual wheels, but instead drives the left and right-side wheels at different speeds
to turn like a tank. It always has all its wheels aligned pointing forward; so, anytime it
is driving straight the situation studied here will apply. Skid-steer rovers are a very pop-
ular configuration due to their mechanical simplicity, from the Clearpath Husky to the
Soviet Union’s 8-wheel Lunokhod rovers and a series of rovers recently developed for the
Canadian Space Agency (CSA) such as Juno [109], LRPDP, SPRP [110], and Artemis [111].

In this paper, we analyze a 4-wheel rover to determine in which configurations does
setting the torques to achieve equal “friction requirement” produce a valid solution that
satisfies all constraints. The key contribution of this work is the finding that for a very
common and important class of rovers, 4-wheel rovers driving forward on rough terrains
(which includes the very popular skid-steer rover configuration), the equal “friction re-
quirement” always produces the valid solution except for one very rare and specifically
identified exception. Thus, we show there is no need for constrained optimizations in
search of sub-optimal solutions for this class of 4-wheel rovers. Instead, it is sufficient to
solve a set of equations.

Contributions of our work compared to the three most related papers can be summa-
rized as follows: [102] and [105] work on 6-wheel (Shrimp) and legged (Gofor) rovers,
respectively, while the focus of our work is on 4-wheel rovers. In addition, the idea of
using equal friction requirement to obtain optimal traction forces is presented/used in
both [102] and [105], but, no one investigates the situations in which the idea does or
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does not give valid answers. Meanwhile, [103] discusses the optimal traction problem
more generally for any rover, but never explicitly addresses the equal friction require-
ments solution. We show, by performing a numerical simulation for a practical type of
4-wheel rovers, that almost always equal friction requirement can be used to obtain opti-
mal traction forces. Our finding results in avoiding extra optimization processes that are
computationally expensive.

This article is organized as follows: firstly, the related work and the motivation that
it gave us to start our research are explained. Then, the problem is formalized in “prob-
lem statement” section. Moreover, “methodology” section presents theoretical part for
investigations of the configuration spaces for single-wheel, 2-wheel, and the full 4-wheel
rovers of interest. Furthermore, in the “numerical approach and results” section an ex-
ample of practical 2-wheel and 4-wheel are analyzed numerically to find the optimal
tractions. Moreover, our suggested method is compared with other methods in “system
uncertainty and performance” section. Finally, the contributions and importance of our
work are summarized in the “conclusion” section.

7.2 Related Work

The most related work to our research is further explained in this section.
Optimization Problem: the optimization problem to avoid wheel slippage is as follows
[105]:

minimize
Ti ,Ni

max{μfi }, i = 1, ...,nw
subject to ΣF = 0

ΣM = 0
Ni ≥ 0

(230)

where μfi ( Ti
Ni
, i = 1, ...,nw) is the “friction requirement”; and, nw is the number of wheels.

Also, Ti and Ni are the traction and normal force of each wheel. Moreover, F and M are
the forces and moments applied to the rover.
Related fact: the solution to the optimization problem in the absence of any of the con-
straints is [102] [105]:

T ∗1
N∗1

= ... = T ∗nw
N∗nw

(231)

Idea: Lamon et al. [105] have used (231) and the constraints in (230) to find candidate
optimal traction and normal forces for a 3-wheel planar rover. Accordingly, they solve
the following set of equations.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ΣF = 0
ΣM = 0
T1
N1

= T2
N2

= T3
N3

(μf1 = μf2 = μf3) (232)

Motivation for Our Work: Lamon et al. [105] find that the optimal solutions of (232) are
valid in 78% of the cases (Figure 7 in [105], under the validation block for the Fixed Point
Method). However, they have not shown in which conditions the valid answers cannot be
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found. Hence, for the remaining 22% of cases, they have solved the optimization prob-
lem in (230) using Gradient Method (the Gradient Method block at Figure 7 in [105]).
The distinction between these cases is important, especially in on-line operation, as it de-
termines how much extra computation is required for solving constrained optimizations
(i.e. problem (230)). An example is presented in 7.6.2 to show the superiority of solving
a set of equations instead of an optimization problem for four-wheel rovers.

7.3 Problem Statement

Problem: To investigate whether there is any predictable set of scenarios that lead to
the cases where an equal “friction requirement” optimal solution, for avoiding wheel
slippage, is invalid. In other words, we identify in which conditions the following system
of nonlinear equations can be solved to find Ti and Ni :⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ΣF = 0
ΣM = 0
T1
N1

= ... = Tnw
Nnw

(233)

Assumptions:

• The rover operates at low enough speeds that quasi-static assumptions (i.e. the force
and moment equilibrium listed in (233)) hold.

• The rover drives straight forward

• The rover moves on rough terrain

In particular, we consider these equations for 4-wheel (and first 2-wheel) rovers, with
configurations typical of skid-steer rovers for example.

In (233), for both 2-wheel vehicles (section 7.4.2) and 4-wheel rovers (section 7.4.3)
the equations of motion (ΣF = 0,ΣM = 0) contain more unknowns than equations. The
additional degree(s) of freedom enable the optimization, with the candidate solution to
this optimization included via the extra equations (T1/N1 = ... = Tnw/Nnw).

7.4 Methodology

This section investigates rover configurations in which the candidate optimal solution
is or is not valid. The analyses progress from single-wheel to two-wheel and finally four-
wheel vehicles. Our methodology is to explicitly add equations representing an optimal
solution to a rover’s system of equations (as it is shown in (233)). Analytical solutions
are discussed in this section and the numerical results are presented in section 7.5. Also,
practical considerations are discussed in section 7.7 regarding the application of these
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results to real rovers.

7.4.1 Optimal Traction Force for a Single-Wheel Vehicle

A wheel (Fig. 60) is balanced if the following equation for normal (N) and traction force
(T ) is held [105]:

T ≤ μ0N
T = M

r

(234)

where μ0, M , and r are the static friction coefficient, moment, and wheel radius, respec-
tively.

T, 
F 

N 

mg 

 

M 

R 

Figure 60: A wheel on a slope (m and g are the mass and gravitational acceleration,
respectively)

When μ0 is known, the relation between the traction and normal force can be obtained
from the following relation [105]:

T
N

≤ μ0 (235)

However, since it is impossible to know μ0 precisely (wheel interaction with an un-
known terrain determines it), another approach should be taken. Assuming that the
wheel does not slip makes it possible to calculate the forces T and N as a function of the
moment. Therefore, to avoid the wheel slippage, T /N can be minimized. Considering
the previous assumption, let’s define [105]:

Ti
Ni

= μi, i = 1, ...,nw (236)

As it can be seen, μi is similar to a friction coefficient. In minimizing the ratio, i.e.
minimizing μi , we optimize our chances that this coefficient is smaller than the real static
friction coefficient (μ0). If this happens, there is no slip. Therefore, even without knowing
the μ0, the ratio of T /N should be minimized.

119



It should be mentioned again that (236) is valid for rigid frictional terrain [103]. The
same equation can also be used for soils with low or no cohesion. For rigid wheels travel-
ing over non-rigid terrain, the following relation can be written [103].

Ti ≤ (cAi +Ni tanφ) (237)

where c is the terrain cohesion, φ is the terrain internal friction angle, and A is the wheel-
terrain contact area. The parameters c and φ could be estimated on-line [103]. When the
terrain is soil with low or no cohesion, c is negligible (or zero). Accordingly, (237) can be
written in the following format:

Ti ≤Ni tanφ (238)

Therefore, for soils with low or no cohesion, μi is tanφ, and the same minimization of
T /N applies as for rigid terrains.

7.4.2 Optimal Traction Forces for a 2-Wheel Rover

In the following, firstly, the conditions are discussed in which the optimal answers, cal-
culated by using (233) for a 2-wheel rover, are not feasible. Then, a simulation example is
presented to demonstrate the superiority of using equal “friction requirement” to equal
torques in obtaining the optimal forces.

7.4.2.1 Conditions to Avoid Slippage for the 2-Wheel Rover the schematic figure of
the 2-wheel case is shown in Fig. 61. The purpose is to solve the following set of equations
for T1, T2, N1, and N2. ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ΣF = 0
ΣM = 0
T1N2 −T2N1 = 0 (239)

where ΣF (ΣFx,ΣFy) as well as ΣM(ΣMk) are as follows:

ΣFx = T1cosθ1 −N1sinθ1 +T2cosθ2 −N2sinθ2 = 0 (240)

ΣFy = T1sinθ1 +N1cosθ1 +T2sinθ2 +N2cosθ2−m1g −m2g = 0 (241)

ΣMk =m1gsinθ1r1 −m2gΔxkc2 +N2sinθ2Δyks+N2cosθ2Δxks +T2sinθ2Δxks −T2cosθ2Δyks = 0 (242)

Δyks = r1cosθ1 + lsinα − r2cosθ2 (243)

Δxks = r2sinθ2 + lcosα − r1sinθ1 (244)

Δxkc2 = lcosα − r1sinθ1 (245)
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where Ti , Ni (i=1,2), Fx, Fy , and Mk are the traction force, normal force, force in the x
direction, force in the y direction, and moment around point k, respectively. Also, mi , θi ,
and ci (i = 1,2) are mass, angle of slope, and center of a wheel, respectively. Moreover, l
and α are the length of the rod and its angle with the x axis. In addition, s and k are the
contact points of each wheel with the slopes. Furthermore, r1 and r2 are radius of the first
and second wheels, respectively.

  

 

 

 

Figure 61: Two-wheel rover on slopes

Analytical Approach: analytical solutions were also sought to the optimal system of
equations (shown in (239)), to see if additional insight could be gained into the regions
with no solution. Singularities of the resulting equations were analyzed in light of their
potential physical relevance. However, the analytical methods produced some conditions
for which solutions were indeterminate even though numerical solutions could be found
(see appendix D). In other words, singularities were found that did not necessarily always
correspond to physical conditions lacking a solution but rather just limitations of the
analytical method in finding those solutions. It was judged that such results detracted
from, rather than enhanced, the clarity of the numerical results. Furthermore, it was
found that the analysis could not be extended to the physically relevant 4-wheel rover
anyway, as explained in the next section. Finally, the analytical results themselves involve
dozens of pages of equations. For all these reasons, the details of the analyses are omitted
for brevity.

7.4.3 Optimal Traction and Normal Forces for the 4-Wheel Rover

In this subsection, a case for a 4-wheel rover is considered. Fig. 62 shows the 4-wheel
rover on rough terrain. As it can be seen, each wheel contacts the terrain at a different
height and at a different contact angle.

7.4.3.1 Assumptions the assumptions which are considered for the 4-wheel rover are
as follows:

• Operating at low enough speeds that quasi-static assumptions hold.

• Driving forward
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• Moving on rough terrain

• The rover’s roll angle (φ) is small enough to be neglected

• The cross-bar connecting the two sides of the rover is assumed horizontal

  

 

 

  

  

 

 

Figure 62: The four-wheel rover on rough terrain

7.4.3.2 Equations to Obtain Optimal Forces in the following, equations of motion
and equal “friction requirement” for the 4-wheel rover are presented.

ΣF = 0 (246)

ΣM = 0 (247)

T1N2 −T2N1 = 0 (248)

T2N3 −T3N2 = 0 (249)

T3N4 −T4N3 = 0 (250)

The equations for ΣF and ΣM are obtained according to the following calculations.

ΣF = 4∑
i=1

F⃗
I
i (251)

ΣM = 4∑
i=1

M⃗
I
i (252)

122



where F⃗
I
i and M⃗

I
i are the forces and moments applied to each wheel in the inertial frame,

respectively. They can be obtained from the following equations:

F⃗
I
i =Rwi F⃗

Bi
TiNi

+W⃗ I
i , i = 1, ...,4 (253)

M⃗
I
i = r⃗ITiNi

× F⃗ I
TiNi

+ r⃗IW i
×W⃗ I

i , i = 1, ...,4 (254)

where F⃗
Bi
TiNi

and F⃗
I
TiNi

are the applied traction and normal force to each wheel in its body
coordinate system and inertial frame, respectively. Also, Rwi is the transfer matrix for
each wheel that transfers forces from the body to the inertial coordinate system. More-

over, W⃗
I
i is the vector of weight applied to each wheel, while, r⃗ITiNi

is the positions of
contact point of each wheal to the ground, in the inertial frame. Also, r⃗IW i

is the position
of each wheel’s center in the inertial frame.

Δα = α34 −α12 (255)

α13 = −sin−1(Lsin(Δα)2l13
) (256)

F⃗
Bi
TiNi

= ⎡⎢⎢⎢⎢⎢⎣
Ti
0−Ni

⎤⎥⎥⎥⎥⎥⎦ , i = 1, ...,4 (257)

W⃗
I
i = ⎡⎢⎢⎢⎢⎢⎣

0
0

mig

⎤⎥⎥⎥⎥⎥⎦ , i = 1, ...,4 (258)

Rwi = ⎡⎢⎢⎢⎢⎢⎣
cos(θi) 0 −sin(θi)

0 1 0
sin(θi) 0 cos(θi)

⎤⎥⎥⎥⎥⎥⎦ (259)

RRij = ⎡⎢⎢⎢⎢⎢⎣
cos(αij) 0 −sin(αij)

0 1 0
sin(αij) 0 cos(αij)

⎤⎥⎥⎥⎥⎥⎦ ,(i, j) ∈ {(1,2),(3,4)} (260)

r⃗IT1N1
= ⎡⎢⎢⎢⎢⎢⎣

x1
y1
z1

⎤⎥⎥⎥⎥⎥⎦ (261)

r⃗IW1
= r⃗IT1N1

+Rw1

⎡⎢⎢⎢⎢⎢⎣
0
0−r1
⎤⎥⎥⎥⎥⎥⎦ (262)

r⃗IT2N2
= r⃗IW1

+RR12

⎡⎢⎢⎢⎢⎢⎣
l12
0
0

⎤⎥⎥⎥⎥⎥⎦ +Rw2

⎡⎢⎢⎢⎢⎢⎣
0
0
r2

⎤⎥⎥⎥⎥⎥⎦ (263)
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r⃗IW2
= r⃗IW1

+RR12

⎡⎢⎢⎢⎢⎢⎣
l12
0
0

⎤⎥⎥⎥⎥⎥⎦ (264)

r⃗IT3N3
= r⃗IW1

+⎡⎢⎢⎢⎢⎢⎣
0

l13cos(α13)−l13sin(α13)
⎤⎥⎥⎥⎥⎥⎦ +Rw3

⎡⎢⎢⎢⎢⎢⎣
0
0
r3

⎤⎥⎥⎥⎥⎥⎦ (265)

r⃗IW3
= r⃗IW1

+⎡⎢⎢⎢⎢⎢⎣
0

l13cos(α13)−l13sin(α13)
⎤⎥⎥⎥⎥⎥⎦ (266)

r⃗IT4N4
= r⃗IW3

+RR34

⎡⎢⎢⎢⎢⎢⎣
l34
0
0

⎤⎥⎥⎥⎥⎥⎦ +Rw4

⎡⎢⎢⎢⎢⎢⎣
0
0
r4

⎤⎥⎥⎥⎥⎥⎦ (267)

r⃗IW4
= r⃗IW3

+RR34

⎡⎢⎢⎢⎢⎢⎣
l34
0
0

⎤⎥⎥⎥⎥⎥⎦ (268)

where mi (i=1,...,4), L, and l13 are mass of the wheels, and lengths of the rods, respec-
tively. Also, α12, α13, and α34 are the rover configuration angles. It should be noted that
for simplicity the roll and yaw angles for each wheel are considered equal to zero.

7.4.3.3 Analytical Approach The first approach is to solve (246) to (250) analytically
for Ti and Ni (i = 1, ...,4). However, in appendix E it is shown that according to Abel’s
impossibility theorem [112] there is not any algebraic solution in radicals for the set of
equations. Accordingly, numerical methods are utilized to solve the set of equations.

7.5 Numerical Simulations and Results

In this section, optimal traction forces to avoid slippage for a practical two-wheel and
four-wheel rover are obtained.

7.5.1 Numerical Simulation for a Two-Wheel Rover

In this section, firstly a simulation example is presented that illustrates the advantages
of enforcing equal “friction requirements,” as presented in “Introduction” and “Problem
statement” sections. Then, the results of numerical analysis for obtaining the optimal
traction forces are reported.

7.5.1.1 Simulation example This subsection presents a simulation example that il-
lustrates the advantage of setting torques so as to achieve equal “friction requirement,”
compared to setting equal torques.

The example presents a planar 2D rover like described above. The masses at the
wheels arem1 =m2 = 1 kg . The wheels are both of radius r = 0.05m, and the wheel centers
are offset by a rigid wheelbase of l = 0.15 m. Gravitational acceleration of 1.63 m/s2 is
simulated to represent a rover on the Moon.
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The rover is constrained to remain in contact with the terrain. Deformation of the
terrain is neglected, such that the wheel center is always located a distance r from the
terrain, perpendicular to the local slope at the contact point. The wheel center locations
are denoted (xi ,yi) for i = 1,2. As the wheel travels over reasonably benign terrain, the
location of the wheel center traces out a path that can be described by a function yi = f (xi)
(i = 1,2). The fact that the wheels have equal radii implies that the same function holds
for both wheels. The following wheel-center terrain-tracing function is selected for this
example:

yi = x2i −x3i (269)

Control is implemented to maintain a desired body velocity of 0.1 m/s as the rover
traverses the terrain described by (269). The initial value of the problem is set such that
x1(0) = −0.2. The simulations are run for 10 seconds, within which time the rover moves
forward approximately 1 (m). This terrain traversal is shown in Fig. 63.
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Figure 63: Rover simulation showing terrain traversed in 10 second run

With an equal friction requirement enforced using T1N2 −T2N1 = 0, the resulting fric-
tion requirement for this 10-second simulation example, for both wheels, is shown in Fig.
64.
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Figure 64: Friction requirements for both wheels throughout the simulation example,
when equal friction requirements are enforced.

For comparison, another option for setting torque values that might be considered
due to its simplicity is equal torques:

T1 −T2 = 0 (270)

However, as can be seen in Fig. 65, this results in undesirable performance. With
equal torques, the friction requirements for the two wheels are not required to stay equal
and they in fact do not. From about 3 seconds on, the front wheel has a higher friction
requirement meaning it is more likely to slip that the rear wheel. More importantly,
comparing to the results in Fig. 64, we see that with equal torques the front wheel is
more likely to slip in absolute terms compared to the equal friction requirement case.
The friction requirement for the front wheel peaks at 0.57 for the equal torques case,
compared to 0.41 for the equal friction requirement case.
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Figure 65: Friction requirements (blue for front wheel and red for rear wheel) when
torques are distributed evenly. The front wheel has an increased friction requirement,
both in relative and absolute terms.

Table 25: The specifications for a two-wheel rover

Parameter Value Unit
m1 20 kg
m2 20 kg
r1 0.5 m
r2 0.5 m
l 2 m
g 9.81

m
s2

7.5.1.2 The Angles for Feasible Optimal Traction Forces (Two-Wheel Rover) The
two-wheel rover specifications are reported in Table 25.

Comprehensive configuration space analysis: The range of configuration angles con-
sidered for the numerical solution, as well as the constraints checked to determine if a
valid solution was obtained are presented in the following.

• Configuration space:

{(θ1,θ2,α) ∣ θi(i = 1,2) ∈ [−π2 ,
π
2
],α ∈ [−π

3
,
π
3
]}
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• Constraints:

{−10max{m1,m2}g ≤ Ti ≤ 10max{m1,m2}g, i = 1,2} and {0 ≤Ni ≤max{m1,m2}g}
In addition, it should be checked that the sign of θi and Ti are the same. In better

words, if θi > 0, then Ti > 0 and if θi < 0, then Ti < 0. All these constraints are imposed to
ensure the solver finds physically realistic solutions.
Numerical Analysis Results: subject to the aforementioned constraints, the system of
nonlinear equations (239) is solved. Fig. 66 shows values of θ1 and θ2 for which a valid
solution for Ti or Ni (i = 1,2) is not found. Note that results for all α are overlaid in a
single plot.
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Figure 66: The values of θ1 and θ2, for which the numerical method solution is not feasi-
ble (results for all α overlaid) for the two-wheel rover

As can be seen from Fig. 66, the only conditions under which the optimal system of
equations has no valid solution are when one of the θi (i = 1,2) is near +80 to +90 degrees
and the other is near -80 to -90 degrees.

7.5.2 Numerical Simulation for a Four-Wheel Rover

The four-wheel rover specifications are reported in Table 26.
The configuration space as well as the constraints for the problem are as follows.

• Configuration space:

{(θ,α) ∣ θi (i = 1, ...,4) ∈ [−π2 ,
π
2
],{α12,α34} ∈ [−π3 ,

π
3
]}
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Table 26: The specifications for the rover

Parameter Value Unit
m1 15 kg
m2 15 kg
m3 15 kg
m4 15 kg
r1 0.3 m
r2 0.3 m
r3 0.3 m
r4 0.3 m
L 1.2 m
l13 1.1 m
g 9.81

m
s2

• Constraints:

{−10m1g ≤ Ti ≤ 10m1g, i = 1..4} and {0 ≤Ni ≤m1g}
In addition, it should be checked that the sign of θi and Ti are the same. In better

words, if θi > 0, then Ti > 0 and if θi < 0, then Ti < 0.
Equations (246) to (250) are solved for Ti andNi (i = 1, ...,4), in the mentioned configu-

ration space for {θ,α}. MATLAB fsolve (trust-region-dogleg algorithm) with the function
termination tolerance value of 10−6 is used. The total number of conditions considered
for (θ1,θ2,θ3,θ4,α12,α34) are 22,024,249 (Table 27). The number of answers for Ti and
Ni that do not meet the above-mentioned constraints are 16,445 (Table 27).

Table 27: The results of the numerical solving of (246) to (250) for the mentioned config-
urations space

Different (θ1,θ2,θ3,θ4,α12,α34) 22,024,249

in the configurations space

Invalid Ti and Ni (i=1..4) 16,445

Percentage of cases valid 99.93%

According to Table 27, the calculations failed to converge to a valid solution in just
16,445 of the 22,024,249 conditions (0.07% of cases). It is vital to mention that in each

one of these “off-condition” cases at least one θi=
π
2
, (i = 1,...,4) and one θj=

−π
2

(j = 1,...,4),
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simultaneously. In other words, the wheel torque optimization for the 4-wheel rover is
valid for all cases except when the mentioned conditions happen. This corresponds to
two of the wheels being wedged against opposing vertical faces. Although not entirely
impossible, it is important to note that this is a highly unusual and unlikely scenario
in practice. Therefore, the conditions for which the optimal system of equations has no
solution for the 4-wheel rover are directly comparable to those which have no solution in
the 2-wheel case (Fig. 66).

It should be noted that the approach to solve for optimal torques described in this
paper involves numerically solving a system of non-linear equations. It is important
to consider how to set the initialization for such a solver. In on-line applications (on
a rover), the result from the previous timestep (for the previous state) is available and
this prior solution is used to initialize the solver at the current timestep. At the very
first timestep, random re-initializations can be used if required until convergence to a
solution is achieved. As will be shown in Section 7.6.1, the solution varies gradually
as a function of the inputs, so for smoothly varying terrain the solution from the prior
timestep is a good estimate to start the solver for the current timestep. In some cases
of a sudden change in input states (e.g. driving into or off of a step obstacle), random
re-initializations may perhaps be again required.

7.6 On-line Application, Uncertainty and Performance

Further investigations are presented to show the validity of proposed approach for ob-
taining the optimal traction forces. Firstly, sensitivity of the optimal outputs to variations
in the inputs is investigated. Then, the advantage of considering equal friction require-
ments instead of solving constrained optimization for four-wheel rovers is presented.

7.6.1 System Uncertainty for the Two-Wheel Rover

Figure 67 provides an example for sensitivity analysis of the optimal outputs to variations
in the inputs. Specifically, it shows T1 as a function of the 2-wheel rover (Fig. 61) inputs
with the specifications presented in Table 25. As it can be seen, only at extreme angles
for θ1 and θ2 is the gradient of T1 considerable. Over the rest of the range of inputs, the
optimal traction force changes gradually as the inputs are varied. Therefore, it can be
concluded that the uncertainties which always exist in the sensor measurements for θ1
and θ2 will not cause sudden or inappropriate fluctuations in optimal torque output.

7.6.2 Comparison of our Proposed Approach and other Methods

Definition 1: Constrained Optimization problem for Four-wheel rover (COF): Solving the
optimization problem defined in (230) (with the equality constraints are presented in
(251) and (252)) for conditions reported in Table 28.

Definition 2: Non-linear Equations problemwith equal Friction requirements for Four-
wheel rover (NEFF): Solving (246) through (250) for conditions reported in Table 28.

It should be noted that we use NEFF in this paper.
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Figure 67: Optimal T1 versus θ1 and θ2 for α=0

Table 28: Conditions for comparison of COF and NEFF performances

Parameter θ1 θ2 θ3 θ4 α12 α34

Value [-10o,0] [-10o,0] [-10o,0] [-10o,0] 0 0

The runtimes of COF and NEFF are compared on a PC with 2.60 GHz processor and
16 GB RAM. For numerically solving both COF and NEFF, MATLAB functions are used
(fmincon for COF and fsolve for NEFF). The computations are run in the following phases:

• At the first configuration to be solved, computations are performed with random
initial conditions and random restarts (with the same random conditions fed to
both COF and NEFF).

• COF and NEFF are solved at steps of 2o over the ranges of inputs shown in Table
28. Both COF and NEFF solvers are initialized with the solution from the previous
(i.e. neighboring) configuration, as discussed at the start of this Section.

The average time for both COF and NEFF computations are shown in Table 29. The
average NEFF computation time is 0.093 sec while running in MATLAB. For on-line im-
plementation, run times can be further reduced by using other programming languages
such as C++, though this is already a reasonable computation period.

Furthermore, NEFF is around an order of magnitude faster than COF. This result is
interesting because it again confirms the importance of our contribution, which is show-
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ing that optimal traction forces can be obtained almost always using NEFF for four-wheel
rovers.

Again it should be noted that compared to Lamon et al. [105], we have shown that the
constrained optimization step is not required for four-wheel rovers.

Table 29: Performance Comparison of COF and NEFF for the Conditions presented in
Table 28

Algorithm Time

COF 1.2316 sec

NEFF 0.0928 sec

7.7 Practical Considerations for Calculating Optimal Torques

In addition to the practical contribution of identifying a less computationally expensive
method of solving for optimal traction forces, other practical implementation considera-
tions are summarized here for convenience. In previous sections, it was simply assumed
that rover configuration angles, e.g. α and wheel-terrain contact angles, θi , could be es-
timated. At this point we can discuss various ways in which such an estimation could be
done in practice.

Internal rover configuration angles can be determined based on suspension angle sen-
sors (e.g. potentiometers). These can then be converted to absolute angles, relative to the
horizontal plane, with reference to an inclinometer. Such a suite of sensors is routinely
installed on rovers.

Estimation techniques for wheel-terrain contact angles can be divided into two main
approaches: making measurements at the wheels themselves, or doing calculations based
on measurements from other locations on the rover.

Iagnemma et al. [103] present a way to calculate an estimate for contact angles without
having any measurements at the wheels themselves. Instead, their approach requires full
rover egomotion data and configuration information. The egomotion data (presumably
from a vision algorithm or something equivalent) would give the 6 degree of freedom
velocity at the rover center of gravity. Through a kinematics calculation involving joint
configurations and rates, these velocities could be translated to each of the 6 wheel cen-
ters. Longitudinal contact angles can then be calculated as

θi = arctan(vyvx )
where vx and vy are the x and y velocities of the center of wheel i (relative to the ground
frame).
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Contact angles may alternately be deduced from deformation or strain at the wheel
itself [113]. developed a tactile wheel for the Octopus rover, which is equipped with
deformable tires and with infrared sensors attached to the wheel hub. When the wheel
contacts the ground or an obstacle, the tire deforms, shortening the emitter-to-receiver
path of the infrared beam for one or more of the 16 sensors. Significantly shortened paths
suggest contact points, which can then be used to either estimate a single contact angle or
to calculate an average contact angle. With a rigid wheel, analogous measurements could
be made with strain gauges mounted along the inner circumference of the wheel.

It has been noted that the wheel torque optimization for 4-wheeled rovers is valid for

all cases except when at least one θi=
π
2
, (i = 1,...,4) and one θj=

−π
2

(j = 1,...,4), simulta-

neously. This corresponds to two of the wheels being wedged against opposing vertical
faces. Although not entirely impossible, it is important to note that this is a highly un-
usual and unlikely scenario in practice.

7.8 Conclusion of the Chapter

When a rover’s system of quasi-static equations of motion are underdetermined, aug-
menting this system with equations enforcing equal “friction requirement” represents
optimal traction to minimize the risk of slippage. We have shown (for practical 2-wheel
and 4-wheel rovers) that explicitly adding these equations to create a fully determined
system of nonlinear equations is a valid method for seeking an optimal traction solution;
if there is a valid solution to the system of equations, it is optimal. This significantly
simplifies the problem of optimizing wheel torques for traction in this important class of
rover problem.

For both a simplified 2D 2-wheel rover example, as well as a 3 dimensional 4-wheel
rover model, the augmented system of equations lacks a valid solution only when one
wheel encounters the terrain at an angle near 90 degrees and another is near -90 degrees,
a highly unusual and unlikely scenario. Accordingly, compared to previous papers, we
show that another optimization step is not required to find all of the valid answers; hence,
the computational intensity of the problem is reduced.

The future work includes investigating potential effects of the rover roll angle on the
equations and their solution space. Also, experimental work would be a productive di-
rection for future work.
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8 Conclusions and Future Work

In this chapter, firstly the contributions and results of this thesis are discussed and sum-
marized in subsection 8.1. Then, the proposed/planned future work is reported in sub-
section 8.2.

8.1 Conclusions

Skid-steer rovers consume a lot more power in point turns compared to straight-line mo-
tion. As energy is the integral of power over time, the turning radius should be considered
explicitly for this type of rover. Moreover, the thorough review of the published litera-
ture reveals that there is a lack of analytical energy-optimal path planning approaches
for skid-steer rovers. Hence, the focus of this thesis is to address the problem while the
rover moves on obstacle-free hard ground. From the evaluations and investigations on
the problem, the following findings are concluded:

• Equivalency Theorem: The theorem which is a key contribution of this thesis in-
dicates that, for a popular power model for skid-steer rovers on hard ground, all
minimum-energy solutions follow the same path irrespective of velocity constraints
that may or may not be imposed. This non-intuitive result stems from the fact that
for the relevant power model, the total energy is fully parametrized by the geometry
of the path alone. It is noted that the velocity constraint should not limit the range
of the turning radius. According to our research, the constraint can be “constant
vc”, “constant-power velocity constraint”, and “bounded velocity”. Our approach
to solve the energy-efficient path planning problem is considering “constant-power
velocity constraint”, and thus converting the problem to an equivalent time-optimal
problem. Hence, the equivalency theorem avoids the regeneration/revising/adjusting
of theory for being applied to our energy-efficient problem. Instead, the equivalent
time-optimal problem can be solved using the existing theory and process from the
literature (references [50] and [62])–built upon the basis of Pontryagin’s minimum
principle to find the extremals for time-optimal path planning for a rigid body.

• Extremal Paths: Using the existing theory and proving some other theorems speci-
fied for skid-steer rovers, the answer to the equivalent time-optimal path planning
problem is found. Hence, all the possible extremal paths for the energy-efficient path
planning problem are obtained, which is another key contribution in this thesis. As
there is a finite number of extremals, they can be enumerated to find the minimum.
Moreover, a scenario, going from a starting point in 2D x-y space with the orien-
tation of π/4 to the origin with orientation of 0, is provided to show the method
that the extremal paths should be utilized to obtain the optimal path. The results
indicate that there are 3 types of path that covers the most area of the optimal map:
CLC, CCLC, and CLCC. We would expect similar results for other scenarios besides
the mentioned example.

• R′: Another key contribution is introducing and investigating the importance of R′,
a particular turning radius equal to half of a skid-steer rover’s slip track. In other
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words, R′ is the turning radius at which the inner wheels of a skid-steer rover are not
commanded to turn. The analysis identifies that all the turns for the non-whirls (vast
majority of the obtained extremals paths) have the turning radius of R′. Analysis,
using KKT as well as experiments with a Husky UGV rover further demonstrate the
importance of R′. When considered with respect to a popular power model for skid-
steer rovers, R′ corresponds to an important transition for energy consumption of
a circular arc maneuver: below R′ energy consumption is not a function of turning
radius while above R′ it is. Moreover, the results obtained from the experiments
on hard ground confirm that turning radius of R′ gives best results for the energy
consumption of CLC paths.

• Constant-vc Constraint: In this thesis we propose a practical velocity constraint for
skid-steer rovers. Since the typical constant forward velocity constraint is not appli-
cable for skid-steer rovers, as turning radius approaches zero the angular velocity
becomes infinity, a new practical constraint is suggested. The proposed constraint is
constant sum of absolute values of right and left velocity. The proposed constraint
gives this ability to a skid-steer rover to keep constant angular velocity below R′ and
constant forward velocity above R′. It is worth mentioning that below R′ the right
and left velocity have different signs. However, they are the same above R′.

Furthermore, we investigate the importance of “friction requirement”. By numerical
analysis it is shown that for a practical type of 4-wheel rovers, almost always equal “fric-
tion requirement” can be used to obtain optimal traction forces. It is worth mentioning
that skid-steer rovers are a class of 4-wheel rovers. The detailed conclusion about the
problem is provided in subsection 7.8.

Finally, based on the performed research, there have been several publications and
presentations that are listed in subsection 1.4.

8.2 Future Work

Since the power model (Eq. (20)) is designed for hard ground, all the theoretical analy-
sis in this thesis are performed by the assumption of moving on hard found. However,
for applications such as space robotics the rover should be able to follow the optimal
trajectory on loose soil. Accordingly,

• The power model (Eq. (20)) should be revised for loose soil. We performed several
experimental tests36 using Husky UGV and Argo J5 on CSA Mars yard. Moreover,
some research are performed to identify the power model for loose soil around R′

in [114]. However, it still requires more investigation to obtain a proper power
model on loose soil. Specially, the power model should be precisely designed for
the power consumption of turning radii around R′.

• After obtaining the power model on loose soil, the energy efficient path planning
problem should be solved for this type of terrains. Since only the power model will

36The results are presented in subsection 6.3.
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be changed, our suggested way is to follow the steps that we performed in this thesis
probably with some modifications to make the analysis appropriate for loose soil.

• As mentioned in the literature review, there are several papers on simultaneous
minimization of time and energy. In other words, the hybrid cost (weighted sum
of energy and time) is minimized. As both energy and time can be considered in
optimal trajectory planning, an interesting direction of future work is optimal path
planning by minimizing the hybrid cost for skid-steer rovers. Based on this thesis,
the energy cost should be converted to an equivalent time cost with a new control
control space, and then the optimization should consist of some weighted combi-
nation of solutions to the equivalent time problem (energy term) and direct time
optimization problem (time term), each with its own related control space. Care-
ful investigation is required to figure out whether the process can be applied to the
hybrid problem. One potential issue that arises is as follows: If the two problems
generate different optimal maps, how does one reconcile the selection of a path,
given that there is no obvious weighted combination of CLC and LCCLC paths, for
example?

Moreover, based on the work performed in this thesis, there are several current/planned
works that are reported in the following:

• It is known that PLP37 paths are feasible between every starting and end pose. In
experimental tests the simpler paths are more convenient to be implemented (i.e.
PLP is easier than CCLCC). Accordingly, comparing the magnitude of energy sav-
ings of the optimal paths (see Fig. 41) to their correspondent PLPs provides more
information about choosing the proper path for a real experimental test.

• As explained before, the performed work in this thesis is LPM which provides the
motion primitives for the global paths38. Hence, the next step is to implement the
optimal paths obtained in this thesis in a global path and evaluate the results.

• Another planned work is experimentally testing the designed global path as well as
each of the dominant optimal paths in the optimal map (see Fig. 41) to compare
the theoretical and experimental results. It should be mentioned that several ex-
perimental tests on both hard ground and loose soil are performed for CLC paths
(reported in chapter 6). However, more complicated paths such CLCC and CCLC
will be tested.

37Recall, PLP stands for Point turn-Line-Point turn.
38Global paths are designed for the scenarios that obstacles are considered.
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Appendix A Control Space for the “Constant Power” Con-
straint

Lemma 10 It is known that the power model of a skid-steer rover is as follows:

P = 2μ ∣Vr −Vl

Bs
∣√L2 +(W −Bs)2 +G(∣Vr ∣ + ∣Vl ∣)

To have constant power (P = Pc where Pc is a constant), the Vr and Vl should have the
symmetric control space shown in Fig. 16

Proof: if
k = 2μN√

L2 +(W −Bs)2 (271)

where k a constant parameter, then the following equation for the power is written:

P = k ∣Vr −Vl

Bs
∣ +G(∣Vr ∣ + ∣Vl ∣) (272)

By assuming that the power is constant (P = Pc), then the following relations for the Vr

and Vl can be obtained:
Case 1): Vr ≥ 0, Vl ≥ 0, and Vr ≥Vl

Pc = k(Vr −Vl

Bs
)+G(Vr +Vl) (273)

Pc =Vr (G+ k
Bs
)+Vl (G− k

Bs
) (274)

Therefore, the linear relation between the velocities is as follows:

Vr = 1(G+ k
Bs
) [Pc −Vl (G− k

Bs
)] (275)

Case 2): Vr ≥ 0, Vl ≥ 0, and Vr ≤Vl

Pc = k(Vl −Vr

Bs
)+G(Vr +Vl) (276)

Vr = 1(G− k
Bs
) [Pc −Vl (G+ k

Bs
)] (277)

Case 3): Vr < 0 and Vl > 0
Pc = k(Vl −Vr

Bs
)+G(−Vr +Vl) (278)

Pc = −Vr (G+ k
Bs
)+Vl (G+ k

Bs
) (279)
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Therefore, the linear relation between the velocities is as follows:

Vr = 1(G+ k
Bs
) [Vl (G+ k

Bs
)−Pc] (280)

Case 4): Vr > 0 and Vl < 0
Pc = k(Vr −Vl

Bs
)+G(Vr −Vl) (281)

Pc =Vr (G+ k
Bs
)−Vl (G+ k

Bs
) (282)

Therefore, the linear relation between the velocities is as follows:

Vr = 1(G+ k
Bs
) [Vl (G+ k

Bs
)+Pc] (283)

Case 5): Vr < 0, Vl < 0, and ∣Vr ∣ > ∣Vl ∣
Pc = k(Vl −Vr

Bs
)−G(Vr +Vl) (284)

Pc = −Vr (G+ k
Bs
)+Vl ( k

Bs
−G) (285)

Therefore, the linear relation between the velocities is as follows:

Vr = 1(G+ k
Bs
) [Vl ( k

Bs
−G)−Pc] (286)

Case 6): Vr < 0, Vl < 0, and ∣Vr ∣ < ∣Vl ∣
Pc = k(Vr −Vl

Bs
)−G(Vr +Vl) (287)

Pc =Vr ( k
Bs

−G)−Vl ( k
Bs

+G) (288)

Therefore, the linear relation between the velocities is as follows:

Vr = 1( k
Bs

−G) [Vl ( k
Bs

+G)+Pc] (289)

Based on the above-mentioned cases, the new control space shown in Fig. 16 can be
obtained easily. ∎

148



Appendix B Elaboration on Solving the Energy-Efficient Prob-
lem using Pontryagin’s Minimum Principle

Firstly, Pontryagin’s Minimum Principle is stated. Then, the detailed energy-efficient path
planning problem which includes the equation of motions and the initial conditions is
presented. Afterwards, theMinimum Principle is applied to the energy-efficient problem.
Finally, the approaches to provide a complete solution to the problem are introduced and
it is mentioned that using the equivalent time-optimal problem is the selected approach.

B.1 Pontryagin’s Minimum Principle

Theorem 10 . Pontryagin’s Minimum Principle [115] :
To minimize the performance measure

J(u) = h(x(tf ), tf )+∫ tf

t0
g(x(t),u(t), t)dt (290)

subject to state equation constraints

ẋ(t) = a(x(t), u(t), t) (291)

and state inequality constraints of the form

f(x(t), t) ≥ 0 (292)

where x is the n×1 sate vector, u is m×1 vector of control inputs, and f is an l-vector function.
Also, t, t0, and tf are time, initial time, and final time, respectively. Let us define a new variable
ẋn+1 by

ẋn+1 = [f1(x(t), t)]2�(−f1)+ ...+[fl(x(t), t)]2�(−fl) (293)

where �(−fi) is a unit Heaviside step function which is defined as follows:

�(−fi) = ⎧⎪⎪⎨⎪⎪⎩0 for fi(x(t), t) ≥ 0
1 for fi(x(t), t) < 0 (294)

for i = 1,2, ..., l. Also, the variable xn+1(t) is given by:

xn+1(t) = ∫ tf

t0
ẋn+1(t)dt +xn+1(t0) (295)

which satisfies the two boundary conditions xn+1(t0) = 0 and xn+1(tf ) = 0. By introducing the
Lagrange multipliers λ1(t), ...,λn(t), the Hamiltonian will be as follows:

H(x(t), u(t), λ(t), t) =g(x(t),u(t), t)+λ1(t)a1(x(t),u(t), t)+ ...+λn(t)an(x(t)+u(t), t)+λn+1(t){[f1(x(t), t)]2�(−f1)+ ...+[fm(x(t), t)]2�(−fl)}≡g(x(t),u(t), t)+λT (t)a(x(t),u(t), t)
(296)
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where xn+1(t) is given by Eq. (295) and

an+1(x(t), t) = [f1(x(t), t)]2�(−f1)+ ...+[fm(x(t), t)]2�(−fl) (297)

where λ(t) ∈ R. The following equations for all t ∈ [t0, tf ] states the necessary conditions for
optimality: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ∗1(t) = a1(x∗(t),u∗(t), t)
.

.

.

ẋ∗n+1(t) = an+1(x∗(t), t)
λ̇∗1(t) = −∂H∂x1 (x∗(t),u∗(t),λ∗(t), t)
.

.

.

λ̇∗n+1(t) = − ∂H
∂xn+1

(x∗(t),u∗(t),λ∗(t), t) = 0
and

H(x∗(t),u∗(t),λ∗(t), t) ≤H(x∗(t),u(t),λ∗(t), t)
for all admissible u(t)

and

[∂h
∂x

(x∗(tf ), tf )−λ∗(tf )]T δxf +
[H(x∗(tf ),u∗(tf ),λ∗(tf ), tf )+ ∂h

∂t
(x∗(tf ), tf )]δtf = 0

(298)

The boundary conditions x∗(t0) are specified (x∗n+1(t0) = 0 and x∗n+1(tf ) = 0).
B.2 Approach to Solve the Constant vc Energy-Efficient Path Planning

Problem

Using the equations presented in chapter 2, the detailed definition of the energy-efficient
problem39 which includes differential equations of motion for the skid-steer rover, initial
conditions, and energy equation is as follows:

39Presented in subsection2.1
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Problem:

minimize
Vr , Vl , tf

E = ∫ tf

0
P(t)dt, where P(t) is presnted in Eq. (23)

subject to ∣Vr ∣ + ∣Vl ∣ = 2vc
ẋ = Vr +Vl

2
cosθ

ẏ = Vr +Vl

2
sinθ

θ̇ = Vr −Vl

Bs

x(0) = x0, y(0) = y0, θ(0) = θ0

x(tf ) = xf , y(tf ) = yf , θ(tf ) = θf

(299)

Solution:
The solution for the control inputs (Vl and Vr) of the minimization problem (Eq. (299))
which is obtained by the calculations performed through Eq. (301) to Eq. (339) is:(V ∗l ,V ∗r ) ∈ {(vc,vc),(−vc,−vc),(0,2vc),(0,−2vc),(2vc,0),(−2vc,0)}

Or(V ∗l ,V ∗r ) on the line segments of quadrant 2 or 4 of Fig. 13
(300)

Equation (300) conveys that the extremal paths should be built from the following
motions:

• (vc,vc): straight forward motion

• (−vc,−vc): straight backward motion

• (0,2vc): forward CCW40 turn with R′ (see Eq. (18))

• (0,−2vc): backward CW41 turn with R′ (see Eq. (18))

• (2vc,0): forward CW turn with R′ (see Eq. (18))

• (−2vc,0): backward CCW turn with R′ (see Eq. (18))

• (V ∗l ,V ∗r ) on the line segment of quadrant 2 or 4: pure turns with a constant angular
velocity for R ∈ [0,R′)

The process to obtain Eq. (300) is explained in the following:
Lets define x(t)=[x(t), y(t), θ(t)]T and u(t)=[Vl(t), Vr(t)]T . Therefore, the Hamilto-

nian (in Theorem 10) is as follows:

HE(x(t), u(t), λ(t), t) = k ∣Vr −Vl ∣
Bs

+2Gvc +λ1(Vr +Vl

2
cosθ)

+λ2(Vr +Vl

2
sinθ)+λ3(Vr −Vl

Bs
) (301)

40Counter Clockwise
41Clockwise
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Using the above equation for HE(x(t), u(t), λ(t), t) and Eq. (298):

ẋ∗ = V ∗r +V ∗l
2

cosθ∗ (302)

ẏ∗ = V ∗r +V ∗l
2

sinθ∗ (303)

θ̇∗ = V ∗r −V ∗l
Bs

(304)

λ̇∗1 = −∂HE

∂x
= 0 (305)

Therefore, λ∗1 is constant:
λ∗1 = cλ1 (306)

where cλ1 is an arbitrary constant.

λ̇∗2 = −∂HE

∂y
= 0 (307)

Therefore, λ∗2 is constant:
λ∗2 = cλ2 (308)

where cλ2 is an arbitrary constant.

λ̇∗3 = −∂HE

∂θ
(309)

Hence,

λ̇∗3 = cλ1 (V ∗r +V ∗l
2

sinθ∗)− cλ2 (V ∗r +V ∗l
2

cosθ∗) (310)

which means:

λ̇∗3 = cλ1 ẏ
∗ − cλ2 ẋ

∗ (311)

After taking integral:
λ∗3 = cλ1y

∗ − cλ2x
∗ + cλ3 (312)

where cλ3 is an arbitrary constant.
Note: Based on the Pontryagin’s minimum principle, the adjoint function which is λ̇∗ =−∂H

∂x
in Eq. (298), cannot be identically zero. In other words, cλ1 , cλ2 , and cλ3 are not all zero.

Now, the following condition should be checked.

HE(x∗(t),u∗(t),λ∗(t), t) ≤HE(x∗(t),u(t),λ∗(t), t)
for all admissible u(t)

(313)

Accordingly, the following optimization problem should be solved to obtain u∗(t).
minimize

Vl ,Vr
HE(x∗(t), u(t), λ∗(t), t)

subject to ∣Vr ∣ + ∣Vl ∣ = 2vc (314)
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By using Eq. (301) and Eq. (312), the following relation for HE(x∗(t), u(t), λ∗(t), t)
is obtained:

HE(x∗(t), u(t), λ∗(t), t) = k ∣Vr −Vl ∣
Bs

+2Gvc + cλ1

Vr +Vl

2
cosθ∗

+ cλ2

Vr +Vl

2
sinθ∗ +(cλ1y

∗ − cλ2x
∗ + cλ3)(Vr −Vl

Bs
) (315)

In the following, each quadrant of Fig. 13 is considered separately to solve the opti-
mization problem presented in Eq. (314).

(I) First Quadrant of Fig. 13:

Since both of the velocities are greater or equal to zero, the constraint in Eq. (314)
is converted to

Vr +Vl = 2vc (316)

Hence, Eq. (315) becomes:

HE(x∗(t), u(t), λ∗(t), t) = k ∣Vr −Vl ∣
Bs

+2Gvc + cλ1vc cosθ
∗

+ cλ2vc sinθ
∗ +(cλ1y

∗ − cλ2x
∗ + cλ3)(Vr −Vl

Bs
) (317)

Because of ∣Vr −Vl ∣, three different cases are considered:
(a) Vr >Vl

Eq. (317) is simplified to:

HE(x∗(t), u(t), λ∗(t), t) = (k + cλ1y
∗ − cλ2x

∗ + cλ3)(Vr −Vl

Bs
)

+2Gvc + cλ1vc cosθ
∗ + cλ2vc sinθ

∗

(318)

Depending on the sign of (k+cλ1y
∗−cλ2x

∗+cλ3)42 while considering Eq. (316),
the following results are concluded:

(i) if (k + cλ1y
∗ − cλ2x

∗ + cλ3) is positive, to minimize Eq. (318) the right and
left velocities are almost equal (while V ∗r is slightly greater than V ∗l ):

(V ∗l ,V ∗r ) = (vc,vc +εE1) (319)

where εE1 is a small positive infinitesimal quantity.
(ii) if (k + cλ1y

∗ − cλ2x
∗ + cλ3) is negative, to minimize Eq. (318) Vr −Vl should

have its maximum value which means:

(V ∗l ,V ∗r ) = (0,2vc) (320)
42Since k > 0 (see Eq. (24)), (k + cλ1y

∗ − cλ2x
∗ + cλ3) ≠ 0
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(b) Vr =Vl

By using 316: (V ∗l ,V ∗r ) = (vc,vc) (321)

(c) Vr <Vl

Eq. (317) is simplified to:

HE(x∗(t), u(t), λ∗(t), t) = (k − cλ1y
∗ + cλ2x

∗ − cλ3)(Vl −Vr

Bs
)

+2Gvc + cλ1vc cosθ
∗ + cλ2vc sinθ

∗

(322)

Depending on the sign of (k − cλ1y
∗ + cλ2x

∗ − cλ3) while considering Eq. (316),
the following results are concluded:

(i) if (k − cλ1y
∗ + cλ2x

∗ − cλ3) is positive, to minimize Eq. (322) the right and
left velocities should be almost the same (while V ∗l is slightly greater than
V ∗r ): (V ∗l ,V ∗r ) = (vc +εE2 ,vc) (323)

where εE2 is a small positive infinitesimal quantity.
(ii) if (k − cλ1y

∗ + cλ2x
∗ − cλ3) is negative, to minimize Eq. (322) Vl −Vr should

have its maximum value which means:

(V ∗l ,V ∗r ) = (2vc,0) (324)

(II) Second Quadrant of Fig. 13:

Because the right and left velocities are considered in the second quadrant, the con-
straint in Eq. (314) is converted to

Vr −Vl = 2vc (325)

Therefore, the Hamiltonian in Eq. (315) is simplified to:

HE(x∗(t), u(t), λ∗(t), t) = k2vcBs
+2Gvc +(cλ1 cosθ

∗ + cλ2 sinθ
∗)Vr +Vl

2+(cλ1y
∗ − cλ2x

∗ + cλ3)(2vcBs
) (326)

(a) if (cλ1 cosθ
∗ + cλ2 sinθ

∗) > 0, to minimize the Hamiltonian (Eq. (326)), Vr +Vl
should have its minimum value. Therefore,

(V ∗l ,V ∗r ) = (−2vc,0) (327)

(b) if (cλ1 cosθ
∗ + cλ2 sinθ

∗) < 0, to minimize the Hamiltonian (Eq. (326)), Vr +Vl
should have its maximum value. Therefore,

(V ∗l ,V ∗r ) = (0,2vc) (328)
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(c) if (cλ1 cosθ
∗ + cλ2 sinθ

∗) = 0, then Vr and Vl are just constrained by Eq. (325).
This happens for:

• (cλ1 ,cλ2)=(0,0). Hence, V ∗l and V ∗r can take all the values on the control
line segment in the second quadrant of Fig. 13.

• θ∗ = nπ where n ∈ Z, for cλ1=0 and cλ2 ∈ IR. Therefore, the correspondent
V ∗l and V ∗r to the θ∗ should be considered; V ∗l and V ∗r are in the second
quadrant.

• θ∗ = (2n+1)π/2 where n ∈ Z, for cλ2=0 and cλ1 ∈ IR. Therefore, the corre-
spondent V ∗l and V ∗r to the θ∗ should be considered; V ∗l and V ∗r are in the
second quadrant.

(III) Third Quadrant of Fig. 13:

In the third quadrant, the constraint in Eq. (314) is converted to

Vr +Vl = −2vc (329)

Hence, Eq. (315) becomes:

HE(x∗(t), u(t), λ∗(t), t) = k ∣Vr −Vl ∣
Bs

+2Gvc − cλ1vc cosθ
∗

− cλ2vc sinθ
∗ +(cλ1y

∗ − cλ2x
∗ + cλ3)(Vr −Vl

Bs
) (330)

By utilizing the similar method explained for the first quadrant of Fig. 13, the fol-
lowing results are obtained:

(a) Vr >Vl

(i) if (k + cλ1y
∗ − cλ2x

∗ + cλ3) is positive,(V ∗l ,V ∗r ) = (−vc,−vc +εE3) (331)

where εE3 is a small positive infinitesimal quantity.
(ii) if (k + cλ1y

∗ − cλ2x
∗ + cλ3) is negative,(V ∗l ,V ∗r ) = (−2vc,0) (332)

(b) Vr =Vl

(V ∗l ,V ∗r ) = (−vc,−vc) (333)

(c) Vr <Vl

(i) if (k − cλ1y
∗ + cλ2x

∗ − cλ3) is positive,(V ∗l ,V ∗r ) = (−vc +εE4 ,−vc) (334)

where εE4 is a small positive infinitesimal quantity.
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(ii) if (k − cλ1y
∗ + cλ2x

∗ − cλ3) is negative,
(V ∗l ,V ∗r ) = (0,−2vc) (335)

(IV) Fourth Quadrant of Fig. 13:

Because the right and left velocities are considered in the fourth quadrant, the con-
straint in Eq. (314) is converted to

Vr −Vl = −2vc (336)

Therefore, the Hamiltonian in Fig. 315 is simplified to:

HE(x∗(t), u(t), λ∗(t), t) = k2vcBs
+2Gvc +(cλ1 cosθ

∗ + cλ2 sinθ
∗)Vr +Vl

2+(cλ1y
∗ − cλ2x

∗ + cλ3)(−2vcBs
) (337)

By utilizing the similar method explained for the second quadrant of Fig. 13, the
following results are obtained:

(a) if (cλ1 cosθ
∗ + cλ2 sinθ

∗) > 0,
(V ∗l ,V ∗r ) = (0,−2vc) (338)

(b) if (cλ1 cosθ
∗ + cλ2 sinθ

∗) < 0,
(V ∗l ,V ∗r ) = (2vc,0) (339)

(c) if (cλ1 cosθ
∗ + cλ2 sinθ

∗) = 0, Vr and Vl are just constrained by Eq. (336). This
happens for:

• (cλ1 ,cλ2)=(0,0). Hence, V ∗l and V ∗r can take all the values on the control
line segment in the fourth quadrant of Fig. 13.

• θ∗ = nπ where n ∈ Z, for cλ1=0 and cλ2 ∈ IR. Therefore, the correspondent
V ∗l and V ∗r to the θ∗ should be considered; V ∗l and V ∗r are in the fourth
quadrant.

• θ∗ = (2n+1)π/2 where n ∈ Z, for cλ2=0 and cλ1 ∈ IR. Therefore, the corre-
spondent V ∗l and V ∗r to the θ∗ should be considered; V ∗l and V ∗r are in the
fourth quadrant.

Conclusion of the Subsection: As it is stated by Eq. (300), there are different extremal
control inputs:

1. Forward or backward straight line motions.

2. CW/CCW R′-turns which can be forward or backward.
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3. Infinite CW/CCW pure turns with a constant angular velocity.

Hence, to obtain the corespondent paths to the extremal control inputs the following
process should be followed:

• The number of extremal CW/CCW pure turns should be limited (for case 3).

• The switch points between the extremal control inputs should be determined (for case
1,2, and 3).

• The periodicity/length of the correspondent extremal paths should be defined (for case
1,2, and 3).

B.3 Different Approaches to Solve the Energy-Efficient Path Planning
Problem

As explained in subsection B.2, the extremal control inputs (see Eq. (300)) are obtained for
the energy-efficient path planning problem. However, the main challenges are limiting
the number of extremal pure turns, finding the switch points between the extremal in-
puts, and defining the periodicity/length of the correspondent extremal paths. Accordingly,
to solve the energy-efficient path planning problem (Eq. (299)) two approaches can be
considered:

1. To prove several theorems specified for skid-steer rovers to obtain all the extremal paths
for the energy-efficient path planning problem: In this approach almost similar theo-
rems and process performed by A. Furtuna [62] should be regenerated and then be
revised/adjusted for our problem (Eq. (299)).

2. To find an equivalent time-optimal for the energy-efficient problem (Eq. (299)): Hence,
the theorems that are proved by A. Furtuna [62] can be used directly for solving the
equivalent time-optimal problem. Therefore, the answers to the energy-efficient path
planning problem (Eq. (299)) will be obtained.

Before explaining which approach is chosen, it is described why in approach 1 it is
not feasible to use directly A. Furtuna’s theorems for our energy-efficient path planning
problem. In A. Furtuna’s thesis [62], Hamiltonian43 for the time-optimal path planning
problem of a rigid body is:

HT = λ1ẋ+λ2ẏ +λ3θ̇ (340)

However, in my thesis, Hamiltonian for the energy-efficient path planning problem
for skid-steer rovers is Eq. (301) which can be written in the following format:

HE =HT + k∣θ̇∣ +2Gvc (341)

Therefore, HE and HT are not the same. In A. Furtuna’s thesis [62] all the theorems 44

are using HT .

43Equation 4.10 of [62]
44i.e. theorems proved for whirls in section 4.2 of A. Furtuna’s thesis as well as the theorems in Chapter

5 and 6 of the thesis to prove the periodicity of non-whirls paths
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In this thesis, the second approach which is utilizing the equivalent time-optimal prob-
lem is chosen. The reasons are mentioned in the following:

• Based on the literature review in subsection 1.2.2, using an equivalent optimal path
planning problem to solve the original path planning problem for rovers is a new
approach.

• The equivalent time-optimal path planning problem enabled us to use directly the pub-
lished theorems by A. Furtuna [62]. Hence, we obtained the answers for our original
energy-efficient path planning problem.

Hence, the extremal paths including non-whirls (Table 3) and whirls (subsection 4.1)
for the equivalent time-optimal problem, and thus, for the energy-efficient problem are
obtained.
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Appendix C Elaborating on Cases Presented in Table 8

Case 4: (μ1 = 0,μ2 > 0,μ3 = 0,μ4 = 0,μ5 = 0,μ6 = 0)
μ2 > 0⇒ θ∗PB1

= π
2k

(342)

Eq. (190) should be solved when μ1 = 0, π/2k, μ3 = 0, μ4 = 0, μ5 = 0, and μ6 = 0 and The
following conditions should be checked.

0 <R1 ≤ W
2
,0 <R2 ≤ W

2
,μ2 > 0 (343)

Accordingly, R∗1, R
∗

2, and θ∗PB1
will be obtained.

Case 5: (μ1 > 0,μ2 = 0,μ3 = 0,μ4 = 0,μ5 = 0,μ6 = 0)
μ1 > 0⇒ θ∗PB1

= ε1
k

(344)

Eq. (190) should be solved while θP
B1

= ε1
k
, μ2 = 0, μ3 = 0, μ4 = 0, μ5 = 0, and μ6 = 0 and the

answers should be checked for

0 <R1 ≤ W
2
,0 <R2 ≤ W

2
,μ1 > 0 (345)

Accordingly, R∗1, R
∗

2, and θ∗PB1
will be obtained.

Case 6: (μ1 = 0,μ2 = 0,μ3 > 0,μ4 > 0,μ5 = 0,μ6 = 0)
μ3 > 0,μ4 > 0⇒R∗1 = ε2,R∗2 = ε3 (346)

Eq. (190) should be solved while R1 = ε2, R2 = ε3, μ1 = 0, μ2 = 0, μ5 = 0, and μ6 = 0 and the
following conditions should be checked.

0 < kθB1 ≤ π
2
,μ3 > 0,μ4 > 0 (347)

Accordingly, R∗1, R
∗

2, and θ∗PB1
will be obtained.

Case 7: (μ1 = 0,μ2 > 0,μ3 = 0,μ4 > 0,μ5 = 0,μ6 = 0)
μ2 > 0,μ4 > 0⇒ θ∗PB1

= π
2k

,R∗2 = ε2 (348)

Eq. (190) should be solved while μ1 = 0, θP
B1
= π
2k

, μ3 = 0, R2 = ε2, μ5 = 0, and μ6 = 0 and the

following conditions should be checked.

0 <R1 ≤ W
2
,μ2 > 0,μ4 > 0 (349)

Accordingly, R∗1, R
∗

2, and θ∗PB1
will be obtained.

Case 8: (μ1 > 0,μ2 = 0,μ3 = 0,μ4 > 0,μ5 = 0,μ6 = 0)
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μ1 > 0,μ4 > 0⇒ θ∗
P

B1
= ε1

k
,R∗2 = ε3 (350)

Eq. (190) should be solved while θP
B1
= ε1

k
, μ2 = 0, μ3 = 0, R2 = ε3, μ5 = 0, and μ6 = 0 and the

following conditions should be checked.

0 <R1 ≤ W
2
,μ1 > 0,μ4 > 0 (351)

Accordingly, R∗1, R
∗

2, and θ∗PB1
will be obtained.

Case 9: (μ1 > 0,μ2 = 0,μ3 > 0,μ4 = 0,μ5 = 0,μ6 = 0)
μ1 > 0,μ3 > 0⇒ θ∗

P

B1
= ε1

k
,R∗1 = ε2 (352)

Eq. (190) should be solved while θP
B1
= ε1

k
, μ2 = 0, R1 = ε2, μ4 = 0, μ5 = 0, and μ6 = 0 and the

answers should be checked for

0 <R2 ≤ W
2
,μ1 > 0,μ3 > 0 (353)

Accordingly, R∗1, R
∗

2, and θ∗PB1
, will be obtained.

Case 10: (μ1 = 0,μ2 > 0,μ3 > 0,μ4 = 0,μ5 = 0,μ6 = 0)
μ2 > 0,μ3 > 0⇒ θ∗

P

B1
= π
2k

,R∗1 = ε2 (354)

Eq. (190) should be solved while μ1 = 0, θP
B1
= π
2k

, R1 = ε2, μ4 = 0, μ5 = 0, and μ6 = 0 and the

following conditions should be checked.

0 <R2 ≤ W
2
,μ2 > 0,μ3 > 0 (355)

Accordingly, R∗1, R
∗

2, and θ∗PB1
will be obtained.

Case 11: (μ1 > 0,μ2 = 0,μ3 > 0,μ4 > 0,μ5 = 0,μ6 = 0)
μ1 > 0,μ3 > 0,μ4 > 0⇒ θ∗PB1

= ε1
k
,R∗1 = ε2,R∗2 = ε3 (356)

Eq. (190) should be solved while μ2 = 0, θP
B1

= ε1
k
, R1 = ε2, R2 = ε3, μ5 = 0, and μ6 = 0 and

the following conditions should be checked.

μ1 > 0,μ3 > 0,μ4 > 0 (357)

Accordingly, R∗1, R
∗

2, and θ∗PB1
will be obtained.

Case 12: (μ1 = 0,μ2 > 0,μ3 > 0,μ4 > 0,μ5 = 0,μ6 = 0)
μ2 > 0,μ3 > 0,μ4 > 0⇒ θ∗PB1

= π
2k

,R∗1 = ε2,R∗2 = ε3 (358)
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Eq. (190) should be solved while μ1 = 0, θP
B1

= π
2k

, R1 = ε2, R2 = ε3, μ5 = 0, and μ6 = 0 and

the following conditions should be checked.

μ2 > 0,μ3 > 0,μ4 > 0 (359)

Accordingly, R∗1, R
∗

2, and θ∗PB1
will be obtained.

Case 13: (μ1 = 0,μ2 = 0,μ3 = 0,μ4 = 0,μ5 > 0,μ6 = 0)
μ5 > 0⇒R∗1 = W

2
(360)

Eq. (190) should be solved for μ1 = 0, μ2 = 0, μ3 = 0, μ4 = 0, R1 =W/2, and μ6 = 0. Then, the
answers should be checked for

0 < kθB1 ≤ π
2
,0 <R2 ≤ W

2
,μ5 > 0 (361)

Accordingly, R∗1, R
∗

2, and θ∗PB1
will be obtained.

Case 14: (μ1 = 0,μ2 = 0,μ3 = 0,μ4 > 0,μ5 > 0,μ6 = 0)
μ4 > 0,μ5 > 0⇒R∗2 = ε3,R∗1 = W

2
(362)

Eq. (190) should be solved for μ1 = 0, μ2 = 0, μ3 = 0, R2 = ε3, R1 = W
2
, and μ6 = 0. Then, the

answers should be checked for

0 < kθB1 ≤ π
2
,μ4 > 0,μ5 > 0, (363)

Accordingly, R∗1, R
∗

2, and θ∗PB1
will be obtained.

Case 15: (μ1 = 0,μ2 > 0,μ3 = 0,μ4 = 0,μ5 > 0,μ6 = 0)
μ2 > 0,μ5 > 0⇒ θ∗PB1

= π
2k

,R∗1 = W
2

(364)

Eq. (190) should be solved for μ1 = 0, θP
B1

= π
2k

, μ3 = 0, μ4 = 0, R1 = W
2
, and μ6 = 0. Then,

the answers should be checked for

μ2 > 0,μ5 > 0,0 <R2 ≤ W
2

(365)

Accordingly, R∗1, R
∗

2, and θ∗PB1
will be obtained.

Case 16: (μ1 > 0,μ2 = 0,μ3 = 0,μ4 = 0,μ5 > 0,μ6 = 0)
μ1 > 0,μ5 > 0⇒ θ∗PB1

= ε1
k
,R∗1 = W

2
(366)

Eq. (190) should be solved for θP
B1

= ε1
k
, μ2 = 0, μ3 = 0, μ4 = 0, R1 = W

2
, and μ6 = 0. Then,

the answers should be checked for

μ1 > 0,μ5 > 0,0 <R2 ≤ W
2

(367)

161



Accordingly, R∗1, R
∗

2, and θ∗PB1
will be obtained.

Case 17: (μ1 = 0,μ2 > 0,μ3 = 0,μ4 > 0,μ5 > 0,μ6 = 0)
μ2 > 0,μ4 > 0,μ5 > 0⇒ θ∗PB1

= π
2k

,R∗1 = W
2
,R∗2 = ε3 (368)

Eq. (190) should be solved for μ1 = 0, θP
B1

= π
2k

, μ3 = 0, R1 = W
2
, R2 = ε3, and μ6 = 0. Then,

the answers should be checked for

μ2 > 0,μ4 > 0,μ5 > 0 (369)

Accordingly, R∗1, R
∗

2, and θ∗PB1
will be obtained.

Case 18: (μ1 > 0,μ2 = 0,μ3 = 0,μ4 > 0,μ5 > 0,μ6 = 0)
μ1 > 0,μ4 > 0,μ5 > 0⇒ θ∗PB1

= ε1
k
,R∗2 = ε3,R∗1 = W

2
(370)

Eq. (190) should be solved for θ∗PB1
= ε1

k
, μ2 = 0, μ3 = 0, R1 = W

2
, R2 = ε3, and μ6 = 0. Then,

the answers should be checked for

μ1 > 0,μ4 > 0,μ5 > 0 (371)

Accordingly, R∗1, R
∗

2, and θ∗PB1
will be obtained.

Case 19: (μ1 = 0,μ2 = 0,μ3 = 0,μ4 = 0,μ5 = 0,μ6 > 0)
μ6 > 0⇒R∗2 = W

2
(372)

Eq. (190) should be solved for μ1 = 0, μ2 = 0, μ3 = 0, μ4 = 0, μ5 = 0, and R2 = W
2
. Then, the

answers should be checked for

0 < kθB1 ≤ π
2
,0 <R1 ≤ W

2
,μ6 > 0 (373)

Accordingly, R∗1, R
∗

2, and θ∗PB1
will be obtained.

Case 20: (μ1 = 0,μ2 = 0,μ3 > 0,μ4 = 0,μ5 = 0,μ6 > 0)
μ3 > 0,μ6 > 0⇒R∗1 = ε2,R∗2 = W

2
(374)

Eq. (190) should be solved for μ1 = 0, μ2 = 0, R∗1 = ε2, μ4 = 0, μ5 = 0, and R2 = W
2
. Then, the

answers should be checked for

0 < kθB1 ≤ π
2
,μ3 > 0,μ6 > 0 (375)

Accordingly, R∗1, R
∗

2, and θ∗PB1
will be obtained.

Case 21: (μ1 = 0,μ2 > 0,μ3 = 0,μ4 = 0,μ5 = 0,μ6 > 0)
μ2 > 0,μ6 > 0⇒ θ∗PB1

= π
2k

,R∗2 = W
2

(376)
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Eq. (190) should be solved for μ1 = 0, θ∗PB1
= π
2k

, μ3 = 0, μ4 = 0, μ5 = 0, and R2 = W
2
. Then,

the answers should be checked for

μ2 > 0,μ6 > 0,0 <R1 ≤ W
2

(377)

Accordingly, R∗1, R
∗

2, and θ∗PB1
will be obtained.

Case 22: (μ1 > 0,μ2 = 0,μ3 = 0,μ4 = 0,μ5 = 0,μ6 > 0)
μ1 > 0,μ6 > 0⇒ θ∗PB1

= ε1
k
,R∗2 = W

2
(378)

Eq. (190) should be solved for θ∗PB1
= ε1

k
, μ2 = 0, μ3 = 0, μ4 = 0, μ5 = 0, and R2 = W

2
. Then,

the answers should be checked for

μ1 > 0,μ6 > 0,0 <R1 ≤ W
2

(379)

Accordingly, R∗1, R
∗

2, and θ∗PB1
will be obtained.

Case 23: (μ1 > 0,μ2 = 0,μ3 > 0,μ4 = 0,μ5 = 0,μ6 > 0)
μ1 > 0,μ3 > 0,μ6 > 0⇒ θ∗PB1

= ε1
k
,R∗1 = ε2,R∗2 = W

2
(380)

Eq. (190) should be solved for θ∗PB1
= ε1

k
, μ2 = 0, R∗1 = ε2, μ4 = 0, μ5 = 0, and R2 = W

2
. Then,

the answers should be checked for

μ1 > 0,μ3 > 0,μ6 > 0 (381)

Accordingly, R∗1, R
∗

2, and θ∗PB1
will be obtained.

Case 24: (μ1 = 0,μ2 > 0,μ3 > 0,μ4 = 0,μ5 = 0,μ6 > 0)
μ2 > 0,μ3 > 0,μ6 > 0⇒ θ∗PB1

= π
2k

,R∗1 = ε2,R∗2 = W
2

(382)

Eq. (190) should be solved for μ1 = 0, θ∗PB1
= π
2k

, R∗1 = ε2, μ4 = 0, μ5 = 0, and R2 = W
2
. Then,

the answers should be checked for

μ2 > 0,μ3 > 0,μ6 > 0 (383)

Accordingly, R∗1, R
∗

2, and θ∗PB1
will be obtained.

Case 25: (μ1 = 0,μ2 = 0,μ3 = 0,μ4 = 0,μ5 > 0,μ6 > 0)
μ5 > 0,μ6 > 0⇒R∗1 = W

2
,R∗2 = W

2
(384)

Eq. (190) should be solved for μ1 = 0, μ2 = 0, μ3 = 0, μ4 = 0, R1 = W
2
, and R2 = W

2
. Then, the

answers should be checked for

μ5 > 0,μ6 > 0,0 < kθB1 ≤ π
2

(385)
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Accordingly, R∗1, R
∗

2, and θ∗PB1
will be obtained.

Case 26: (μ1 = 0,μ2 > 0,μ3 = 0,μ4 = 0,μ5 > 0,μ6 > 0)
μ2 > 0,μ5 > 0,μ6 > 0⇒ θ∗PB1

= π
2k

,R∗1 = W
2
,R∗2 = W

2
(386)

Eq. (190) should be solved for μ1 = 0, θ∗PB1
= π
2k

, μ3 = 0, μ4 = 0, R1 = W
2
, and R2 = W

2
. Then,

the answers should be checked for

μ2 > 0,μ5 > 0,μ6 > 0 (387)

Accordingly, R∗1, R
∗

2, and θ∗PB1
will be obtained.

Case 27: (μ1 > 0,μ2 = 0,μ3 = 0,μ4 = 0,μ5 > 0,μ6 > 0)
μ1 > 0,μ5 > 0,μ6 > 0⇒ θ∗PB1

= ε1
k
,R∗1 = W

2
,R∗2 = W

2
(388)

Eq. (190) should be solved for θ∗PB1
= ε1

k
, μ2 = 0, μ3 = 0, μ4 = 0, R1 = W

2
, and R2 = W

2
. Then,

the answers should be checked for

μ1 > 0,μ5 > 0,μ6 > 0 (389)

Accordingly, R∗1, R
∗

2, and θ∗PB1
will be obtained.
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Appendix D

If (240) and (241) are solved for T1 and T2, the following relations will be obtained.

T1 = −N2 −N1cos(θ1 −θ2)+ gm1cos(θ2)+ gm2cos(θ2)
sin(θ1 −θ2) (390)

T2 = N1 +N2cos(θ1 −θ2)− gm1cos(θ1)− gm2cos(θ1)
sin(θ1 −θ2) (391)

As it is clear, θ1=θ2 causes singularity in the analytical method. However, as Fig. 66
shows, when θ1 is equal to θ2 there are in fact feasible optimal values for T1 and T2.
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Appendix E

T3, T4, and N3 are obtained as a function of N4 by the use of Equations (246) to (249).
Then, they are substituted at Equation (250). Accordingly, four sets of equations are
obtained, one of them is presented below:

a1N2
4 = a2N4 +a3 (392)

where the coefficients are as follows:

a1 = k1 (393)

a2 = k2σ4σ6 + k3σ3σ7 + k4 (394)

a3 = k5σ4σ6 + k6σ3σ7 + k7 (395)

σ3 =√(c1N2
4 + c2N4 + c3)+√c4N4 +√(c1N2

4 + c2N4 + c3)+ c5+c6N4

√(c1N2
4 + c2N4 + c3)+ c7N4

4 + c8N3
4 + c9N2

4 + c10N4 + c11 (396)

σ4 =√(c13N2
4 + c14N4 + c15) (397)

σ6 = c12σ3 (398)

σ7 = c13σ4 (399)

where ki(i = 1, ...,7) and cj(j = 1, ...,15) are the function of one or more of the θ1, θ2, θ3,
θ4, α12, α34. Now, if the Equation 392 is to be expanded, the following equation will be
obtained.

K1N2
4 = k3σ3σ70N4 + ... = k3c7c13N5

4

√
c13N2

4 + c14N4 + c15 + ... (400)

As it can be seen, N5
4 appears before even squaring any of the terms to remove the

square-roots. Therefore, it is highly probable that the degree of polynomial is greater
than five. The same procedure can be done for the other three sets of equation to show
that the degree of their polynomial is greater than five. According to Abel Ruffini’s the-
orem (Abel’s impossibility theorem), in general there is not any algebraic solution for
polynomial equations of degree five or higher with arbitrary coefficients–a solution in
radicals. Therefore, it is highly probable that there is no general solution for the afore-
mentioned set of equations.
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