657 research outputs found

    Time Properties Verification Framework for UML-MARTE Safety Critical Real-Time Systems

    Get PDF
    Time properties are key requirements for the reliability of Safety Critical Real-Time Systems (RTS). UML and MARTE are standardized modelling languages widely accepted by industrial designers for the design of RTS using Model-Driven Engineering (MDE). However, formal verification at early phases of the system lifecycle for UML-MARTE models remains mainly an open issue. In this paper, we present a time properties verification framework for UML-MARTE safety critical RTS. This framework relies on a property-driven transformation from UML architecture and behaviour models to executable and verifiable models expressed with Time Petri Nets (TPN). Meanwhile, it translates the time properties into a set of property patterns, corresponding to TPN observers. The observer-based model checking approach is then performed on the produced TPN. This verification framework can assess time properties like upper bound for loops and buffers, Best/Worst-Case Response Time, Best/Worst-Case Execution Time, Best/Worst-Case Traversal Time, schedulability, and synchronization-related properties (synchronization, coincidence, exclusion, precedence, sub-occurrence, causality). In addition, it can verify some behavioural properties like absence of deadlock or dead branches. This framework is illustrated with a representative case study. This paper also provides experimental results and evaluates the method's performance

    A Modeling Approach based on UML/MARTE for GPU Architecture

    Get PDF
    Nowadays, the High Performance Computing is part of the context of embedded systems. Graphics Processing Units (GPUs) are more and more used in acceleration of the most part of algorithms and applications. Over the past years, not many efforts have been done to describe abstractions of applications in relation to their target architectures. Thus, when developers need to associate applications and GPUs, for example, they find difficulty and prefer using API for these architectures. This paper presents a metamodel extension for MARTE profile and a model for GPU architectures. The main goal is to specify the task and data allocation in the memory hierarchy of these architectures. The results show that this approach will help to generate code for GPUs based on model transformations using Model Driven Engineering (MDE).Comment: Symposium en Architectures nouvelles de machines (SympA'14) (2011

    From MARTE to Reconfigurable NoCs: A model driven design methodology

    Get PDF
    Due to the continuous exponential rise in SoC's design complexity, there is a critical need to find new seamless methodologies and tools to handle the SoC co-design aspects. We address this issue and propose a novel SoC co-design methodology based on Model Driven Engineering and the MARTE (Modeling and Analysis of Real-Time and Embedded Systems) standard proposed by Object Management Group, to raise the design abstraction levels. Extensions of this standard have enabled us to move from high level specifications to execution platforms such as reconfigurable FPGAs. In this paper, we present a high level modeling approach that targets modern Network on Chips systems. The overall objective: to perform system modeling at a high abstraction level expressed in Unified Modeling Language (UML); and afterwards, transform these high level models into detailed enriched lower level models in order to automatically generate the necessary code for final FPGA synthesis

    Towards a UML Profile for Data Intensive Applications

    Get PDF
    Data intensive applications that leverage Big Data technologies are rapidly gaining market trend. However, their design and quality assurance are far from satisfying software engineers needs. In fact, a CapGemini research shows that only 13% of organizations have achieved full-scale production for their Big Data implementations. We aim at addressing an early design and a quality evaluation of data intensive applications, being our goal to help software engineers on assessing quality metrics, such as the response time of the application. We address this goal by means of a quality analysis tool-chain. At the core of the tool, we are developing a Profile that converts the Unified Modeling Language into a domain specific modeling language for quality evaluation of data intensive applications

    Approaching the Model-Driven Generation of Feedback to Remove Software Performance Flaws

    Full text link
    Abstract—The problem of interpreting results of perfor-mance analysis and providing feedback on software models to overcome performance flaws is probably the most critical open issue in the field of software performance engineering. Automation in this step would help to introduce perfor-mance validation as an integrated activity in the software lifecycle, without dramatically affecting the daily practices of software developers. In this paper we approach the problem with model-driven techniques, on which we build a general solution. Basing on the concept of performance antipatterns, that are bad practices in software modeling leading to performance flaws, we introduce metamodels and transformations that can support the whole process of flaw detection and solution. The approach that we propose is notation-independent and can be embedded in any (existing or future) concrete modeling notation by using weaving models and automatically generated model transformations. Finally, we discuss the issues opened from this work and the future achievements that are at the hand in this domain thanks to model-driven techniques

    A model-driven approach to broaden the detection of software performance antipatterns at runtime

    Full text link
    Performance antipatterns document bad design patterns that have negative influence on system performance. In our previous work we formalized such antipatterns as logical predicates that predicate on four views: (i) the static view that captures the software elements (e.g. classes, components) and the static relationships among them; (ii) the dynamic view that represents the interaction (e.g. messages) that occurs between the software entities elements to provide the system functionalities; (iii) the deployment view that describes the hardware elements (e.g. processing nodes) and the mapping of the software entities onto the hardware platform; (iv) the performance view that collects specific performance indices. In this paper we present a lightweight infrastructure that is able to detect performance antipatterns at runtime through monitoring. The proposed approach precalculates such predicates and identifies antipatterns whose static, dynamic and deployment sub-predicates are validated by the current system configuration and brings at runtime the verification of performance sub-predicates. The proposed infrastructure leverages model-driven techniques to generate probes for monitoring the performance sub-predicates and detecting antipatterns at runtime.Comment: In Proceedings FESCA 2014, arXiv:1404.043
    • …
    corecore