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Web User-Session Inference by Means
of Clustering Techniques

Andrea Bianco, Member, IEEE, Gianluca Mardente, Marco Mellia, Member, IEEE,
Maurizio Munafò, Member, IEEE, and Luca Muscariello, Member, IEEE

Abstract—This paper focuses on the definition and identi-
fication of “Web user-sessions”, aggregations of several TCP
connections generated by the same source host. The identification
of a user-session is non trivial. Traditional approaches rely on
threshold based mechanisms. However, these techniques are very
sensitive to the value chosen for the threshold, which may be
difficult to set correctly. By applying clustering techniques, we
define a novel methodology to identify Web user-sessions without
requiring an a priori definition of threshold values. We define
a clustering based approach, we discuss pros and cons of this
approach, and we apply it to real traffic traces. The proposed
methodology is applied to artificially generated traces to evaluate
its benefits against traditional threshold based approaches. We
also analyze the characteristics of user-sessions extracted by the
clustering methodology from real traces and study their statistical
properties. Web user-sessions tend to be Poisson, but correlation
may arise during periods of network/hosts anomalous behavior.

Index Terms—Clustering methods, traffic measurement, web
traffic characterization.

I. INTRODUCTION

T HE study of telecommunication networks has been often
based on traffic measurements, which are used to create

traffic models and obtain performance estimates. While a lot of
attention has been traditionally devoted to traffic characteriza-
tion at the packet and transport layers (see for example [1]–[6]),
few are the studies on traffic properties at the session/user layer
[1], [7], [8]. This is due to the difficulty in defining the “ses-
sion” concept itself [9], which depends on the considered ap-
plication. Applications such as telnet or ssh typically generate a
single TCP connection per single user-session, whereas applica-
tion layer protocols such as HTTP, IMAP/SMTP and X11 usu-
ally generate multiple TCP connections per user-session. Also,
the generally accepted conjecture that such sessions follow a
Poisson arrival process (see [10] for example) might have re-
duced the interest in the user-session process analysis.

User-session identification and characterization play an
important role both in Internet traffic modeling and in the
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proper dimensioning of network resources. Besides increasing
the knowledge of network traffic and user behavior, they yield
workload models which may be exploited for both performance
evaluation and dimensioning of network elements. Synthetic
workload generators may be defined to assess network perfor-
mance, e.g., benchmarking of server farms, firewalls, proxies or
NATs, as in [11], [12]. Similarly, user-session characterization
allows researchers to build realistic scenarios when assessing
the performance of a complex network via simulation. Fur-
thermore, network dimensioning problems are usually based
on simple assumptions to permit analytical formulations and
solutions. The validation of these assumptions can only be
obtained by checking the model against traffic measurements.
Finally, the knowledge of user-session behavior is important
for service providers, for example to dimension access links
and router capacity. User behavior can be modeled by few
parameters [13]–[15], e.g., session arrival rates, data volumes.
Operators are interested in monitoring these parameters, es-
pecially today that traffic demands change very quickly as
new services are continuously proposed to customers. Thus,
correct user-session identification and characterization are of
fundamental importance and interest.

A Web user-session, simply named user-session in the re-
mainder of the paper, is informally defined as a set of TCP con-
nections created by a given user while surfing the Web during a
given time frame. The main paper goals are: (i) to devise a tech-
nique that permits to correctly identify user-sessions, and, (ii) to
determine their statistical properties by analyzing traces of mea-
sured data. The described methodology can be easily extended,
for example, to identify either P2P lookup sessions, i.e., groups
of subsequent queries, or TCP connections that can be grouped
to define an SMTP “mail session”. However, since the Web is
the most widely used interactive service, we concentrate on the
identification of Web user-sessions generated by a single host.

We assume that a single user runs a browser on each host, a
reasonable hypothesis today given the vast majority of PC based
hosts. A user-session informal definition can be obtained by de-
scribing the typical behavior of a user browsing the Web. An
activity (ON) period on the Web alternates with a silent (OFF)
period during which the user is inactive on the Internet. This ac-
tivity period, named session in this paper, may comprise several
TCP connections, opened by the same host toward possibly dif-
ferent servers.

Clustering techniques [18] are exploratory techniques used
in many areas to analyze large data sets. Given a proper no-
tion of similarity, they find groups of similar variables/objects
by partitioning the data set in “similar subsets”. Typically, sev-
eral metrics over which a distance measure can be defined are
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associated with points (named samples) in the data set. Infor-
mally, the partitioning process tries to put neighboring sam-
ples in the same subset and distant samples in different sub-
sets. The aim of this paper is to define a clustering technique
to identify user-sessions. Performance is compared with those
of traditional threshold based approaches, which partition sam-
ples depending on a comparison between the sample to sample
distance and a given threshold value. The main advantage of
the clustering approach is avoiding the need to define a priori
any threshold value to separate and group samples. Thus, this
methodology is more robust than simpler threshold based mech-
anisms.

The main contributions of this paper are the following. First,
we adapt classical clustering techniques to the described sce-
nario, a nontrivial task that requires ingenuity to optimize the
performance of user-session identification algorithms both in
terms of speed and precision. By running a clustering algo-
rithm, we avoid the need of setting a priori a threshold value,
since clustering techniques automatically adapt to the actual
user behavior, as better explained later. Furthermore, the algo-
rithm does not require any training phase to properly run. We
test the proposed methodology on artificially generated traces i)
to ensure its ability to correctly identify a set of TCP connections
belonging to the same user-session, ii) to assess the error perfor-
mance of the proposed technique, and iii) to compare it with tra-
ditional threshold based mechanisms. Analytical results are pre-
sented to determine the performance of threshold based mecha-
nisms. Finally, we run the algorithms over real traffic traces, to
obtain statistical information on user-sessions, such as distribu-
tions of i) session duration, ii) amount of data transferred in a
single session, iii) number of connections within a single ses-
sion. A study of the inter-arrival times of Web user-sessions is
also presented, from which it emerges that Web user-sessions
tend to be Poisson, but correlation may arise due to network/
hosts anomalous behavior. Preliminary results on user-sessions
statistical characterization were presented in [19].

II. RELATED WORK

The definition of a user-session is not straightforward. As pre-
viously mentioned, a common definition of a user-session is
given by a period of time during which the user is generating
traffic. A user-session is then terminated by a “long” inactivity
period. Within an activity period, many TCP connections may
be used to transfer data. Unfortunately, the identification of ac-
tive and silent periods is not trivial and the definition of the user
activity may also depend on the selected application.

To the best of our knowledge, the first attempt to consider
the “session” arrival process was presented in [1]. However,
the focus is on Telnet and FTP sessions, where each session is
related to a single TCP data connection. No measurements of
HTTP sessions are reported.

To identify HTTP user-sessions, traditional approaches rely
on the adoption of a threshold [7], [8]. TCP connections are
aggregated in the same session if the inter-arrival time between
two TCP connections is smaller than the threshold value. Oth-
erwise, the TCP connection is associated with a newly created
user-session. In [7], is selected to be 100 , while in [8] a
threshold s is chosen. Results are obviously affected

by the choice of . Indeed, the threshold-based approach works
well only if the threshold value is correctly matched to the values
of connection and session inter-arrival times. Furthermore, dif-
ferent users may show different idle times, and even the same
user may have different idle periods depending on the service,
e.g., news or e-commerce, he is accessing. Thus, the a priori
knowledge of the proper threshold value is an unrealistic as-
sumption. If the threshold value is not correctly matched to the
session statistical behavior, threshold based mechanisms are sig-
nificantly error prone, as we will show in Section VI. To avoid
this drawback, we propose a more robust algorithm to identify
user-session.

When considering Web users’ characterization, many authors
perform a data analysis of server logs to define user-sessions
(see [16] for example). While the server log approach can be
very reliable, it lacks the capability offered by passive measure-
ments performed at the packet level which permit to simultane-
ously monitor a user browsing several servers. To this extent,
authors in [17] adopt a passive sniffing methodology to rebuild
HTTP layer transactions to infer clients/users’ behaviors. By
crawling HTTP protocol headers, the sequence of objects re-
ferred by the initial request is rebuilt. This allows grouping sev-
eral TCP connections to form a user-session. In this paper, we
focus on user behavior measured at the client side, and not at the
server side. In this scenario, the server log analysis approach
is impractical in assessing the behavior of users at the access
network, since user-sessions include connections to several dif-
ferent servers.

While the server log approach can be very effective, it does
not scale well and, by leveraging on a specific application level
protocol, can be hardly generalized. Furthermore, since the pay-
load of all packets must be analyzed, this approach is not prac-
tical when, for security or privacy reasons, data payload (and
application layer headers) are not available. Thus, in this paper,
TCP headers only are analyzed, limiting privacy issues and sig-
nificantly reducing the probe complexity. Furthermore, the pro-
posed approach may be adopted for any set of sessions gener-
ated by the same application, even to sessions collected by ana-
lyzing Web server logs. Our methodology is rather general, and
is much more robust than any threshold based approach.

III. CLUSTERING TECHNIQUES

In this section we briefly describe the basics of clustering
techniques to provide an overview of their main features. More
details on clustering techniques can be found in [18]. Informally,
clustering algorithms group objects that have similar charac-
teristics in clusters, according to a notion of distance among
objects. Our goal is to exploit this property to group connec-
tions (objects) to identify user-sessions (clusters) in an auto-
matic fashion.

Let us consider a metric space , named sampling space,
and a set of samples which have
to be grouped (clustered) into subsets: we wish to find a
partition , such that and

, with possibly being unknown a priori. The sub-
sets in the partition are named clusters. Clusters contain “sim-
ilar” samples, whereas samples associated with different clus-
ters should be “dissimilar”, the similarity being measured via the

Authorized licensed use limited to: Politecnico di Torino. Downloaded on October 19, 2009 at 09:53 from IEEE Xplore.  Restrictions apply. 



BIANCO et al.: WEB USER-SESSION INFERENCE BY MEANS OF CLUSTERING TECHNIQUES 407

sample-to-sample and cluster-to-cluster distances. Depending
on the data set, an ad hoc distance definition should be provided
on the basis of a trial and error procedure. Let us assume for
simplicity that , where is the sampling space dimen-
sion. represents the th component of sample , the sample

distance is the classical Eu-
clidean metric, and the distance between two clusters , is
defined as

(1)

where is a set of selected points representing the whole
cluster .

Now we briefly introduce two clustering techniques, known
in the data mining and in the descriptive multivariate statistic
environments as “hierarchical agglomerative” and “partitional”
clustering.

A. The Hierarchical Agglomerative Approach

Each sample is initially associated with a different cluster,
i.e., ; thus, at procedure startup the number of clusters
is . Then, on the basis of the definition of a cluster-to-
cluster distance, the clusters at minimum distance are merged
to form a new cluster. The algorithm iterates this step until all
samples belong to the same cluster ,
and .

This procedure defines a merging sequence based on min-
imum distance between clusters. At each step , a
quality indicator function is evaluated. The set is finally
clustered by selecting the number of clusters
such that is maximized. Intuitively, the quality
indicator function measures the distance between the two
closest clusters at step . A sharp increase in the value of
is an indication that the merging procedure is merging two clus-
ters which are too far apart, thus suggesting to adopt the previous
partition as the best cluster configuration.

This approach can be quite time consuming, especially when
the data set is very large, since the initial number of clusters

is equal to the number of samples in the data set . For
this reason, non-hierarchical approaches, named partitional, are
often preferred, since they show better scalability properties.

B. The Partitional Approach

This technique is used when the final number of clusters
is known. The procedure starts with an initial configuration in-
cluding clusters, selected according to some criteria. The
final cluster definition is obtained through an iterative proce-
dure.

The cluster is represented by a subset of samples
when measuring cluster-to-cluster distance. For example, the al-
gorithm is named -means algorithm when the cluster repre-
sentative is the so-called centroid , defined as the mean value
of the cluster samples, i.e.,

where is the size of the sampling space.

At procedure startup, clusters are created, with cluster cen-
troids selected according to a given rule in the measurement
space, e.g., to partition the measurement space in equi-
spaced areas or randomly. Each sample is associated with the
closest cluster, according to the distance between the sample and
the centroid of each cluster. When all samples are assigned to a
cluster, new centroids are computed and the procedure iterates.
The algorithm ends when either a prefixed number of iterations
is reached, or the number of samples which are moved to a dif-
ferent cluster is negligible according to a predefined threshold.
The final result may change depending on the chosen initial
state.

IV. USING CLUSTERING TECHNIQUES ON

THE MEASUREMENT DATA SET

In this section we describe the methodology developed for the
identification of Web user-sessions, including the choices made
in the cluster analysis. The description refers to the analysis of
data collected through measurements; the same process is also
used to analyze artificial traffic, when trying to determine the
procedure ability to correctly identify known user-sessions. We
start by giving some details about the analyzed data set of traces,
to define the variables that will be used by the clustering algo-
rithm.

A. Traffic Trace Description

Traffic traces were collected on the Internet access link of Po-
litecnico di Torino, i.e., between the border router of Politecnico
and the access router of GARR/B-TEN [20], the Italian and Eu-
ropean Research network. The Politecnico campus LAN com-
prises roughly 7 000 hosts; most of them are clients, but several
servers are also regularly accessed from outside. The campus
LAN backbone is based on a switched Fast Ethernet infrastruc-
ture, which behaves as a stub Internet subnetwork; indeed, there
is a single 28 Mbps point of access to the GARR/B-TEN net-
work and, through it, to the public Internet. A strict regulation
of the network facilities is imposed by a firewall which blocks
(most of) the peer-to-peer traffic. Thus, still today, the majority
of Politecnico Internet traffic is created by Web browsing. De-
tails on the measurement setup and traffic characteristics are
available in [21] and [22].

Since 2001, several traces have been regularly collected.
Among the available data, we selected two different periods:

• Oct. 02: from 23/10/2002 to 31/10/2002;
• Apr. 04: from 29/4/2004 to 6/5/2004.

Both periods comprise more than a week of continuously traced
data. We performed the analysis by considering only working
hours, i.e., traffic from 8 AM to 8 PM, Monday to Friday. In
Section VII we mainly report results on the Apr. 04 period, if
not otherwise stated, being the difference among the two data
sets almost negligible. However, the Apr. 04 data set includes
two working days (May 5th and 6th) during which hosts in
our campus were attacked and infected by the “Sasser.B” worm
[23]. The worm infection does not affect our measurement cam-
paign directly, since the worm spreading is not based on the
HTTP protocol.

Bidirectional packet level traces were collected using tcp-
dump [24], and later processed by Tstat [22] to obtain a TCP
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level trace. Among other data, Tstat produces a TCP level
log file, which collects all observed TCP connections. A TCP
connection is considered opened when the first SYN segment
from the client is observed, and it is terminated either when the
tear-down sequence is observed (either the FIN/ACK or RST
messages), or when no segment is observed for more than 15
minutes.1 Only TCP connections whose three-way-handshake
is successfully completed are tracked; thus, misbehaving con-
nections and activities (e.g., port-scanning) do not affect the
data set. We used Tstat to track:

• : the 4-tuple identifying
the connection, i.e., IP addresses and TCP port numbers
of the client and the server;

• : the connection opening time, identified by the time-
stamp of the first client SYN message;

• : the time instant in which the last segment carrying
data is observed (either from the client or from the server);

• : the connection ending time, identified by the time
instant in which the TCP connection is terminated;

• and : the net amount of byte sent from the
client and server respectively (excluding retransmissions).

B. Clustering Algorithm Description

The first issue is to choose the statistical variables needed to
define the metric space for the clustering analysis; this
implies selecting the metric space that best fits our problem. The
easiest approach is to let the clustering algorithm run over a large
number of statistical variables, typically including the majority
of available data (in our example, potential variables may be IP
source address, TCP destination port, TCP connection opening
and ending time, etc.).

However, after several trials, we discovered that an accurate
pre-filtering of captured data improves the algorithmic speed
and provides more accurate results. Since we wish to identify
a Web user-session, i.e., a group of TCP connections corre-
sponding to the activity period of a user running a Web browser,
we use the opening time of a TCP connection as the only sta-
tistical variable for the clustering process ( , and ),
i.e., the clustering uses a uni-dimensional space.

Since a session groups several connections and starts when a
connection starts, the connection start time is a good descriptor
to identify the session process. Indeed, including TCP connec-
tion ending time leads to misleading results, due to the pres-
ence of very large data transfers which may span a long pe-
riod of time. Similarly, considering IP destination addresses is
not helpful, since during a user-session several servers with dif-
ferent IP addresses may be contacted.

Before running the clustering algorithm, the traces are prepro-
cessed according to the following rules. Since NAT and proxy
are not used in our campus LAN, we assume that a Web user
is identified by its client IP address , and by connections
having TCP server port equal to 80 (HTTP protocol). To
consider only significant IP addresses (users), we selected the
most active hosts among the about 7000 IP addresses that appear
in the traces, i.e., the 1500 campus LAN IP addresses with the

1Given the possibility that a tear-down sequence of a TCP connection under
analysis is never observed, a timer is needed to avoid memory consumption. We
selected a large value for the timer, according to the findings in [25].

larger number of generated TCP connections. Each user trace,
i.e., a trace containing only data with a given IP source address,
is preprocessed according to the following steps: i) data are par-
titioned day by day, ii) only working hours of working days are
considered, and iii) opening times of two consecutive connec-
tions separated by more than half an hour are considered a priori
as two independent data sets. Thus, for a given host with IP ad-
dress , the set , whose elements are TCP connection
opening times within a given time-frame, represents the sam-
ples of the clustering procedure:

where is the connection opening time associated with
sample .

The pre-processing steps allow the clustering algorithm to
concentrate only on TCP connections created by a single user:
very long silent periods do not interfere with the user session
identification process. Furthermore, since the Web traffic at
night is negligible and any dimensioning algorithm would be
interested in looking at peak hour behavior, the trace are split
on a daily basis to limit the data set the clustering algorithm has
to process and to reduce the processing run time.

After the metric space definition, a proper cluster analysis
methodology must be selected. Recall that hierarchical agglom-
erative cluster analysis proceeds by creating clusters through a
cluster merging procedure: this methodology is easy to imple-
ment, but it does not scale well with the number of samples,
which in our case is fairly large. Indeed, during Oct. 02,

ranges up to 57000, while during Apr. 04,
ranges only up to 26000, since the spread of the Sasser.B worm
forced network administrators to shut off many hosts and sub-
nets. On the other hand, partitional algorithms, which are rela-
tively efficient, require an a priori knowledge of the number of
clusters , which is not always easy to predict. Furthermore,
in partitional algorithms the representative choice may have a
large impact on both the quality of the clustering and the speed
of convergence.

To take the advantages and to avoid the drawbacks of both
methodologies, we use a mix of them. Thus, for each , the
following three-step algorithm is run to identify user-sessions:

1) an initial clustering is obtained using a partitional algo-
rithm;

2) a hierarchical agglomerative algorithm is used to aggregate
the clusters and to obtain a good estimation of the final
number of clusters ;

3) a partitional algorithm is used to obtain a fine definition of
the clusters.

1) Initial Clustering Selection: We start with a partitional al-
gorithm with clusters, with significantly smaller than the
total number of samples (a study on the impact of is presented
in Section VI). To efficiently position, in our uni-dimensional
metric space, the representatives at procedure startup, we
evaluate the distance between any two adjacent samples .
According to the distance metric ,
we take the farthest couples and determine inter-
vals. Let be the inferior and superior bounds of
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interval ; the centroid position of each cluster is set to
, and the partitional algorithm is run for up to

1000 iterations: therefore, initial clusters are obtained.
Each cluster is represented by a small subset of sam-

ples; is enough in our case, since the metric space
is . Possible choices for the representative samples are:
(i) the cluster centroid, which gives the name “centroid” (or

-means) to the procedure; (ii) the th and th per-
centiles, with ; (iii) the th and th percentiles
with , which yields the “single linkage” algorithm.

2) The Hierarchical Agglomerative Procedure: In the second
step, a hierarchical agglomerative algorithm is iteratively run,
using only the representative samples to evaluate the
distance between two clusters. Since the procedure starts with
initial clusters, the number of steps is bounded. At each step ,
the hierarchical agglomerative procedure merges the two closest
clusters; then, distances among clusters are recomputed. After

iterations, the process ends.
The clustering quality indicator function permits to se-

lect the best clustering among those determined in the iterative
process. Indeed, at each step , the clustering quality must be
evaluated to determine if the optimal number of clusters has
been found. Denote the th cluster at step as ; at each
step, the procedure evaluates the function :

where

and is defined according to (1).
A sharp increase in the value of is an indication that the

merging procedure is artificially merging two clusters which are
too far apart. The optimal number of clusters is determined
as

which is computed for the index that corresponds to the
sharpest increase in .

A typical evolution of the function is reported in Fig. 1,
where the sharpest increase is clearly visible. The plot refers to
an artificial trace obtained as described in Section VI, and shows
that for about 1000 steps the aggregation of the two closest clus-
ters is clearly beneficial in terms of clustering quality. Then, the
aggregation process merges two clusters which are too far apart,
forcing a sudden increase in at step , and, therefore, in

. When reaches the maximum, the merging procedure
is forcing an artificial aggregation of two distinct clusters. Other
errors are induced later in the iterative aggregation process: al-
though clearly visible in Fig. 1, they have a minor impact on the
quality indicator function.

3) Final Clustering Creation: A partitional clustering proce-
dure is run over the original data set, which includes all samples,

Fig. 1. Sample plot of the quality indicator function � .

using the optimal number of clusters determined so far and
the same choice of cluster representatives adopted in the first
step. A fixed number of iterations is run to obtain a final refine-
ment of the clustering definition. This phase is not strictly re-
quired, since at the end of the hierarchical agglomerative proce-
dure a partition is already available. However, it produces clus-
ters of real samples instead of representatives (which may not be
data points). Furthermore, the computational cost of this phase
is almost negligible if compared to the previous one.

V. MODELING THRESHOLD BASED SYSTEM

In this section we model the error probability of threshold
based algorithms in detecting user-sessions. Unfortunately, the
analytical model for the clustering system proved to be too com-
putationally demanding; as such, it is not useful to obtain per-
formance figures, if not considering too simple scenarios.

Assume is a random variable; let denote the mean value
of the Cumulative Distribution Function (CDF) of ,
and the Probability Density Function (PDF) of .

Suppose users generate Web user-sessions according to a
stationary renewal ON/OFF process. Let denote the time
during which a user-session is active. The idle period, denoted
by , is the time elapsed between the arrival times of the last
connection of the current session and of the first connection
of the next session. Both and are assumed to be i.i.d.
During the session active period, a user generates connections
according to i.i.d. inter-arrivals; let be the random variable
describing the connection inter-arrival process. After the last
connection within a session has been generated, the session is
ended, and the user becomes idle. Let be the total number
of connection inter-arrivals in a data set. We can distinguish
among inter-arrivals due to inter-session connections
and intra session connections ; thus, .

Let us consider a session identification algorithm based on a
threshold . If the connection inter-arrival time is larger than ,
two distinct sessions are identified. An error occurs whenever
either or . Therefore, we can evaluate
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Let and be the random variables corresponding
to the number of errors due to the first and second case
respectively. Both variables have a Binomial distribution,

and , because of the
i.i.d. property of both session and connection inter-arrival
processes. The random variable corresponding to the total
number of errors is given by the sum of and ; its dis-
tribution is not binomial in general. Let us focus on , the
mean number of errors normalized over samples. Since

, we have

(2)

where

The minimum value for and the corresponding value of
the optimal threshold can be evaluated by solving

Thus,

(3)

The solution of (3) depends on the assumed distributions.
When considering positive random variables with a PDF every-
where convex, the solution is unique.

As an example, consider the case in which all random
variables are exponentially distributed, with parameters

, and . By solving (3), the
value of the optimal threshold, normalized to , is

Fig. 2 reports considering different values of . The
percentage of errors grows for decreasing values of . This is
due to the larger probability of misidentifying a connection
inter-arrival as a session inter-arrival. Similarly, large values of

lead to session inter-arrivals being identified as connection
inter-arrivals. Finally, when is small (i.e., comparable with

), the error probability becomes larger. Similar considera-
tions hold for variable in Fig. 3: in this case, the range of
the optimal threshold values is significantly larger than in the
previous plot.

In summary, the presented results show that the threshold
based methodology is rather error prone when the optimal value
of the threshold is unknown. Furthermore, the optimal value of
the threshold is quite variable with respect to the parameters that
characterize connection dynamics, making it difficult to use this
technique in practice.

Fig. 2. Error probability as a function of the threshold � for exponential random
variables, with � � 20 s, � � 1 s, and 20 s � � � 500 s.

Fig. 3. Error probability as a function of the threshold � for exponential random
variables, with � � 500 s, � � 1 s, and 20 s � � � 200 s.

VI. PERFORMANCE ANALYSIS: ARTIFICIAL TRAFFIC

Let us consider a simple artificial trace in which a single
user generates sessions according to an ON/OFF process. The
session ON and OFF periods are assumed exponentially dis-
tributed, with s, whereas ranges between 30 s
and 2000 s. During each session ON period, a random number
of TCP connections is generated, with mean inter-arrival time

s; we consider both exponential and Pareto distri-
butions.2 Indeed, the exponential distribution yields a Poisson
process, with no possible control on the variance of the connec-
tion inter-arrival process . On the contrary, the Pareto
distribution permits to control the process variance. Recall that
the Pareto distribution is characterized by two parameters, and
. The Pareto PDF is

2We also examined Weibull distributed connection inter-arrivals to consider
the case in which the connection inter-arrival process has a variance smaller than
1, but performance results are similar to those shown for exponential and Pareto
distributions.
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Fig. 4. Clustering sensitivity to the initial number of clusters� for exponential
connection inter-arrivals.

where the mean and variance are respectively

The Pareto distribution shows a heavy-tail, and may have finite
or infinite moments of order depending on the value of . By
selecting , the distribution has finite mean, but infinite
variance. This choice makes with high probability the connec-
tion inter-arrival time comparable with the session inter-arrival
time, therefore creating a demanding scenario. To obtain the
mean value s, we set and .

The performance metric is the percentage of misidentified
sessions, i.e., the total number of observed errors divided by the
total number of connection arrivals times 100. All curves are av-
eraged considering 50 different runs, each comprising 500 ses-
sions (an average of 10 000 connection arrivals per run).

A. Parameter Sensitivity

We initially evaluate the influence on performance results
of the values chosen for i) the initial number of clusters ,
used in the first clustering phase, and ii) the percentile , used
in the hierarchical agglomerative clustering phase. Considering
the exponential connection inter-arrival scenario, in Fig. 4 the
error probability is shown to be practically independent from
the value of the initial number of clusters , since all curves
overlap. Therefore is not a critical parameter, provided it is
sufficiently larger than the number of sessions. In all the exper-
iments, we choose for simplicity.

Fig. 5 shows instead the influence of the parameter , that
determines the value of the percentile used to select the cluster
representatives in the cluster-to-cluster distance. We report i) the
single linkage algorithm, which takes the two extreme values in
the sample distribution as cluster representatives, ii) the centroid
algorithm, which uses the mean value of the sample distribution,
and iii) the percentile algorithm, which uses the th percentiles,
for variable values of . Regardless of the chosen distribu-
tion, the single linkage algorithm has the best perfor-
mance, while the centroid algorithm is the worst. Performance
of the percentile algorithms improve as decreases. The better
accuracy of the single linkage algorithm is mainly due to the

Fig. 5. Clustering sensitivity to the percentile � for exponential connection
inter-arrivals.

fact that th percentile algorithms clusters real samples in the
data set, and to the fairly large support of connection inter-ar-
rivals, which calls for small values of . Therefore, we opt for
the single linkage algorithm in the remainder of the paper.

The choice of the single linkage algorithm solves also the
issue of selecting a proper value for , so that no parameters
are required to run the algorithms. Indeed, the value of must
be determined at procedure startup. However, thanks to the pre-
processing steps, the clustering algorithm operates only on TCP
connections with the same client IP address in a relatively short
time frame. Therefore, the initial number of clusters is neither
related to the number of users accessing the Internet simulta-
neously, nor to the capacity of the access link. Simply upper
bounding the number of sessions per user with a loose bound
is enough to obtain accurate results, as previously shown. Con-
sidering a time interval of 10–12 hours, and given the average
session duration, this bound can be easily obtained. As such,
this parameter is easier to be determined with respect to the
threshold in threshold based methodologies, which would in-
stead require an a priori knowledge of user-session character-
istics. Furthermore, the value of is significantly less critical
than the threshold value, as shown by the presented results.

B. Percentage of Misidentified Sessions

Let us now consider the percentage of sessions misidentified
by the clustering procedure to assess the quality of the results
and to compare them with those obtained via the traditional
threshold based approach. Results reported in Fig. 6 show the
percentage of errors obtained running the proposed clustering
scheme and the threshold based scheme. The clustering scheme
is run with an initial number of cluster and ex-
ploits the single linkage hierarchical agglomerative clustering

. Performance of the classical threshold based scheme
is evaluated, for variable values of the threshold , from (2). A
lower bound for the threshold-based algorithms, obtained using
the optimal threshold value, is also shown. Exponential connec-
tion inter-arrivals are reported in the top plot, Pareto connection
inter-arrivals in the bottom plot; clustering scheme performance
is shown with a solid black line.

For all schemes, performance improves as increases,
since a longer silent period among user-sessions is more easily
detected with respect to a short silent period among connection
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Fig. 6. Percentage of errors for exponential and Pareto connection inter-arrivals
in top and bottom plots, respectively.

arrivals. Threshold based mechanisms may perform better, pro-
vided that the proper threshold value is chosen. However, if the
threshold is not correctly set, the error probability is much larger
than the one shown by the clustering scheme. Large values of
induce a higher percentage of errors due to the probability of
erroneously merging two subsequent different sessions. On the
contrary, a sharp increase in error probability occurs for small
values of when goes below a given value, i.e., when
becomes closer to .

When considering Pareto distributed connection inter-ar-
rivals, no major differences are evident. For small values of

, an increase in the percentage of errors is observed for the
threshold based approach. This is due to the higher probability
that a connection inter-arrival time becomes comparable with
the session OFF duration. The clustering approach is less
affected by such events.

In summary, the clustering scheme shows a percentage of er-
rors always smaller than 2%, and it is less sensitive to variations
of . Furthermore, it is more robust than the threshold based
mechanism to variations of parameter settings.

C. Mean Inter-Arrival Estimation

To assess the accuracy of the clustering methodology in
system parameters estimation, Fig. 7 reports the percentage of
errors when estimating , the mean connection inter-arrival
time, and , the mean session OFF period duration. The
clustering algorithm is plotted using lines, the threshold based
approach, whose performance depends on the value assumed
by , using lines with squares. A rather hard scenario is con-

Fig. 7. Percentage of errors on the estimation of the mean OFF period (solid
lines) and mean connection inter-arrival time (dotted lines). Clustering (lines)
and threshold (lines with squares) algorithms as a function of the threshold � in
threshold based algorithms.

sidered, where connection inter-arrivals follow an exponential
distribution with s, and s. Errors are
averaged over 5 runs, each run comprising 500 user-sessions.

The clustering approach is very accurate in the estimation
of both and , with a relative error of about 1.4% in
the estimation of , and 4.4% in the estimation of . On
the contrary, the threshold based approach is very sensitive to
the choice of . In particular, too many sessions are identified
for , therefore underestimating both and . For

, an overestimation is evident, due to the large number
of erroneously merged sessions.

VII. PERFORMANCE ANALYSIS OF TRACE DATA SET

The clustering methodology is now applied to measured data
to determine Web user-session characteristics.

A. Web User-Session Characterization

Fig. 8 reports the CDFs of the mean connection inter-arrival
and of the mean user-session OFF period . For each

user, and are first evaluated; then, the corresponding
distributions over users are derived. Both October 02 and April
04 data set are considered. CDFs are similar, but assumes
smaller values than . The two distributions overlap, as high-
lighted by the two vertical lines. This is due to the variability in
user’s behavior.

Note that no overlapping between the two distributions would
have appeared if any threshold methodology had been applied,
regardless of the adopted threshold. Furthermore, the variability
of and makes it very difficult to select an appropriate
value for . This highlights the drawbacks of threshold based
approaches and the need of using clustering approaches that au-
tomatically adapt to different scenarios.

In Figs. 9, 10, 11, and 12 the main characteristics of Web user-
sessions identified during April 04 are shown. PDFs are plotted
using a linear/log scale, and the complementary CDF is shown
using a log/log scale in the inset, to highlight the distribution
tail.

Fig. 9 reports the PDF of the number of different server IP
addresses in each session. Roughly 27% of sessions aggregate
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Fig. 8. Mean user-session and mean connection inter-arrivals CDFs.

Fig. 9. PDF of the number of different server IP addresses per session. Com-
plementary CDF in the inset.

Fig. 10. PDF of session length. Complementary CDF in the inset.

connections from a single server, and about 10% of sessions
refer to only two servers. However, the PDF has a heavy-tail,
as highlighted by the complementary CDF, which shows that

Fig. 11. PDF of the client-to-server and server-to-client data sent in each ses-
sion. Complementary CDF in the inset.

the percentage of sessions contacting more than 100 different
servers is not negligible.

Fig. 10 shows the session duration PDF. The two different
distributions reflect the effect of different definitions of Web
user-sessions. Indeed, user-session duration may be defined as:
the time between the first SYN segment of the first connec-
tion and (i) the last segment observed during the last connection
tear-down, for “protocol sessions”; (ii) the last segment carrying
payload of the last connection for “application sessions”. There-
fore, using the notation introduced in Section IV, for a given
session/cluster , we can define the protocol session duration

and the application session duration as

The protocol session definition is relevant, for example, when
either Web servers or client resources are considered, since TCP
connections must be managed until the tear-down procedure is
completed. On the contrary, the application session definition
is relevant for users, since users are satisfied when all data are
correctly sent/received.

The protocol session distribution has obviously a larger sup-
port, but also biased peaks at 20 s, 60 s and 3600 s. They cor-
respond to application layer timers imposed by Web browsers
or HTTP servers which trigger the connection tear-down pro-
cedure after idle periods. For example, Web servers may wait
for a timer to expire (usually after 20 seconds) before closing
the connection. Similarly, HTTP 1.1 and Persistent-HTTP 1.0
protocols use an additional timer, usually set to a multiple of 60
seconds. Therefore, the protocol session duration highlights the
bias induced by those timers. The bias disappears when appli-
cation session duration is evaluated.

Session duration distributions have a large support, showing
large variability in user’s behavior. Indeed, there is a large per-
centage of very short sessions (that last less than few seconds),
but also user activities that last for several hours. The tail of the
complementary CDF shown in the inset highlights the heavy-
tailed distribution of session duration.
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Fig. 12. PDF of the number of TCP connection in each session. Complemen-
tary CDF in the inset.

Fig. 11 reports the PDF of the amount of data exchanged from
client to server (dashed lines) and server to client (solid
lines). For a given session/cluster
and . As expected, more data are trans-
ferred from servers to clients, and the distribution tail is heavier;
the number of sessions transferring more than 10 Mbytes in
the server-client direction is not negligible. The initial part of
both PDFs presents a number of peaks. Investigating further,
we discovered that peaks are due to the identification of ses-
sions which are not generated by users, but instead by automatic
reload procedure imposed by the Web page being displayed. For
example, news or trading on-line services impose periodic up-
dates of pages, which force the client to automatically reload
the pages. If the automatic reload is triggered periodically, the
clustering algorithm may identify a separate session for each
connection, thus causing a bias in the session data distribution.

This is clearly evident also from Fig. 12, which reports the
number of TCP connections per user-session. Indeed, more than
25% of sessions include only one TCP connection. Furthermore,
most of the identified sessions are composed by very few con-
nections (about 50% by 4 connections or less). This demon-
strates that: i) the client is usually able to obtain all the required
data using few TCP connections, ii) the number of required ex-
ternal objects is limited, and iii) the time spent by the users over
one Web page is large enough to define each Web transaction as
a session. The CDF, reported in the inset, shows a linear trend,
highlighting that the distribution has a heavy-tail.

B. Session Inter-Arrivals Statistical Properties

Finally, statistical properties of session inter-arrival times are
investigated. A session arrival trace is obtained by superim-
posing in time all identified sessions during the same time pe-
riod.

Fig. 13 reports the Q-Q plot of the session inter-arrival dis-
tribution with respect to the best fitted Weibull distribution over
the same data set. The choice of the Weibull model stems from
the fact that connection arrivals fit quite well a Weibull distribu-
tion with a heavy-tail [26]. The Weibull distribution is character-
ized by the so called “shape” and “scale” parameters. When the

Fig. 13. Fit of user-session inter-arrivals to a Weibull distribution: normal
working day in the top plot, and during a worm attack on the bottom plot.

shape parameter, named in this paper, is set to 1, the Weibull
distribution degenerates into an exponential distribution. When

is smaller than 1, the tail of the distribution is heavy, while for
values of larger than 1 the shape of the distribution assumes a
dumbbell form. The classical maximum likelihood method was
used to obtain the parameters and for the fitting procedure.
We also used the Anderson–Darling (A-D) test [27] to test the
fitting quality under the null hypothesis that inter-arrivals are
drawn from a Weibull distribution whose parameters are taken
from the maximum likelihood estimations.

The top plot of Fig. 13 refers to a typical measurement day
and shows a good matching of data samples with the chosen
Weibull distribution. Being , it also shows that the dis-
tribution is very close to an exponential distribution, therefore
hinting that the arrival process of Web user-session is Poisson,
as pointed out in previous studies [7]. The Q-Q plot shows also
that the tail of the distribution is less heavy than the tail of
the fitted Weibull distribution. Therefore, there is a bias toward
small values of session inter-arrivals, with rare large inter-ar-
rivals. The Q-Q plot of the same data for the best-fitted expo-
nential distribution showed almost the same behavior, and is not
reported for the sake of conciseness.

On the contrary, the bottom plot in Fig. 13, which refers to
samples collected on May 5th, 2004, shows a distribution that
is not well fitted by a Weibull distribution. The best fit is ob-
tained by a shape parameter , indicating a heavy-tailed
distribution. Moreover, the best fit Weibull distribution deviates
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Fig. 14. Auto correlation function of the session inter-arrival process: normal
day in the top plot, during a worm attack on the bottom plot.

from the measured data set on large quantiles, showing that the
tail of the real distribution is heavier than the one of the best fit
distribution. The anomalous behavior is due to the spreading of
the Sasser.B worm [23] in our LAN institution, which caused
several issues to the hosts and to the network. Indeed, users
were forced to download operating system patches and antivirus
updates. Furthermore, our campus network and the Internet in
general suffered from problems related to the worm spreading,
e.g., forced shutdowns of entire subnets, sudden congestion on
links and firewalls, etc. Both events introduced correlation at
the session level, created by large file download times and de-
graded network performance. This correlation is reflected by
the session arrival process, which deviates significantly from the
Poisson assumption.

To make sure that the anomalies were not introduced by our
methodology, we also tried to fit the session inter-arrival dis-
tribution as identified by a threshold procedure. The qualitative
results are similar, even if the quantitative measurements (e.g.,
mean inter-arrival time) are obviously different and strongly de-
pending on the selected threshold.

Finally, Fig. 14 reports the autocorrelation function evaluated
on session inter-arrivals during a typical day on the top plot,
while the bottom plot refers to the autocorrelation estimated
during the day of the worm attack. The top plot confirms that
the Poisson assumption holds for normal days, being the auto-
correlation function almost negligible except in the origin. On
the contrary, as shown in the bottom plot, the autocorrelation
function is quite relevant on days during which user activities
are driven by external factors such as worm infection.

VIII. CONCLUSION

Clustering techniques were applied to a large set of real In-
ternet traffic traces to identify Web user-sessions. A novel clus-
tering methodology was proposed and compared with the clas-
sical threshold based scheme.

The effectiveness and robustness of the proposed clustering
methodology was first assessed by applying it to an artificial
data set, and showing its ability in the identification of Web user-
sessions without requiring any a priori definition of threshold
values. Then, the proposed clustering methodology was applied
to measured data sets to study the characteristics of Web user-
sessions. User-sessions were shown to be Poisson. However,
correlation arises when an anomalous network behavior is in-
duced, for example, by a worm infection. The analysis of the
identified user-sessions shows a wide range of diverse behav-
iors that cannot be captured by any threshold based scheme.

The clustering algorithm proposed in this paper can be helpful
in studying traffic properties at the user level, and could be easily
extended to deal with other types of user-sessions, not neces-
sarily related to Web traffic.
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