
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322412735?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

4

Integrating Performance Analysis in Software
Product Line Development Process

Rasha Tawhid and Dorina Petriu
Carleton University

Canada

1. Introduction

A Software Product Line (SPL) is a set of similar software systems that share a common set
of features satisfying a particular domain, and are built from a shared set of software assets
using a common means of production. Experience shows that by adopting a SPL
development approach, organizations achieved increased quality and significant reductions
in cost and time to market [Clements & Northrop, 2001].

Model-Driven Development (MDD) is a well-known paradigm that aims at capturing every
important aspect of software development through models. An emerging trend apparent in
the recent literature is that the SPL development moves toward adopting a MDD paradigm,
which means that models are increasingly used to represent software artifacts of the family
or of individual products [Groher & Voelter, 2009]. MDD plays an important role in the
verification of non-functional properties (such as performance, reliability, security) of UML
software models extended with information specific to the property to be evaluated
[Woodside et al., 2005]. UML software models can be annotated with performance
properties by using the UML Performance Profile for Modeling and Analysis of Real-Time and
Embedded Systems (MARTE) [OMG, 2011] recently standardized by OMG.

This chapter presents a comprehensive methodology for integrating performance analysis in
the early phases of SPL model-driven development process, whose goal is to evaluate the
performance characteristic of different products by generating and analyzing quantitative
performance models [Tawhid & Petriu, 2008a, 2008b]. We start by adding generic
performance annotations expressed in MARTE to the UML model representing the set of
core reusable SPL assets. A model transformation realized in the Atlas Transformation
Language (ATL) derives the UML model of a specific product with concrete MARTE
performance annotations from the SPL model. The product derivation process binds the
variability expressed in the SPL to a specific product, and also the generic SPL performance
annotations to concrete values provided by the designer for this product. The proposed
model transformation approach can be applied to any existing SPL model-driven
development process using UML for modeling software.

It is known that one of the main concepts of software product line development is to take
advantage of the reusability of the set of core assets shared among the members of a family
of products, instead of building each product from scratch. In this work, we apply the same

www.intechopen.com

Software Product Line – Advanced Topic

72

reusability concept to the performance annotations, by integrating software performance
engineering techniques in the early phases of SPL development. Instead of annotating from
scratch each UML model of each product, we propose to annotate the SPL model once with
generic annotations, and to provide binding information when deriving the annotated
model of a desired product from the generic SPL model.

Focus of the chapter

Application engineering

Spreadsheets for

specific product

Performance

Feedback

Model - to - model

Transformation

-

Part 1

Domain engineering
Feature model

PC-Feature model

UML+MARTE+PL
SPL Model

Mark model for

Feature configuration

UML+MARTE

Product Model
LQN Performance

Model

Diagnosis

LQN

Solver
Mark model for

PC-Feature configuration

Binding directives for

PC-Features &

performance annotation

Model - to - model

Transformation

-

Part 2

PUMA

Transformation

Performance

Results

Fig. 1. Approach for deriving a product performance model

The objective of the research presented in this chapter is to automatically generate a

performance model for a given product from a performance-annotated SPL model. The

main research challenge originates from the mismatch between the meanings of the two

models. While a SPL model is a set of core “generic” asset models that are building blocks

for many different products with all kind of options and alternatives, a performance model

is an instance-based representation of a runtime system, focusing on how the system is

using available resources and how competition for resources impacts the system

performance (response time, throughput, utilization, etc.) The derivation of a performance

model requires two model transformations, as shown in Fig.1: a) from the annotated SPL

model to a product model with performance annotations, and b) from the outcome of the

first step to a performance model. The work presented here focuses on the first

transformation as illustrated by the shaded area in Fig.1, whereas the second transformation

for deriving automatically a Layered Queueing Network (LQN) performance model for a

specific product applies the PUMA transformation approach previously developed in our

research group [Woodside et al., 2005].

The automatic derivation of a specific product model based on a given feature configuration
is enabled through the mapping between features from the feature model and their
realizations in the design model. In this chapter, an efficient mapping technique is used,
which aims to minimize the amount of explicit feature annotations in the UML design
model of SPL. Implicit feature mapping is inferred during product derivation from the
relationships between annotated and non-annotated model elements as defined in the UML
metamodel [Tawhid & Petriu, 2011a].

Performance is a runtime property of the deployed system and depends on two types of
factors: some are contained in the design model of the product (obtained from the SPL
model) while others characterize the underlying platforms and runtime environment.
Performance models need to reflect both types of factors. Woodside et al. proposed the

www.intechopen.com

Integrating Performance Analysis in Software Product Line Development Process

73

concept of performance completions to close the gap between abstract design models and
external factors [Woodside et al., 2002]. Performance completions provide a means to extend
the modeling constructs of a system by including the influence of the underlying platforms
and execution environments in performance evaluation models. Since our goal is to
automate the derivation of a performance model for a specific product from the SPL model,
we propose to deal with performance completions in the early phases of the SPL
development process by introducing a so-called Performance Completion feature (PC-
feature) model, which characterizes the variability in platform choices, execution
environments, different types of communication realizations, and other external factors that
have an impact on performance, such as different protocols for secure communication
channels [Tawhid & Petriu, 2011b]. Performance model helps software developers explore
various design alternatives. It also addresses the problem of domain evolution arising when
an existing product runs on a new platform. In this chapter, we explain how this evolution
can be propagated to the performance model through the PC-feature model.

The chapter is organized as follows: section 2 discusses related work; section 3 presents the
domain engineering process where the SPL model and two different kinds of feature models
are created; the model transformation approach for generating a given product model is
illustrated with a case study in section 3; section 4 analyzes the performance effects of
different security levels for communication channels running on two different architectures;
and section 5 presents the conclusions.

2. Related work

This section presents related research on product derivation approaches and different
feature mapping techniques. Work related to performance analysis of software system,
addressing quality attributes in SPL is also discussed.

Voelter et al. propose an approach that integrates aspect-oriented (AOSD) and model-driven

software development (MDSD) techniques to support variability management and product

derivation [Groher & Voelter, 2009]. Two different ways of dealing with variability are

identified: a) negative variability which selectively removes parts of a model based on the

presence or absence of features in the configuration model; b) positive variability which

starts with a minimal core of common SPL artifacts and selectively adds additional product-

specific parts through model weaving. Our approach applies a similar concept of positive

variability through automatic model transformation. In [Stoiber & Glinz, 2009], aspect-

orientation is combined with table-based modeling by using the ADORA modeling

language. An approach for deriving the architecture of a product by selectively copying

elements from the SPL architecture (which covers all possible product aspects) based on a

product-specific feature configuration is proposed in [Botterweck et al., 2009]. This approach

is concerned only with the derivation of the high-level product architecture, while our

approach derives both the structural and behavioural views of the product design model.

An Eclipse-based tool called FeatureMapper that defines the mapping of features in the

problem space to model elements realizing these features in the solution space is proposed

in [Heidenreich et al., 2007, 2008]. The set of selected features for a product combined with

the mapping model are interpreted by the FeatureMapper transformation component to

derive a product model.

www.intechopen.com

Software Product Line – Advanced Topic

74

An approach for expressing variability in a family model based on a feature-based model
template by mapping features to model elements realizing them is introduced in [Czarnecki
et al., 2005a, 2005b]. Each model element is annotated with a presence condition (PC),
indicating whether the element should be present in a template instance or not. The model
template is automatically instantiated by evaluating the PCs for a given feature
configuration. The concept of negative variability is applied, by removing model elements
whose PC evaluates to false. A drawback of this approach is that the model template is
cluttered with variability specifications for each model element. Some issues related to the
behavioural derivation of a given product model are discussed in [Istoan et al., 2011]. It is
shown that the composition order is significant when using Aspect-Oriented modeling,
since different orders for composing sequence diagrams leads to different derived products.

A model-driven approach for SPL evolution is proposed in [Gamez & Fuentes, 2011], which
automatically propagates the evolution changes of a cardinality-based FM into existing
configurations.

The Product Line UML-Based Software Engineering (PLUS) method introduced in [Gomaa,
2005] provides several concepts and stereotypes to express variability in multiple views of
SPL. The mapping between features and the model elements realizing them is introduced
through a separate tabular representation of feature/use case and feature/class
relationships. Our approach introduces a different mapping technique by annotating each
class and use case with the feature(s) requiring it. The automatic derivation of a concrete
product from the SPL model according to a set of chosen features is not addressed in
[Gomaa, 2005]. The PLUS method is extended in [Street & Gomaa, 2006] to specify
performance requirements by introducing several stereotypes specific to model performance
requirements such as «optional» and «alternative performance feature». Although feature
modeling is essential in SPL, the concept of “feature” is not a first-class model element in
UML. In order to overcome this problem, different stereotypes for representing features and
feature dependency have been defined in literature (however, none is standard yet). Our
variability profile is based on Gomaa’s work, especially on PLUS [Gomaa, 2005]. However,
our approach has the following main differences from PLUS: a) we proposed an automatic
derivation of a product model from a SPL model; b) we deal with MARTE performance
annotations, both in the source and target models; c) we use sequence diagrams for
behaviour representation taking advantage of their enhanced modeling power,; d) we
introduce variability within a sequence diagram through Combined Fragments; e) we
introduce the so-called Performance Completion feature model.

Several works have been done on performance analysis addressing quality attributes in SPL.
A method for designing parametric performance completions that are independent of a
specific platform is proposed in [Happe et al., 2010]. The completions can be instantiated for
different environments by explicitly coupling the transformations to performance models
and implementation to add the necessary details to both.

Model-driven development and SPL paradigms are integrated together to model embedded
software systems in [Belategi et al., 2010a]. An analysis method taking into account
scenarios, platform, and variability for embedded SPL has been proposed. Although the
authors consider the SPL architecture as a critical asset for representing quality attributes
and their compliance to quality goals, they have not addressed how quality attributes are

www.intechopen.com

Integrating Performance Analysis in Software Product Line Development Process

75

modeled in the architecture. In [Belategi et al., 2010b], the MARTE profile is analyzed to
identify the variability mechanisms of the profile in order to model variability in embedded
SPL models. Although MARTE was not defined for product lines, the paper proposes to
combine it with existing mechanisms for representing variability, but it does not explain
how this can be achieved. A model analysis process for embedded SPL is presented in
[Belategi et al., 2011] to validate and verify quality attributes variability. The concept of
multilevel and staged feature model is applied by introducing more than one feature models
that represent different information at different abstraction levels; however, the traceability
links between the multilevel models and the design model are not explained. In [Bartholdt
et al., 2009] the authors propose an integrated tool-supported approach that considers both
qualitative and quantitative quality attributes without imposing hierarchical structural
constraints. The integration of SPL quality attributes is addressed by assigning quality
attributes to software elements in the solution domain and linking these elements to
features. An aggregation function is used to collect the quality attributes depending on the
selected features for a given product. An approach called Svamp is proposed to model
functional and quality variability at the architectural level of the SPL [Raatikainen et al.,
2008]. The approach integrates several models: a Kumbang model to represent the
functional and structural variability in the architecture and to define components that are
used by other models; a quality attribute model to specify the quality properties and a
quality variability model for expressing variability within these quality attributes. The
Model-Driven Architecture approach is extended in [Cortellessa et al., 2007] with non-
functional modeling and analysis concepts by adding new models and transformations for
validation activities. The concepts of platform independent and platform specific are used
through the new type of models to obtain an accurate validation.

To the best of our knowledge, in the context of SPL, no work has been done previously to

evaluate and predict the performance of a given product by generating a formal

performance model. Most of the existing work aims to model non-functional requirements

(NFRs) in the same way as functional requirements. The related works mentioned above are

concerned with the interactions between selected features and the NFRs and propose

different techniques to represent these interactions and dependencies.

3. Domain engineering process

The SPL development process is separated into two major phases: 1) domain engineering for
creating and maintaining a set of reusable artifacts and introducing variability in these
software artifacts so that the next phase can make a specific decision according to the
product’s requirements and 2) application engineering for building products that are family
members from reusable artifacts created in the first phase, instead of starting from scratch.

The domain engineering process is a development cycle for reuse and includes, but is not
limited to, creating the requirement specifications, domain models , architecture, reusable
software components [Clements & Northrop, 2001].

The SPL assets created by the domain engineering process which are of interest for our
research are represented by a multi-view UML design model of the family, called the SPL
model, consisting of a superimposition of all variant products. The creation of the SPL model
employs two separate UML profiles: a product line profile for specifying the commonality

www.intechopen.com

Software Product Line – Advanced Topic

76

and variability between products, and the MARTE profile for performance annotations.
Another important outcome of the domain engineering process is the feature model used to
represent commonalities and variabilities between family members in a concise taxonomic
form. Additionally, the PC-feature model is created to represent the variability space of the
performance completions.

purchaseOrder

catalog

static dynamic

delivery

invoices

on-lineDisplay

printedInvoice

e-commerceKernel

customer

businessCustomer

homeCustomer

payment

customerAttractions

promotions

membershipDiscount

sales

customerInquiries

helpDesk callCenter

shippingType

normal express

packageSlip

internationalSale

dataStorage

electronic

shipping

distributed centralized

creditCard

check

debitCard

switchingMenu

severalLanguage

currencyConversion

tariffsCalculation

I/ELaws

security

<1-1>
<1-1>

<1-3>

<1-1>

<1-3>

<1-3>

<1-4>

<1-2>

<1-2>

<1-2>

Features composition rules:

� switchingMenu requires debitCard and creditCard

� switchingMenu requires debitCard and check

� switchingMenu requires creditCard and check

�electronic requires on-lineDisplay

� shipping requires printedInvoices

Fig. 2. Feature model of the e-commerce SPL

An e-commerce case study is used to illustrate the construction of the UML model for SPL

that represents the source model of our model transformation approach. The e-commerce

SPL is a web-based product line that can generate a distributed application that can handle

either business-to-business (B2B) or business-to-consumer (B2C) systems. For instance, in

B2B, a business customer can browse and select items through several catalogs. Each

customer has a contract with a supplier for purchases, as well as bank accounts through

which payments can be made. An operation fund is associated with each contract.

3.1 Feature model

Feature models are used in our approach to represent two different variability spaces. This
section describes the regular feature model representing functional variabilities between
products. The feature model of an e-commerce SPL is represented in Fig. 2 in the extended
FODA notation, Cardinality-Based Feature Model (CBFM) [Czarnecki et al., 2005]. However,
this diagram is represented in the source model given as input to our ATL transformation as
an extended UML class diagram, where the features and feature groups are modeled as
stereotyped classes and the dependencies and constraints between features as stereotyped
associations. For instance, the two alternative features BusinessCustomer and HomeCustomer
are mutually exclusive features and hence they are grouped into an exactly-one-of feature
group called Customer. While, the three optional features CreditCard, DebitCard, and Check
are grouped into an at-least-one-of feature group called Payment. Thus, an individual system
can provide at least one of these features or any number of them. In the case of an individual
system providing all of these features, the user can choose one of them during the run-time
execution. In addition to functional features, we add to the diagram another type of features

www.intechopen.com

Integrating Performance Analysis in Software Product Line Development Process

77

characterizing design decisions that have an impact on the non-functional requirements or
properties. For example, the architectural decision related to the location of the data storage
(centralized or distributed) affects performance, reliability and security, and is represented
in the diagram by two mutually exclusive quality features. This type of feature related to a
SPL design decision is part of the design model, not just a platform-related PC-feature
required only for performance analysis.

The regular feature model represents the set of all possible combinations of features for the
products of the family, describing the way features can be combined within this SPL. A
specific product is configured by selecting a valid feature combination from the feature
model, producing the feature configuration based on the product’s requirements. To enable
the automatic derivation of a given product model, the mapping between the features
contained in the feature model and their realizations in a reusable SPL model needs to be
specified, as shown in the next section. Also, each stereotyped class in the feature model has
a tagged value indicating whether it is selected in a given feature configuration or not.

3.2 SPL model

The SPL model should contain, among other assets, structural and behavioural views which
are essential for the derivation of performance models. It consists of: 1) structural
description of the software showing the high-level classes or components, especially if they
are distributed and/or concurrent; 2) deployment of software to hardware devices; 3) a set
of key performance scenarios defining the main system functions frequently executed.

The functional requirements of the SPL are modeled as use cases shown in Fig. 3. The kernel
use cases required by all the family members are shown in white, the optional use cases that
may be used by any member are drawn in light grey, and the alternative use cases used only
by some members are shown in dark grey. In order to avoid polluting our model with extra
annotations and to ensure the well-formedness of the derived product model, we propose to
annotate explicitly the minimum number of model elements within each diagram of our SPL
model. For instance, in the use case diagram, only the optional and alternative use cases are
annotated with the name of the features requiring them (given as stereotype attributes);
since a kernel use case represents commonality, it is sufficient to just stereotype it as
«kernel». Other model elements, such as actors, associations, generalizations, properties, are
mapped implicitly to feature through their relationship with the use cases, so there is no
need to clutter the model with their annotations. The evaluation of implicit mapping during
product derivation is explained in section 4. The structural view of the SPL is presented as a
class diagram; Fig. 4 depicts a small fragment. The classes that are common to all members
of the SPL are stereotyped as «kernel». The variability that distinguishes the members of a
family from each other is explicitly modeled by classes stereotyped as «optional» or
«variant»; such classes are also annotated with the name of the feature(s) requiring them
(given as stereotype attributes). This is an example of mapping between features and the
model elements realizing them.

In cases where a class behaves differently in different product (such as CustomerInterface in
B2B and B2C systems) a generalization/specialization hierarchy is used to model the
different behaviours of this class. The two subclasses B2BInterface and B2CInterface are used
by B2B systems and B2C systems, respectively. The same happens with the superclass
SupplierInterface, which is specialized into two variants POSupplier and Supplier.

www.intechopen.com

Software Product Line – Advanced Topic

78

Feature=Business
Customer

«optional»
International Sales
{VP=International}

«optional»
Customer Inquiry

{VP=Inquiries}

«optional»
Customer Attractions

{VP=Attractions}

«optional»
Deliver Purchase

Order

«optional»
Prepare Purchase

Order

«alternative»
Check Customer

Account

«kernel»
Make Purchase

Order

«kernel»
Confirm Shipment

«alternative»
Send Invoice

Customer

Authorization
Center

Supplier

Wholesaler

Bank

Feature=Business
Customer

Feature=Home
Customer

Feature=Home
Customer

«optional»
DebitCard

«extend»
«extend»

«alternative»
Bill Customer

{ext point=Payment}

Feature=Purchase
Order

Feature=Purchase
Order

Feature=Business
Customer

«kernel»
Browse Catalog

{VP=Catalog}

«alternative»
Create Requisition
{VP=DataStorage}

«extend»

«kernel»
Process Delivery Order
{ext point=Delivery}

«extend»

«optional»
Electronic

«optional»
Shipping

Feature=Electronic
Delivery Feature=Shipping

Delivery

«alternatiive»
Confirm Delivery

{VP=Data Storage}

Feature=Credit
Card

Feature=Check

Feature=International
Sale

Feature=Customer
Inquiries

Feature=Customer
Attractions

«optional»
CreditCard

«optional»
Check

«extend»

Feature=Debit
Card

Fig. 3. Use case model of the e-commerce SPL

Fig. 4. A fragment of the class diagram of the e-commerce SPL

The behavioural SPL view is modeled as sequence diagrams for each scenario of each use
case. Fig. 5 illustrates the alternative scenario Create Requisition. Variability in the sequence
diagram may be expressed by using alt or opt fragments stereotyped as «variation point».
For example, the alt fragment stereotyped with «variation point» {vp=Data Storage} gives
two alternative choices based on the value of the Data Storage feature (Distributed or
Centralized). The stereotypes in Fig. 5 are MARTE performance annotations [OMG, 2011].
«GaAnalysisContext» is a stereotype indicating that the entire interaction diagram is to be
considered for performance analysis. Each lifeline is stereotyped as «PaRunTInstance»,
providing an explicit connection at the annotation level between a role in a behavior

www.intechopen.com

Integrating Performance Analysis in Software Product Line Development Process

79

definition (a lifeline) and a runtime instance of a process or thread (active object). For
example, the tag {instance= CBrowser} indicates which runtime instance of a process
executes the lifeline role, while the tag {host=$CustNode} indicates the physical node from
the deployment diagram on which the instance is running, given by the variable
$CustNode. (For convenience, we use names starting with ‘$’ for all MARTE variables).
Conceptually, a scenario represented by a UML sequence diagram is composed of units of
execution named steps. MARTE defines two kinds of steps for performance analysis:
execution step (stereotyped «PaStep») and communication step (stereotyped
«PaCommStep»). «PaStep» may be applied to an Execution Occurrence (represented as a
thin rectangle on the lifeline) or to the message that triggers it. For instance, in Fig. 5, the
message requisitionRequest is stereotyped as an execution step:

«PaStep» {hostDemand = ($ReqSD,ms), respT = (($ReqT,ms, percent95), calc)}

where hostDemand indicates the execution time required by the step, given by the variable
$ReqSD in time units of milliseconds. The same message requisitionRequest is also
stereotyped as a communication step:

«PaCommStep» { msgSize = ($MReq,KB)}

where the message size is the variable $MReq in KiloBytes. Note that since the SPL model is
generic, covering many products and containing variation points with variants, the MARTE
annotations need to be generic as well. We use MARTE variables as a means of
parameterizing the SPL performance annotations; such variables (parameters) will be
assigned (bound to) concrete values during the product derivation process. The workload of
a scenario is defined as a stream of events driving the system; a workload may be open or
closed. In our example the workload is closed with a number of users $N1 and user think
time for a user $Z1:

«GaWorkloadEvent» {pattern=(closed (population=$N1),(extDelay=$Z1))}

3.3 Performance completions

In SPL, different members may vary from each other in terms of their functional
requirements, quality attributes, platform choices, network connections, physical
configurations, and middleware. Many details contained in the system that are not part of
its design model, but still affecting the performance at run-time, need to be added to the
performance model. Performance completions, as proposed by Woodside [Woodside et al.,
2002], are a manner to add platform details, closing the gap between the high-level design
model and its different implementations. Performance completions provide a general
concept to include low-level details of execution environments in performance models.

Since performance analysis depends on the software to hardware allocation, another
structure diagram that is not usually represented in SPL models has to be provided in our
approach. The deployment diagram for the SPL is built assuming maximum distribution,
which means providing the largest number of processors that might ever be used for any
product of the SPL. However, it doesn’t mean providing a processor for every single artifact
manifesting an instance of an active or passive class. If it is known that some instances have
to run always on the same processor, they will be co-allocated on the same node. The

www.intechopen.com

F
ig

. 5. S
P

L
 S

cen
ario

 C
reate R

eq
u

isitio
n

«optional»
«PaRunTInstance»

{instance=Requisition,
host=$ReqNode}

:Requisition

«optional»
«PaRunTInstance»
{instance=ReqDB,

host=$ReqDBNode}
:RequisitionDB

requisitionRequest
«GaWorkloadEvent»
{closed(population=$N1),(extDelay=$Z1)}
«PaStep»
«PaCommStep»
{hostDemand=($ReqSD,ms),
respT=(($ReqT,s,percent95),calc),
msgSize = ($MReq,KB),
commRcvOvh = ($MReqRcv,ms/KB),
commTxOvh = ($MReqS,ms/KB)}

«optional»
«PaRunTInstance»
{instance=OprFund,

host=$OpFNode}
:OperationFund

{i

store

reserveFunds
«PaStep»
«PaCommStep»
{hostDemand=($OprFD,ms),
msgSize = ($ResFund,KB)}

check

«kernel-abstract-vp»
«PaRunTInstance»

{instance=CBrowser,
host=$CustNode}

:CustomerInterface

«optional»
«PaRunTInstance»

{instance=Contracts,
host=$ContNode}

:Contracts

«optional»
«PaRunTInstance»
{instance=ContDB,

host=$ContDBNode}
:ContDB

confirm

contractQuery
«PaStep»
«PaCommStep»
{hostDemand=($ContD,ms)
, msgSize = ($ContQ,KB)}

availableContracts
«PaCommStep»
{msgSize = ($ContRep,KB)}

reser

confirm

fundsReserved
«PaCommStep»
{msgSize = ($Conf,KB)}

requisitionStatus
«PaCommStep»
{msgSize = ($Conf,KB)}

sd Create Requisition

alt

alt

[Distributed]

[Centralized]

alt [Distributed]

[Centralized]

confirm

confirm

[Distributed]

[Centralized]

«variation point» {vp=Data Storage}

«variation point»

«variation point» {vp=Data Storage}

«GaAnalysisContext» {context=[]}

w
w

w
.in

te
c
h
o
p
e
n
.c

o
m

Integrating Performance Analysis in Software Product Line Development Process

81

deployment diagram contains all the possible artifacts contained in all the products, even
artifacts corresponding to optional or variant classes. During the domain engineering
process for our case study, two different deployment diagrams for the SPL system are
provided, distributed and centralized, corresponding to the two alternative architectures.

This section covers the variability space of the performance completions and represents it
through the Performance Completion feature model (PC-feature model) shown in Fig. 6.
Each feature from the PC-feature model may affect one or more performance attributes. For
instance, data compression reduces the message size and at the same time increases the
processor communication overhead for compressing and decompressing the data. Thus, it is
mapped to the performance attributes message size and communication overhead through
the MARTE attributes msgSize, commTxOvh and commRcvOvh, respectively. The mapping
here is between a PC-feature and the performance attribute(s) it affects, which are MARTE
stereotype attributes associated to model elements. Table 1 illustrates this type of mapping
between PC-features and the design model, set up through the MARTE stereotypes attached
to model elements.

Adding security solutions requires more resources and longer execution times, which in turn
has a significant impact on system performance. We introduce a PC-feature group called
secureCommunication that contains two alternative features secured and unsecured. The secured
feature offers two security protocols: Secure Socket Layer (SSL) and Transport Layer Security
(TLS) that can be augmented to the applications. Furthermore, we introduce three security
level alternatives depending on the size of the key used in the handshake phase and on the
strength of the encryption and message digest algorithms used in the data transfer phase, as
proposed in [Menasce et al., 2004]. Each security level requires different extra times for
sending and receiving secure messages. These overheads are mapped to the communication
overheads in the deployment diagram through the attributes commRcvOvh and commTxOvh,
which represent the host demand overheads for receiving and sending messages, respectively.

Each type of communication channel has different capacity for the amount of information
that can be transmitted over this channel. As the channel’s capacity increases, the time for
data transmitted over this channel decreases. Our example provides three different
communication channels with three alternative connections for the Internet. The capacity
and latency for each physical channel type are respectively mapped to the attributes capacity
and blockT stereotyping each communication node in the deployment diagram.

PC-feature Affected

Performance

Attribute

MARTE

Stereotype

MARTE

Attribute

secureCommunication Communication
overhead

GAExecHost commRcvOvh
commTxOvh

channelType Channel
Capacity
Channel Latency

GaCommHost capacity
blockT

dataCompression Message size
Communication
overhead

PaCommStep
GAExecHost

msgSize
commRcvOvh
commTxOvh

externalDeviceType Service Time PaStep extOpDemand

messageType Communication
overhead

GAExecHost commTxOvh

Table 1. Mapping of PC-features to affected performance attributes

www.intechopen.com

Software Product Line – Advanced Topic

82

securityLevel

highSecuritymediumSecuritylowSecurity

secureCommunication

secured unsecured

SSL Protocol TLS Protocol

channelType

LAN Internet PAN

internetConnection

WirelessDSLPower-line

externalDeviceType

diskmonitor

USBDVDCD Hard Disk

<1-1>

<1-1>

<1-1>

<1-1>

<1-1>

dataCompression

compressed uncompressed

<1-1><1-1>

<1-1>

messageType

withGuaranteedDelivery withoutGuaranteedDelivery

<1-1>

Enterprise JavaBeans

platformChoice

.NETCORBAWeb-services

<1-1>

Fig. 6. Part of the Performance-Completion feature model of the e-commerce SPL

Data compression requires extra operations which increase the processing time, but at the
same time compression helps reducing the use of resources, such as hard disk space or
communication channel bandwidth. Data compression/decompression is adding an
overhead when sending and receiving a message, which is mapped to the attributes
commTxOvh and commRcvOvh, respectively. However, compression reduces the amount of
data to be transferred and decreases the delivery time (e.g., a compression algorithm may
reduce the size of data to 60% [Happe et al., 2010]). Thus, the amount of compressed data
transmitted over a physical channel is mapped to the performance attribute message size
through the attribute msgSize of a stereotype «PaCommStep» annotating a communication
step in the sequence diagram. Similarly, the delivery time of a message may vary if the
communication is with or without guaranteed delivery [Happe et al., 2010], which affects
the attribute commTxOvh.

Mapping a platform independent to a platform specific model has an impact on the system
performance. The PC-feature group platformChoice includes different alternative types of
middleware such as CORBA, Web-services, etc., which will affect also the communication
overheads.

MARTE provides specifically the concept of “external service calls” to represent resources
that are not explicitly modeled within the UML design model, but may have an impact on
performance. Examples of such external calls are disk operations hidden in database calls.
The feature externalDeviceType represents different choices of storage devices, such as disk
and monitor and different disk types. Each device has different speed to “read” and “write”
a block of data. These features are mapped to the service time of external resources through
the attribute externalOpCount stereotyping an execution step.

It is important to note that some of the performance-affecting attributes are contained
directly in the MARTE annotations in the design model. For instance, the message size
corresponding to a message from a sequence diagram may be indicated by the attribute
msgSize of the stereotype «PaCommStep» extending the message. Similarly, CPU execution
times of different scenario steps are indicated by the attribute hostDemand of the stereotype
«PaStep». The product model obtained by the transformation presented next will include

www.intechopen.com

Integrating Performance Analysis in Software Product Line Development Process

83

both the performance attribute contained directly in the design model and the platform
factors corresponding to PC-features.

4. Model transformation approach

The automatic derivation of a concrete product model based on a given feature
configuration is enabled through the mapping between features from the feature model and
their realizations in the design model of the SPL. In this section, we present an efficient
mapping technique that aims to minimize the amount of explicit feature annotations in the
UML design model of SPL. The product model corresponding to the desired feature
configuration is instantiated automatically through a model-to-model transformation, where
the transformation process evaluates the SPL model elements’ annotations for the selected
feature configuration. The model transformation process and its implementation in ATL are
presented as well.

4.1 Mapping technique

Modeling variability in SPL models can be achieved in different ways: 1) annotating
different diagrams of the reusable SPL model with variability specifications mapping
features from the feature model to model elements realizing them; and 2) using a separate
model for variability that can be linked to different model elements of the reusable SPL
model. In our work, we apply the first approach by using a product line (PL) profile similar
to [Gomaa, 2005]. We are aiming to annotate the UML model of SPL with a minimum
amount of variability specifications.

The annotation approach has a number of advantages over the separate variability
modeling: a) model elements subject to variability are clearly noticeable; b) the consequence
of selecting a feature is directly shown on the design model; c) the mapping is easier to
retrace and understand; and d) the expressive capability is enhanced. However, a significant
drawback of the annotation approach that makes it error-prone is the fact that the SPL
models become cluttered with variability specifications, which becomes worse as models
grow in size and complexity.

The annotation approach proposed in this research mitigates this drawback by reducing the
type and number of explicitly annotated model elements as much as possible. The decision
what types of elements to annotate explicitly depends on the application domain and should
be taken early in the domain engineering process. The mapping of features to non-annotated
model elements is implicit, and can be inferred from their relationships with annotated
model elements. Such relationships are defined in the UML metamodel and are explored in
the transformation rules during product derivation by navigating the model according to
the UML metamodel and well-formedness rules. For instance, in a class diagram of the SPL
reusable model, we annotate explicitly the variability of classes with the names of the
features requiring each class, but leave the associations without variability annotations. The
unspecified mapping of features to each association can be inferred from the annotations of
the two classes connected to the association ends. Thus, the mapping of features to classes is
explicit and that of features to associations is implicit. Whenever a model element is not
explicitly annotated with corresponding feature(s) through a stereotype or its attributes in
the SPL model, the automatic transformation process needs to decide whether to copy this

www.intechopen.com

Software Product Line – Advanced Topic

84

element to the target model or not. This decision is based on several factors: a) the type of
this non-annotated element; b) the specifications and well-formedness constraints of the
modeling language; c) the presence or absence of other annotated elements related to it; d)
the containment hierarchies defined in the metamodel; e) the cardinality of this element.

For example, according to the UML metamodel, a binary association has to be attached to a
classifier at each end. Therefore, the decision whether a binary association has to be copied
or not to the target is based on the selection of both of its classifiers. The binary association is
created in the target model if and only if both of its memberEnd properties have their
classifiers already selected and created. At the same time, if only one of its classifier is
selected and created in the target model, the property attached to this unselected association
and owned by the selected classifier should not be created in the target model. The
interpretations of the implicit mapping will be explained in more detail in the description of
the transformation rules.

The proposed mapping technique ensures that the derived product model is a well-formed
model by enforcing the well-formedness constraints during the transformation process.
Each time a new model element is selected and added to the target model, the verification of
its well-formedness rules is guaranteed by construction, according to the transformation
rules that are based on the UML metamodel.

4.2 Model transformation process

Our model transformation approach takes as input the SPL source model created during the

domain engineering process in section 3 and generates a product target model for a given

member of the SPL. The model transformation consists of two parts as shown in Fig. 1. The

first part generates binding directive spreadsheets, asking the user to enter concrete values

for all generic performance annotations and platform allocations for the given product,

while the second part takes as input the spreadsheets with the concrete values provided by

the user and generates a specific product model with concrete performance annotations that

is deployed on concrete resources and is running on a specific platform. As mentioned

before, our model transformation approach applies the concept of positive variability where

we start by selecting and copying the SPL model elements that represent kernel features to

the target model, then selectively add other elements realizing the desired optional and

alternative features; all this is realized by a model transformation approach described below.

The product derivation process is initiated by specifying a given product through its feature
configuration (i.e., the legal combination of features characterizing the product). The selected
features are checked for consistency against the feature dependencies and constraints in the
feature model, in order to identify any inconsistencies. An example is checking to ensure that
no two mutually exclusive features are chosen. The feature configuration is considered a
parameter for the transformation, which should be set without editing the source model. The
second step in the derivation process is to select the use cases realizing the chosen features. All
kernel use cases are copied to the product use case diagram, since they represent functionality
provided by every member of the SPL. If a chosen feature is realized through extend or
include relationships between use cases, both the base and the included or extending use cases
have to be selected, as well. A use case containing in its scenario variation point(s) required to
realize the selected feature(s) has to be chosen, too. The optional and alternative use cases are

www.intechopen.com

Integrating Performance Analysis in Software Product Line Development Process

85

selected and copied to the target use case diagram if they are mapped to a feature from the
feature configuration. The interpretations of other non-annotated elements will be explained in
the description of the transformation rules. Finally, the use case diagram for the product is
developed after all the PL variability stereotypes were eliminated. The third step is to derive
the product class diagram by selecting first all kernel classes from the SPL class diagram.
Optional and variant classes needed for the desired product are selected next (each is
annotated with the feature(s) requiring it). Moreover, superclasses of the selected optional or
variant classes have to be selected as well. The PL variability stereotypes are not copied to the
target model. An association between two classes is copied to the target model if and only if
both classes are selected.

The SPL deployment diagram has to be tailored to the concrete product in the fourth step.
One of the two types of the deployment diagrams (centralized or distributed) has to be
chosen based on the mutually exclusive feature group DataStorage. For instance, the
centralized architecture is chosen and copied to the target model if the feature centralized is
selected. The final step of the first part in our transformation approach is to generate the
sequence diagrams corresponding to different scenarios of the chosen use cases. Each
scenario of a chosen use case is recognized through a sequence diagram which has to be
selected from the source model and copied to the target one.

The PL variability stereotypes are eliminated after binding the generic roles associated to the
life-lines of each selected sequence diagram to specific roles corresponding to the chosen
features. For instance, the sequence diagram Create Requisition has the generic alternate role
CustomerInterface which has to be bound to the concrete role B2BInterface to realize the
feature BusinessCustomer. However, the selection of the optional roles is based on the
corresponding features. For instance, the generic optional role CustomerDB is selected if the
feature Centralized data storage is chosen.

The mapping between the PC-features and performance attributes takes place during the
first part of the model transformation and requires user input. The transformation extracts
all the information needed for the mapping from the annotated product model and the PC-
feature model, and generates spreadsheets for the given product. The second part of the
model transformation takes as an input the spreadsheets with the values for bindings
directives provided by the user, and produces the given product model with concrete values
for performance annotations.

4.3 ATL implementation of the proposed approach

This subsection presents the implementation of the model transformation described in the

previous subsection in the Atlas Transformation Language (ATL) [ATL], which is

specialized for model transformations. The source model is the SPL model described in

section 3 with two profiles applied, MARTE and PL, and the target model is that of a

particular product. The transformation rules handle the implicit and explicit mapping of

features to SPL design models. The ATL transformation is composed of a set of rules and

helpers. The rules define the mapping between the source and target model, while the

helpers are methods that can be called from different points in the ATL transformation. A

few examples of ATL transformation rules are given bellow, with extensive comments in

natural language.

www.intechopen.com

Software Product Line – Advanced Topic

86

We need to create in the target model all the model element types that compose a class
diagram according to the UML metamodel: Class, Property, Operation, Generalization, and
Association [OMG, 2007]. Since an optional or alternative class is annotated with the
feature(s) requiring it, the class element is selected if and only if the feature given in its
annotation is present in the feature configuration. The following rule is applied to each
model element of type Class from the source model, checking whether to select and copy it
to the target model. We need to distinguish between a property representing an attribute
(related to the class by ownedAttribute) and a property representing an association end
(related to an association by memberEnd). A property representing an attribute has to be
selected if its container is selected. However, the one representing an association end is
selected if and only if its class container and the related association are selected.

In order to select and copy to the target model only the associations between selected classes
as well as their memberEnds, we have to navigate from the property of a selected class that
represents an association end to the other end of the association and check whether the class
on this end is selected or not. Assume that there are two classes: ClassA and ClassB
connected with an association AB. ClassA owns a property PA1 that has an attribute type
referencing the other end of the association, ClassB. In turn, PA1 has an attribute association
referencing the association AB. The rule that interprets this implicit mapping navigates from
the selected ClassA to the other end ClassB though the attribute type of the property PA1 and
checks whether ClassB is selected or not. If ClassB is selected, property PA1 is selected as
well. Last step is to navigate through the attribute association of property PA1 to the
association AB, and to copy it to the target model.

 -- Rule Class checks each model element of this type whether to copy it
 -- to the target model by calling the helper selectedElement()
rule Class {
 from
 s : UML! Class (s.selectedElement())
 -- Copying the class and checking for each property representing an
 -- association end whether the class on the other end of the association
 -- is selected or not
 to
 t : UML!Class(name <- s.name, ownedAttribute <-
 s.ownedAttribute->select(e|e.type.selectedElement())

 -- Whenever the class on the other end is selected, the property
 -- representing a memberEnd is copied to the target model by calling
 -- the lazy rule Property
 -> collect(e|thisModule.Property(e)),

 -- Copying the property owned by the class by calling the lazy rule
 -- Attribute
 ownedAttribute<-s.ownedAttribute->select(e|e.association
 ->oclIsUndefined())->collect(e|thisModule.Attribute(e)),

 -- Copying the operation owned by the class by calling the lazy rule
 -- Operation

www.intechopen.com

Integrating Performance Analysis in Software Product Line Development Process

87

 ownedOperation <- s.ownedOperation ->
 collect(e|thisModule.Operation(e)),
 -- Copying the generalization owned by the class by calling the lazy rule
 -- Generalization
 generalization <- s.generalization
 -> collect(e|thisModule.Generalization(e))) }
 -- This helper returns “true” if the respective element is selected by
 -- checking whether the tagged value of its stereotype’s property
 -- existed in the feature configuration
 Helper context UML!Elementdef: selectedElement() : Boolean = if
 self.hasStereotype('kernel')
 or UML!Class.allInstances()->
 select(class|class.getTagValue('optionalfeature','selected')
 ='true'
 Or class.getTagValue('alternativefeature','selected')
 =‘true')-> collect(c|c.name)->
 includes(self.getTagValue('variant','feature')
 or self.getTagValue('optional','feature') or
 self.getTagValue('alternative','feature'))
 then true else false
 endif;
 -- This helper returns “true” if the respective model element is
 -- stereotyped with the stereotype name given as a parameter
 Helper context UML!Elementdef: hasStereotype(stereotype:String)
 :Boolean = self.getAppliedStereotypes()->
 exists(c|c.name.startsWith(stereotype));
 -- This helper returns the tagged value of a stereotype’s property both
 -- stereotype and property name are given as parameters
 Helper context UML!Elementdef:getTagvalue
 (stereotype:String,tag:String): UML!Element =
 if self.getAppliedStereotypes()-> select(e|e.name=stereotype)
 -> notEmpty() then
 self.getValue(self.getAppliedStereotypes() ->
 select(e|e.name=stereotype) -> first(), tag)
 else OclUndefined
 endif;
 -- This lazy rule is executed when called by the previous rule to copy an
 -- ownedAttribute property with its upper, lower, and default
 -- multiplicity values to the target model
lazy rule Attribute{
 from
 s : UML!Property
 to
 t : UML!Property(name <- s.name, type <- s.type,
 upperValue<-thisModule.LiteralUnlimitedNatural(s.upperValue),
 lowerValue <- thisModule.LiteralInteger(s.lowerValue),
 defaultValue <- thisModule.LiteralString(s.defaultValue)) }

www.intechopen.com

Software Product Line – Advanced Topic

88

 -- This lazy rule is called by the previous rule to copy a memberEnd
 -- property with its upper and lower multiplicity values to the target
 -- model as well as copy the association attached to it by calling the
 -- lazy rule Association
lazy rule Property{
 from
 s : UML!Property
 to
 t : UML!Property(name <- s.name, type <- s.type,
 association <- thisModule.Association(s.association),
 upperValue<-thisModule.LiteralUnlimitedNatural(s.upperValue),
 lowerValue <- thisModule.LiteralInteger(s.lowerValue)) }
 -- This lazy rule is executed when called by the previous rule to copy
 -- the Association and its ownedEnd and memberEnd to the target model
unique lazy rule Association{
 from
 s : UML!Association
 to
 t : UML!Association(name<-s.name,ownedEnd<-s.ownedEnd,
 memberEnd <- s.memberEnd) }

Properties related to a class (attributes), generalizations, and operations are elements
contained into a class, so according to the UML containment hierarchies they are selected
whenever their container is selected. The use case diagram is generated similarly to the class
diagram (see [Tawhid & Petriu, 2011a] for more details).

After generating a specific product model, the generic performance specifications
annotating it need to be bound to concrete values. The transformation collects from the
generated UML product model all the generic performance parameters and all the PC-
features from the PC-feature model, and associates each PC-feature to its corresponding
model element(s). For instance, the PC-feature dataCompression is associated to a model
element of type message, since it has an impact on the message size and the communication
overheads. The transformation generates spreadsheets containing all the attributes that need
binding, as seen in the following example.

 -- Rule Message2Row collects all the generic tagged values of the
 -- stereotypes «PaStep» or «PaCommStep» that annotate model element of
 -- type message and transforms them to a row in a table
rule Message2Row {
 from
 s : UML!Message (s.hasStereotype('PaStep')or
 s.hasStereotype('PaCommStep'))
 using {hostDemand_name : Sequence(String) = Sequence {
 'Message', s.name, ‘PaStep', 'hostDemand',
 s.getAttrValue('PaStep','hostDemand').first()};
 msgSize_name : Sequence(String) = Sequence {
 'Message', s.name, 'PaCommStep', 'msgSize',
 s.getAttrValue('PaCommStep','msgSize').first()};} to

 hostDemand_row : Table!Row(

www.intechopen.com

Integrating Performance Analysis in Software Product Line Development Process

89

 cells <- Sequence{ hostDemand_cols }),
 hostDemand_cols : distinct Table!Cell foreach(name in
 hostDemand_name) (content <- name),
 msgSize_row : Table!Row(
 cells <- Sequence{ msgSize_cols }),
 msgSize_cols : distinct Table!Cell foreach(name in
 msgSize_name) (content <- name)}

Fig. 7. Part of the generated Spreadsheet for the scenario Create Requisition

A part of the generated spreadsheet for the scenario Create Requisition is shown in Fig. 7. For

instance, the PC-feature dataCompression is mapped to message size through the MARTE

attribute msgSize annotating a model element of type message. The column titled Concrete

Value is designated for the user to enter the concrete value for each corresponding generic

parameter, while the column Guideline for Value provides a typical range of values to guide

the user. The generated spreadsheet presents a user-friendly format for the users of the

transformation who have to provide appropriate concrete values for binding the generic

SPL annotation variables.

Another kind of mapping that takes place is that of the generic processing nodes from the
SPL deployment diagram to actual nodes for a specific product. Each lifeline in the sequence
diagrams is stereotyped as «PaRunTInstance», providing an explicit connection at the
annotation level between a role in a behaviour definition (a lifeline) and the corresponding
runtime instance of an active object (process or thread), whose tag {host=$CustNode}
indicates the physical node from the deployment diagram on which the instance is running.
Thus, this tag needs to be bound to a concrete node for the product. The generated product
model has either a centralized or distributed deployment diagram with maximum numbers
of processors. The transformation collects all these processors’ name and associates a list of
these processors to each lifeline in the spreadsheets. The user will indicate a specific
processor from this list.

www.intechopen.com

Software Product Line – Advanced Topic

90

After the user enters concrete values for all the generic performance parameters and selects
an actual processor for each lifeline role provided in the spreadsheets, the second part of the
model transformation takes as input these spreadsheets along with its corresponding
product model, and binds all the generic MARTE tagged values in the product to the
specific values provided in the spreadsheets. The outcome of this part of the transformation
is a specific product model with concrete performance annotations for a specific PC-feature
configuration, which can be further transformed automatically into a performance model.

ReqE Requisition

ContractE Contract OprFundE OprFund

CDBNode

ReqONode

CustE Cust

NetE Net

CustNode

CustDBCustDBELANE LAN

LANNode

NetNode

ReqE Requisition

ContractE Contract OprFundE OprFundLANLANE

ReqNode

CustE Cust

NetE Net

CustNode

NetNode

LANNode

OprFDBE OprFDB
ContDBE ContDB

ReqDBE ReqDB

ContNode

OprFNode

(2)

Fig. 8. Centralized LQN model Fig. 9. Distributed LQN model

5. Performance analysis

As mentioned before, the derivation of a performance model from a SPL model requires two
model transformations. The first transformation from the annotated SPL model to a product
model with concrete performance annotations while the second one takes the target model
of a concrete product and transforms it into a LQN performance model using the PUMA
transformation approach [Woodside et al., 2005]. This section presents an example of an
LQN performance model for the scenario Create Requisition shown in Fig.5 of a specific B2B
system runs on two different architectures (centralized and distributed). Some performance
analysis experiments conducted with the LQN models obtained for a concrete B2B system
with a given PC-feature configuration is presented as well.

5.1 Performance model

The LQN model [Xu et al., 2003] is an extension of the well-known Queueing Network
model developed for modelling software systems, which able to represent nested services. A
software server often requires services from other servers in order to fulfil the requests of its
own clients. An LQN model consists of a set of tasks that offer services represented by
entries. The entries of a task may send requests to entries of other tasks. Software
components are mapped to tasks while hardware devices mapped to hosts. Graphically, the
software tasks are depicted as thick rectangles and the entries with attached thin rectangles.
The hardware devices are represented as ellipses. LQN is used to model several types of
system behaviour and inter-process communication style.

After obtaining the target model of a concrete product, it will be transformed into a LQN
performance model using the PUMA transformation [Woodside et al., 2005]. The key
performance scenario Create Requisition is transformed into two LQN models shown in Fig.8
and Fig.9 to represent the two different architectures; centralized and distributed,

www.intechopen.com

Integrating Performance Analysis in Software Product Line Development Process

91

respectively. In the centralized architecture, all customer database is allocated to the node
CDBNode while, in the distributed architecture, the customer information is distributed over
the three nodes ReqNode, ContNode, and OprFNode.

5.2 Performance results

Web-based applications, such as an e-commerce system that contains sensitive data and has
many customers, require securing the data transmitted over certain communication
channels. However, adding security may include a performance price. System designers
need to make choices between different security levels and to make security/performance
trade-offs. At the same time, it is important where the data is located in order to fulfill
performance and security requirements. This location problem is examined in two different
architectures: 1) distributed and 2) centralized. In the centralized architecture, all customer
data is contained in one database. The centralized architecture has the advantage that
updating and maintaining the data consistency is easier, but has the disadvantage of
becoming the system bottleneck for large system sizes (when both the number of customers
and the amount of data go up). A distributed architecture represents a solution where
several databases divide the data and the work among them. It has potential for faster
response times and improved performance, but makes the updates and keeping data
consistency more difficult.

In order to illustrate the impact on performance of a secure communication channel between
the browser and the webServer, a performance analysis experiment based on LQN models
derived for B2B systems with different security levels running on two different architectures
(centralized and distributed) is presented.

When a B2B system is generated, a specific configuration has to be selected from the PC-
feature model. The key performance scenario Create Requisition in Fig. 5 is transformed into
the LQN models shown in Fig. 8 and Fig. 9 used for experiments. Two configurations were
chosen. The first configuration is for the centralized architecture where the customer
database is running on the node CDBNode while the roles Requisition, Contracts, and
OperationFund are running on the same node ReqONode as shown in Fig. 8. Furthermore, this
node is linked to the CDBNode through a Local Area Network (LAN) channel with 1.0 ms
latency. The connection between the CustNode and the ReqONode is set up through DSL
Internet channels with 100 ms latency. The data is transmitted uncompressed with an
average message size of 377.6 KB. The CustomerAccount database accesses an external device
(hard disk) with an average read/write time of 77.1 ms. The second configuration is for the
distributed architecture where the roles RequisitionDB, ContDB, and OpFundDB are running
on the different nodes ReqNode, contNode, and optFNode, respectively as shown in Fig. 9.
These nodes are connected through a LAN channel with 1.0 ms latency.

All communication channels in the unsecure system include no security solution, while the
secure system contains certain secure channels using the TLS protocol. TLS has two phases:
the handshake phase is used by the browser and webServer to exchange secrets and to
generate a confidential symmetric key that is used for data exchange during data transfer,
the second phase of the protocol. The public key encryption in the handshake phase may
use keys of different lengths; a longer key provides a higher level of security, but the
performance overhead increases. The strength of the symmetric encryption key and message

www.intechopen.com

Software Product Line – Advanced Topic

92

digest algorithms used by technology to exchange data may also vary, using strong
encryption and authentication algorithms providing higher security. These algorithms are
computationally intensive and add different performance overheads to the system. We used
the data provided in [Menasce et al., 2004] for performance attribute values, which were
obtained from measurements for three levels of security: the handshake overhead is of
10.2ms, 23.8 ms, 48.0 ms, and the data transfer overhead per KB of data is of 0.104 ms, 0.268
ms, 0.609 ms. The fourth case is for an unsecure system.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 5 10 15 20 25 30

R msec

N

R_Non Secured R_Low Secured
R_Medium Secured R_High Secured

0

2000

4000

6000

8000

10000

12000

1 5 10 15 20 25 30

R msec

N

R_Non Secured R_Low Secured
R_Medium Secured R_High Secured

0

500

1000

1500

2000

2500

1 5 10 15 20 25 30

R msec

N

R_Centralized_Non Secured
R_Distributed_Non Secured

a) For centralized architecture b) For distributed architecture

c) For non-secured system

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 5 10 15 20 25 30

R msec

N

R_Centralized_Low Secured
R_Distributed_Low Secured

d) For low level of secured system

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 5 10 15 20 25 30

R msec

N

R_Centralized_Medium Secured
R_Distributed_Medium Secured

e) For medium level of secured system

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 5 10 15 20 25 30

R msec

N

R_Centralized_High Secured
R_Distributed_High Secured

e) For high level of secured system

Fig. 10. Response time in function of the number of users

The LQN performance model is analyzed for different numbers of users with an existing

solver [Franks, 2000]. Fig. 10a shows the response time of a user creating a requisition for

different system choices (unsecure system and three security levels) running on centralized

architecture, while Fig. 10b shows the same for a distributed architecture. Fig. 10c-f show the

www.intechopen.com

Integrating Performance Analysis in Software Product Line Development Process

93

response time in function of the number of simultaneous users executing the same scenario

and running on the two different architectures for different levels of security.

The LQN results show that the secure system has a considerable effect on performance, as
the response time for the secure system is much higher than for the unsecure system. As the
number of users increases, the response time increases significantly due to the competition
for resources. The dataStorage feature which is centralized or distributed has also a
significant effect on performance, as the response time for the centralized architecture is
significantly higher than for the distributed architecture for all levels of security.

This brief example illustrates the potential for performance analysis in early development
stages, by allowing developers to analyze trade-off between two non-functional
requirements, performance and security, and to compare the impacts of different design
alternatives on performance. In general, a quantitative performance model helps the analyst
to verify whether a system has the capacity to meet its performance requirements. It also
helps indentifying the performance “hot spots” (e.g., the resources that will saturate first)
and provides guidance for design or configuration changes in order to solve or mitigate the
problems.

6. Conclusions

In this chapter, we propose to integrate performance analysis in the early phases of SPL

model-driven development process. The goal is to help developers to evaluate the system

performance and to choose better design alternatives as early as possible, so that the systems

being built will meet their performance requirements. We start with a multi-view UML

model of core family assets representing the commonality and variability between different

products, which we call the SPL model. We add another dimension to the SPL model,

annotating it with generic performance specifications expressed in the standard UML profile

MARTE. A first model transformation derives the UML model of a specific product with

concrete MARTE performance annotations from the SPL model. A second transformation

generates a Layered Queueing Network performance model for the given product by

applying an existing transformation approach named PUMA, developed in previous work.

To the best of our knowledge, our research is the first to tackle the problem of generating a

performance model for a specific product out of the SPL model. The main research

challenges are rooted in the fact that a SPL model does not represent a uniquely defined

system that could be implemented, run and measured as a whole, so we cannot talk about

analyzing the SPL performance. A SPL model is instead a collection of core, generic asset

models, which are building blocks for many different products with all kind of options and

alternatives. Hence, we need to derive first a given product model with concrete

performance-related details, and then we can consider transforming it into a performance

model that can be used for performance analysis.

An important factor that distinguishes the SPL development from traditional software
systems is variability modeling, a means of expressing the criteria that differentiate between
SPL members. Different approaches for variability modeling have been proposed in
literature, based on different concepts such as: features, variation points and variants, use
case diagrams, or choices and decisions. Our approach employs the feature model to

www.intechopen.com

Software Product Line – Advanced Topic

94

represent variability between the family members, but we have also extended the use of
features to express variability in performance completions.

We have considered developing a user-friendly approach. First, a mapping technique for
explicit and implicit mapping of features to model elements is proposed, which aims to
reduce the clutter of variability specifications in the SPL design model. Secondly, dealing
manually with a huge number of generic performance annotations, by asking the developer
to inspect every diagram in the model to extract these annotations in order to provide
concrete binding values is an error-prone process. In this research, we automate the process
of collecting all the generic parameters from the annotated UML model and present them in
a user-friendly format to the user.

7. Acknowledgment

This research was partially supported by Discovery grant from the Natural Sciences and
Engineering Research Council of Canada (NSERC) and by the Centre of Excellence for
Research in Adaptive Systems (CERAS).

8. References

Atlas Transformation Language (ATL), www.eclipse.org/m2m/atl
Bartholdt, J., Medak, M. & Oberhauser, R. (2009). Integrating Quality Modeling with Feature

Modeling in Software Product Lines, Proceedings of the 4th International Conference on
Software Engineering Advances (ICSEA2009), pp.365-370, 2009.

Belategi, L., Sagardui, G. & Etxeberria, L. (2010). Variability Management in Embedded
Product Line Analysis, Proceedings of the 2nd International Conference on Advances in
System Testing and Validation Lifecycle (VALID‘10), pp. 69-74, Nice, France, 2010.

Belategi, L., Sagardui, G. & Etxeberria, L. (2010). MARTE mechanisms to model variability
when analyzing embedded software product Lines, Proceedings of the 14th
International Conference on Software Product Line (SPLC‘10), pp.466-470, 2010.

Belategi, L., Sagardui, G. & Etxeberria, L. (2011). Model based analysis process for
embedded software product lines, Proceedings of the 2011 International Conference on
Software and Systems Process (ICSSP '11), 2011.

Botterweck, G., Lee, K. & Thiel, S. (2009). Automating Product Derivation in Software
Product Line Engineering, Proceedings of Software Engineering 2009 (SE09), pp 177-
182, Kaiserslautern, Germany, 2009.

Clements, P. C. & Northrop, L. M. (2001). Software Product Lines: Practices and Products,
Addison Wesley.

Cortellessa, V., Di Marco, A. & Inverardi, P. (2007). Non-Functional Modeling and
Validation in Model-Driven Architecture, Proceedings of the 6th Working IEEE/IFIP
Conference on Software Architecture (WICSA07), pp. 25, Mumbai, 2007.

Czarnecki, K. & Antkiewicz, M. (2005). Mapping Features to Models: A Template Approach
Based on Superimposed Variants, Proceedings of the 4th international conference on
Generative Programming and Component Engineering (GPCE), LNCS vol. 3676, pp.
422–437, Springer, 2005.

www.intechopen.com

Integrating Performance Analysis in Software Product Line Development Process

95

Czarnecki, K., Antkiewicz, M., Kim, C.H.P., Lau S. & Pietroszek, K. (2005). Model-Driven
Software Product Lines, Proceedings of the Object Oriented Programming Systems
Languages and Applications conference, OOPSLA, San Diego, California, 2005.

Czarnecki, K., Helsen, S. & Eisenecker, U. (2005). Formalizing cardinality-based feature
models and their specialization, Software Process Improvement and Practice, pp.
7–29, 2005.

Franks, G. (2000). Performance Analysis of Distributed Server Systems, Report OCIEE-00-01,
PhD. thesis, Carleton University, 2000.

Gamez, N. and Fuentes, L. (2011). Software Product Line Evolution with Cardinality-based
Feature Models, Proceedings of the 12th International conference on Software reuse
(ICSR 2011), pp. 102-118, 2011.

Gomaa, H. (2005). Designing Software Product Lines with UML: From Use Cases to Pattern-based
Software Architectures, Addison-Wesley Object Technology Series, July 2005.

Groher, I. & Voelter, M. (2009). Aspect-Oriented Model-Driven Software Product Line Engi-
neering, Transactions on Aspect-Oriented Software Development (AOSD) VI, LNCS, pp.
111-152, 2009.

Happe, J., Becker, S., Rathfelder, C., Friedrich, H. & Reussner, R. H. (2010). Parametric
performance completions for model-driven performance prediction, Performance
Evaluation, Volume 67 , Issue 8, pp. 694-716, 2010.

Heidenreich, F. &Wende, C. (2007). Bridging the Gap between Features and Models,
Proceedings of the 2nd Workshop on Aspect-Oriented Product Line Engineering
(AOPLE07) co-located with the 6th International Conference on Generative
Programming and Component Engineering (GPCE‟07), 2007.

Heidenreich, F., Kopcsek, J. & Wende, C. (2008). FeatureMapper: Mapping Features to
Models, Proceedings of the 30th International Conference on Software Engineering
(ICSE08), pp. 943-944, New York, NY, USA, 2008.

Istoan, P., Biri, N. & Klein, J. (2011). Issues in Model-Driven Behavioural Product Derivation,
Proceedings of 5th International Workshop on Variability Modelling of Software-intensive
Systems (Vamos 2011), ACM, p. 69-78, Namur, Belgium, 2011.

Menasce, D., Almeida, V. & Dowdy, L. (2004). Performance by Design: Computer Capacity
Planning by Example, Prentice Hall PTR, Upper Saddle River, NJ 07458, 2004.

Object Management Group, “UML: Super-structure”, Version 2.1.2, OMG document
formal/2007-11-02, 2007.

Object Management Group (2011). UML Profile for Modeling and Analysis of Real-Time
and Embedded Systems (MARTE),Version 1.1, OMG document formal/2011-06-02,
2011.

Raatikainen, M., Niemelä, E., Myllärniemi, V. & Männistö, T. (2008). Svamp – An Integrated
Approach for Modeling Functional and Quality Variability, Proceedings of the 2nd
International Workshop on Variability Modeling of Software-intensive Systems (VaMoS),
2008.

Stoiber, R. & Glinz, M. (2009). Modeling and Managing Tacit Product Line Requirements
Knowledge, Proceedings of the 2nd Interna-tional Workshop on Managing Requirements
Knowledge (MaRK09), at RE'09, Atlanta, USA, 2009.

Street, J. & Gomaa, H. (2006). An Approach to Performance Modeling of Software Product
Lines, Workshop on Modeling and Analysis of Real-Time and Embedded Systems,
Genova, Italy, October 2006.

www.intechopen.com

Software Product Line – Advanced Topic

96

Tawhid, R. & Petriu, D.C. (2008). Towards Automatic Derivation of a Product Performance
Model from a UML Software Product Line Model, Proceedings of the 2008 ACM Int.
Work-shop on Software Performance (WOSP08), pp. 91-102, 2008.

Tawhid, R. & Petriu, D.C. (2008). Integrating Performance Analysis in the Model Driven
Development of Software Product Lines, Proceedings of MODELS 2008, LNCS Vol.
5301, pp. 490-504, 2008.

Tawhid, R. & Petriu, D.C. (2011). Product Model Derivation by Model Transformation in
Soltware Product Lines, Proc. 2nd IEEE Workshop on Model-based Engineering for Real-
Time Embedded Systems (MoBE-RTES 2011), Newport Beach, CA, USA, 2011.

Tawhid, R. & Petriu, D.C. (2011). Automatic Derivation of a Product Performance Model
from a Software Product Line Model, Proceedings of the 15th International Conference
on Software Product Line (SPLC’11), Munich, Germany, 2011.

Woodside, M., Petriu, D. C. & Siddiqui, K. H. (2002). Performance-related Completions for
Software Specifications, Proceedings of the 22rd International Conference on Software
Engineering, ICSE 2002, pp. 22-32, Orlando, Florida, USA, 2002.

Woodside, M., Petriu, D.C., Petriu, D.B., Shen, H., Israr, T. & Merseguer, J. (2005).
Performance by Unified Model Analysis (PUMA), Proceedings of the 5th ACM
Int.Workshop on Software and Performance WOSP'2005, pp. 1-12, Palma, Spain, 2005.

Xu, J., Woodside, C.M. & Petriu D.C. (2003). Performance Analysis of a Software Design
using the UML Profile for Schedulability, Performance and Time, TOOLS'2003,
(P.Kemper and W.Sanders, eds.) Springer LNCS Vol. 2794, pp.291-307, 2003.

www.intechopen.com

Software Product Line - Advanced Topic

Edited by Dr Abdelrahman Elfaki

ISBN 978-953-51-0436-0

Hard cover, 122 pages

Publisher InTech

Published online 04, April, 2012

Published in print edition April, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The Software Product Line (SPL) is an emerging methodology for developing software products. Currently,

there are two hot issues in the SPL: modelling and the analysis of the SPL. Variability modelling techniques

have been developed to assist engineers in dealing with the complications of variability management. The

principal goal of modelling variability techniques is to configure a successful software product by managing

variability in domain-engineering. In other words, a good method for modelling variability is a prerequisite for a

successful SPL. On the other hand, analysis of the SPL aids the extraction of useful information from the SPL

and provides a control and planning strategy mechanism for engineers or experts. In addition, the analysis of

the SPL provides a clear view for users. Moreover, it ensures the accuracy of the SPL. This book presents new

techniques for modelling and new methods for SPL analysis.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Rasha Tawhid and Dorina Petriu (2012). Integrating Performance Analysis in Software Product Line

Development Process, Software Product Line - Advanced Topic, Dr Abdelrahman Elfaki (Ed.), ISBN: 978-953-

51-0436-0, InTech, Available from: http://www.intechopen.com/books/software-product-line-advanced-

topic/integrating-performance-analysis-in-software-product-line-development-process

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

