2 research outputs found

    A railway track reconstruction method using robotic vision on a mobile manipulator: a proposed strategy

    Get PDF
    Autonomous robot integration in railways infrastructure maintenance accelerates the digitization and intelligence of infrastructure survey & maintenance, providing high-efficiency and low-cost execution. This paper proposes a health assessment based on 3D reconstruction technology for railway track maintenance using a mobile robotic sensing platform. By combining multiple sensing and taking advantage of a robotic manipulator, a digital model of the target track components is built by a robot-actuated vision system which provides better 3D structural and surface condition reconstruction. Global geo-location and surrounding laser scanning are integrated to reinforce the digital completeness of the model for intelligent management. The new method consists of the following steps: First, according to scheduled maintenance tasks, a Robotics Inspection and Repair System (RIRS) navigates to the task location and uses the onboard depth camera for positioning. Then robot-mounted vision system is guided with an automated trajectory to build the 3D reconstruction of the track or repair object using the vision modeling technique. Finally, the 3D reconstructed model is fused with surrounding mapping of depth vision and Lidar scanning. Both laboratory tests and a realistic track test validated the feasibility of the proposed method by creating an accurate 3D reconstructed model. The modeled rail steel section size is quantitively compared with the ground truth in dimension, demonstrating good accuracy with a size error of less than 0.3 cm. The main contribution includes: (1) unmanned automatic 3D reconstruction by a robotic mobile manipulator, (2) the technique trims the reconstruction details & data to the specific maintenance goal or components, which supports the infrastructure maintenance towards the high-detailed & target-oriented digital management. This combination strategy of robotic automation and sensor fusion lies down a promising foundation for automated digital twin establishment for railway maintenance with autonomous RIRS, and upgrades technology readiness and digital intelligence for maintenance managementEuropean Union funding: 881574/82625

    Mobile laser scanning based determination of railway network topology and branching direction on turnouts

    Get PDF
    GNSS is often inaccurate and satellite signals are not always available, which results in ambiguous situations. In order to reduce their negative effects on train-borne localization, this work proposes an approach for the detection of tracks, turnouts, and branching directions solely from 2d lidar sensor measurements. The experimental evaluation shows highly correct and complete results. In summary, these detections are sufficient to reduce ambiguity problems in train-borne localization
    corecore