7,112 research outputs found

    Characterization of ISP Traffic: Trends, User Habits, and Access Technology Impact

    Get PDF
    In the recent years, the research community has increased its focus on network monitoring which is seen as a key tool to understand the Internet and the Internet users. Several studies have presented a deep characterization of a particular application, or a particular network, considering the point of view of either the ISP, or the Internet user. In this paper, we take a different perspective. We focus on three European countries where we have been collecting traffic for more than a year and a half through 5 vantage points with different access technologies. This humongous amount of information allows us not only to provide precise, multiple, and quantitative measurements of "What the user do with the Internet" in each country but also to identify common/uncommon patterns and habits across different countries and nations. Considering different time scales, we start presenting the trend of application popularity; then we focus our attention to a one-month long period, and further drill into a typical daily characterization of users activity. Results depict an evolving scenario due to the consolidation of new services as Video Streaming and File Hosting and to the adoption of new P2P technologies. Despite the heterogeneity of the users, some common tendencies emerge that can be leveraged by the ISPs to improve their servic

    Relieving the Wireless Infrastructure: When Opportunistic Networks Meet Guaranteed Delays

    Full text link
    Major wireless operators are nowadays facing network capacity issues in striving to meet the growing demands of mobile users. At the same time, 3G-enabled devices increasingly benefit from ad hoc radio connectivity (e.g., Wi-Fi). In this context of hybrid connectivity, we propose Push-and-track, a content dissemination framework that harnesses ad hoc communication opportunities to minimize the load on the wireless infrastructure while guaranteeing tight delivery delays. It achieves this through a control loop that collects user-sent acknowledgements to determine if new copies need to be reinjected into the network through the 3G interface. Push-and-Track includes multiple strategies to determine how many copies of the content should be injected, when, and to whom. The short delay-tolerance of common content, such as news or road traffic updates, make them suitable for such a system. Based on a realistic large-scale vehicular dataset from the city of Bologna composed of more than 10,000 vehicles, we demonstrate that Push-and-Track consistently meets its delivery objectives while reducing the use of the 3G network by over 90%.Comment: Accepted at IEEE WoWMoM 2011 conferenc

    A survey on Human Mobility and its applications

    Full text link
    Human Mobility has attracted attentions from different fields of studies such as epidemic modeling, traffic engineering, traffic prediction and urban planning. In this survey we review major characteristics of human mobility studies including from trajectory-based studies to studies using graph and network theory. In trajectory-based studies statistical measures such as jump length distribution and radius of gyration are analyzed in order to investigate how people move in their daily life, and if it is possible to model this individual movements and make prediction based on them. Using graph in mobility studies, helps to investigate the dynamic behavior of the system, such as diffusion and flow in the network and makes it easier to estimate how much one part of the network influences another by using metrics like centrality measures. We aim to study population flow in transportation networks using mobility data to derive models and patterns, and to develop new applications in predicting phenomena such as congestion. Human Mobility studies with the new generation of mobility data provided by cellular phone networks, arise new challenges such as data storing, data representation, data analysis and computation complexity. A comparative review of different data types used in current tools and applications of Human Mobility studies leads us to new approaches for dealing with mentioned challenges

    Network centrality: an introduction

    Full text link
    Centrality is a key property of complex networks that influences the behavior of dynamical processes, like synchronization and epidemic spreading, and can bring important information about the organization of complex systems, like our brain and society. There are many metrics to quantify the node centrality in networks. Here, we review the main centrality measures and discuss their main features and limitations. The influence of network centrality on epidemic spreading and synchronization is also pointed out in this chapter. Moreover, we present the application of centrality measures to understand the function of complex systems, including biological and cortical networks. Finally, we discuss some perspectives and challenges to generalize centrality measures for multilayer and temporal networks.Comment: Book Chapter in "From nonlinear dynamics to complex systems: A Mathematical modeling approach" by Springe

    Survivability in Time-varying Networks

    Get PDF
    Time-varying graphs are a useful model for networks with dynamic connectivity such as vehicular networks, yet, despite their great modeling power, many important features of time-varying graphs are still poorly understood. In this paper, we study the survivability properties of time-varying networks against unpredictable interruptions. We first show that the traditional definition of survivability is not effective in time-varying networks, and propose a new survivability framework. To evaluate the survivability of time-varying networks under the new framework, we propose two metrics that are analogous to MaxFlow and MinCut in static networks. We show that some fundamental survivability-related results such as Menger's Theorem only conditionally hold in time-varying networks. Then we analyze the complexity of computing the proposed metrics and develop several approximation algorithms. Finally, we conduct trace-driven simulations to demonstrate the application of our survivability framework to the robust design of a real-world bus communication network

    New approaches for characterizing inter-contact times in opportunistic networks

    Full text link
    Characterizing the contacts between nodes is of utmost importance when evaluating mobile opportunistic networks. The most common characterization of inter-contact times is based on the study of the aggregate distribution of contacts between individual pairs of nodes, assuming an homogenous network, where contact patterns between nodes are similar. The problem with this aggregate distribution is that it is not always representative of the individual pair distributions, especially in the short term and when the number of nodes in the network is high. Thus, deriving results from this characterization can lead to inaccurate performance evaluation results. In this paper, we propose new approaches to characterize the inter-contact times distribution having a higher representativeness and, thus, increasing the accuracy of the derived performance results. Furthermore, these new characterizations require only a moderate number of contacts in order to be representative, thereby allowing to perform a temporal modelization of traffic traces. This a key issue for increasing accuracy, since real-traces can have a high variability in terms of contact patterns along time. The experiments show that the new characterizations, compared with the established one, are more precise, even using short time contact traces. © 2016 Elsevier B.V. All rights reserved.Hernández Orallo, E.; Cano Escribá, JC.; Tavares De Araujo Cesariny Calafate, CM.; Manzoni, P. (2016). New approaches for characterizing inter-contact times in opportunistic networks. Ad Hoc Networks. 52:160-172. doi:10.1016/j.adhoc.2016.04.003S1601725

    Web User-session Inference by Means of Clustering Techniques

    Get PDF
    This paper focuses on the definition and identification of “Web user-sessions”, aggregations of several TCP connections generated by the same source host. The identification of a user-session is non trivial. Traditional approaches rely on threshold based mechanisms. However, these techniques are very sensitive to the value chosen for the threshold, which may be difficult to set correctly. By applying clustering techniques, we define a novel methodology to identify Web user-sessions without requiring an a priori definition of threshold values. We define a clustering based approach, we discuss pros and cons of this approach, and we apply it to real traffic traces. The proposed methodology is applied to artificially generated traces to evaluate its benefits against traditional threshold based approaches. We also analyze the characteristics of user-sessions extracted by the clustering methodology from real traces and study their statistical properties. Web user-sessions tend to be Poisson, but correlation may arise during periods of network/hosts anomalous behavior

    The Dark Side(-Channel) of Mobile Devices: A Survey on Network Traffic Analysis

    Full text link
    In recent years, mobile devices (e.g., smartphones and tablets) have met an increasing commercial success and have become a fundamental element of the everyday life for billions of people all around the world. Mobile devices are used not only for traditional communication activities (e.g., voice calls and messages) but also for more advanced tasks made possible by an enormous amount of multi-purpose applications (e.g., finance, gaming, and shopping). As a result, those devices generate a significant network traffic (a consistent part of the overall Internet traffic). For this reason, the research community has been investigating security and privacy issues that are related to the network traffic generated by mobile devices, which could be analyzed to obtain information useful for a variety of goals (ranging from device security and network optimization, to fine-grained user profiling). In this paper, we review the works that contributed to the state of the art of network traffic analysis targeting mobile devices. In particular, we present a systematic classification of the works in the literature according to three criteria: (i) the goal of the analysis; (ii) the point where the network traffic is captured; and (iii) the targeted mobile platforms. In this survey, we consider points of capturing such as Wi-Fi Access Points, software simulation, and inside real mobile devices or emulators. For the surveyed works, we review and compare analysis techniques, validation methods, and achieved results. We also discuss possible countermeasures, challenges and possible directions for future research on mobile traffic analysis and other emerging domains (e.g., Internet of Things). We believe our survey will be a reference work for researchers and practitioners in this research field.Comment: 55 page
    corecore