56,830 research outputs found

    Traffic eavesdropping based scheme to deliver time-sensitive data in sensor networks

    Get PDF
    Due to the broadcast nature of wireless channels, neighbouring sensor nodes may overhear packets transmissions from each other even if they are not the intended recipients of these transmissions. This redundant packet reception leads to unnecessary expenditure of battery energy of the recipients. Particularly in highly dense sensor networks, overhearing or eavesdropping overheads can constitute a significant fraction of the total energy consumption. Since overhearing of wireless traffic is unavoidable and sometimes essential, a new distributed energy efficient scheme is proposed in this paper. This new scheme exploits the inevitable overhearing effect as an effective approach in order to collect the required information to perform energy efficient delivery for data aggregation. Based on this approach, the proposed scheme achieves moderate energy consumption and high packet delivery rate notwithstanding the occurrence of high link failure rates. The performance of the proposed scheme is experimentally investigated a testbed of TelosB motes in addition to ns-2 simulations to validate the performed experiments on large-scale network

    Deterministic scheduling for energy efficient and reliable communication in heterogeneous sensing environments in industrial wireless sensor networks

    Get PDF
    The present-day industries incorporate many applications, and complex processes, hence, a large number of sensors with dissimilar process deadlines and sensor update frequencies will be in place. This paper presents a scheduling algorithm, which takes into account the varying deadlines of the sensors connected to the cluster-head, and formulates a static schedule for Time Division Multiple Access (TDMA) based communication. The scheme uses IEEE802.15.4e superframe as a baseline and proposes a new superframe structure. For evaluation purposes the update frequencies of different industrial processes are considered. The scheduling algorithm is evaluated under varying network loads by increasing the number of nodes affiliated to a cluster-head. The static schedule generated by the scheduling algorithm offers reduced energy consumption, improved reliability, efficient network load management and improved information to control bits ratio

    A Game-Theoretic Approach for Runtime Capacity Allocation in MapReduce

    Get PDF
    Nowadays many companies have available large amounts of raw, unstructured data. Among Big Data enabling technologies, a central place is held by the MapReduce framework and, in particular, by its open source implementation, Apache Hadoop. For cost effectiveness considerations, a common approach entails sharing server clusters among multiple users. The underlying infrastructure should provide every user with a fair share of computational resources, ensuring that Service Level Agreements (SLAs) are met and avoiding wastes. In this paper we consider two mathematical programming problems that model the optimal allocation of computational resources in a Hadoop 2.x cluster with the aim to develop new capacity allocation techniques that guarantee better performance in shared data centers. Our goal is to get a substantial reduction of power consumption while respecting the deadlines stated in the SLAs and avoiding penalties associated with job rejections. The core of this approach is a distributed algorithm for runtime capacity allocation, based on Game Theory models and techniques, that mimics the MapReduce dynamics by means of interacting players, namely the central Resource Manager and Class Managers
    • …
    corecore