14,023 research outputs found

    An Omnidirectional Aerial Manipulation Platform for Contact-Based Inspection

    Full text link
    This paper presents an omnidirectional aerial manipulation platform for robust and responsive interaction with unstructured environments, toward the goal of contact-based inspection. The fully actuated tilt-rotor aerial system is equipped with a rigidly mounted end-effector, and is able to exert a 6 degree of freedom force and torque, decoupling the system's translational and rotational dynamics, and enabling precise interaction with the environment while maintaining stability. An impedance controller with selective apparent inertia is formulated to permit compliance in certain degrees of freedom while achieving precise trajectory tracking and disturbance rejection in others. Experiments demonstrate disturbance rejection, push-and-slide interaction, and on-board state estimation with depth servoing to interact with local surfaces. The system is also validated as a tool for contact-based non-destructive testing of concrete infrastructure.Comment: Accepted submission to Robotics: Science and Systems conference 2019. 9 pages, 12 figure

    Autonomous 3D Exploration of Large Structures Using an UAV Equipped with a 2D LIDAR

    Get PDF
    This paper addressed the challenge of exploring large, unknown, and unstructured industrial environments with an unmanned aerial vehicle (UAV). The resulting system combined well-known components and techniques with a new manoeuvre to use a low-cost 2D laser to measure a 3D structure. Our approach combined frontier-based exploration, the Lazy Theta* path planner, and a flyby sampling manoeuvre to create a 3D map of large scenarios. One of the novelties of our system is that all the algorithms relied on the multi-resolution of the octomap for the world representation. We used a Hardware-in-the-Loop (HitL) simulation environment to collect accurate measurements of the capability of the open-source system to run online and on-board the UAV in real-time. Our approach is compared to different reference heuristics under this simulation environment showing better performance in regards to the amount of explored space. With the proposed approach, the UAV is able to explore 93% of the search space under 30 min, generating a path without repetition that adjusts to the occupied space covering indoor locations, irregular structures, and suspended obstaclesUnión Europea Marie Sklodowska-Curie 64215Unión Europea MULTIDRONE (H2020-ICT-731667)Uniión Europea HYFLIERS (H2020-ICT-779411

    Multi-UAV trajectory planning for 3D visual inspection of complex structures

    Full text link
    This paper presents a new trajectory planning algorithm for 3D autonomous UAV volume coverage and visual inspection. The algorithm is an extension of a state-of-the-art Heat Equation Driven Area Coverage (HEDAC) multi-agent area coverage algorithm for 3D domains. With a given target exploration density field, the algorithm designs a potential field and directs UAVs to the regions of higher potential, i.e., higher values of remaining density. Collisions between the agents and agents with domain boundaries are prevented by implementing the distance field and correcting the agent's directional vector when the distance threshold is reached. A unit cube test case is considered to evaluate this trajectory planning strategy for volume coverage. For visual inspection applications, the algorithm is supplemented with camera direction control. A field containing the nearest distance from any point in the domain to the structure surface is designed. The gradient of this field is calculated to obtain the camera orientation throughout the trajectory. Three different test cases of varying complexities are considered to validate the proposed method for visual inspection. The simplest scenario is a synthetic portal-like structure inspected using three UAVs. The other two inspection scenarios are based on realistic structures where UAVs are commonly utilized: a wind turbine and a bridge. When deployed to a wind turbine inspection, two simulated UAVs traversing smooth spiral trajectories have successfully explored the entire turbine structure while cameras are directed to the curved surfaces of the turbine's blades. In the bridge test case an efficacious visual inspection of a complex structure is demonstrated by employing a single UAV and five UAVs. The proposed methodology is successful, flexible and applicable in real-world UAV inspection tasks.Comment: 14 page

    Asymptotically optimized multi-surface coverage path planning for loco-manipulation in inspection and monitoring

    Get PDF
    Regular inspection and monitoring of aging assets are crucial to safe operation in industrial facilities, with remote robotic monitoring being a particularly promising approach for asset inspection. However, vessels, pipework, and surfaces to be monitored can follow complex 3D surfaces, and frequently no 3D as-built models exist. In this paper, we present an end-to-end solution that uses an optimization method for coverage path planning of multiple complex surfaces for mobile robot manipulators. The system includes a two-layer hierarchical structure of optimization: mission planning and motion planning. The surface sequence is optimized with a mixed-integer linear programming formulation while motion planning solves a whole-body optimal control problem considering the robot as a floating-base system. The loco-manipulation system automatically plans a full-coverage trajectory over multiple surfaces for contact-based non-destructive monitoring after unrolling the 3D-mesh region-of-interest selected from the user interface and projects it back to the surface. Our pipeline aims at offshore asset inspection and remote monitoring in industrial applications, and is also applicable in manufacturing and maintenance where area coverage is critical. We demonstrate the generality and scalability of our solution in a variety of robotic coverage path planning applications, including for multi-surface asset inspection using a quadrupedal manipulator

    Planning and Navigation in Dynamic Environments for Mobile Robots and Micro Aerial Vehicles

    Get PDF
    Reliable and robust navigation planning and obstacle avoidance is key for the autonomous operation of mobile robots. In contrast to stationary industrial robots that often operate in controlled spaces, planning for mobile robots has to take changing environments and uncertainties into account during plan execution. In this thesis, planning and obstacle avoidance techniques are proposed for a variety of ground and aerial robots. Common to most of the presented approaches is the exploitation of the nature of the underlying problem to achieve short planning times by using multiresolution or hierarchical approaches. Short planning times allow for continuous and fast replanning to take the uncertainty in the environment and robot motion execution into account. The proposed approaches are evaluated in simulation and real-world experiments. The first part of this thesis addresses planning for mobile ground robots. One contribution is an approach to grasp and object removal planning to pick objects from a transport box with a mobile manipulation robot. In a multistage process, infeasible grasps are pruned in offline and online processing steps. Collision-free endeffector trajectories are planned to the remaining grasps until a valid removal trajectory can be found. An object-centric local multiresolution representation accelerates trajectory planning. The mobile manipulation components are evaluated in an integrated mobile bin-picking system. Local multiresolution planning is employed for path planning for humanoid soccer robots as well. The used Nao robot is equipped with only relatively low computing power. A resource-efficient path planner including the anticipated movements of opponents on the field is developed as part of this thesis. In soccer games an important subproblem is to reach a position behind the ball to dribble or kick it towards the goal. By the assumption that the opponents have the same intention, an explicit representation of their movements is possible. This leads to paths that facilitate the robot to reach its target position with a higher probability without being disturbed by the other robot. The evaluation for the planner is performed in a physics-based soccer simulation. The second part of this thesis covers planning and obstacle avoidance for micro aerial vehicles (MAVs), in particular multirotors. To reduce the planning complexity, the planning problem is split into a hierarchy of planners running on different levels of abstraction, i.e., from abstract to detailed environment descriptions and from coarse to fine plans. A complete planning hierarchy for MAVs is presented, from mission planners for multiple application domains to low-level obstacle avoidance. Missions planned on the top layer are executed by means of coupled allocentric and egocentric path planning. Planning is accelerated by global and local multiresolution representations. The planners can take multiple objectives into account in addition to obstacle costs and path length, e.g., sensor constraints. The path planners are supplemented by trajectory optimization to achieve dynamically feasible trajectories that can be executed by the underlying controller at higher velocities. With the initialization techniques presented in this thesis, the convergence of the optimization problem is expedited. Furthermore, frequent reoptimization of the initial trajectory allows for the reaction to changes in the environment without planning and optimizing a complete new trajectory. Fast, reactive obstacle avoidance based on artificial potential fields acts as a safety layer in the presented hierarchy. The obstacle avoidance layer employs egocentric sensor data and can operate at the data acquisition frequency of up to 40 Hz. It can slow-down and stop the MAVs in front of obstacles as well as avoid approaching dynamic obstacles. We evaluate our planning and navigation hierarchy in simulation and with a variety of MAVs in real-world applications, especially outdoor mapping missions, chimney and building inspection, and automated stocktaking.Planung und Navigation in dynamischen Umgebungen für mobile Roboter und Multikopter Zuverlässige und sichere Navigationsplanung und Hindernisvermeidung ist ein wichtiger Baustein für den autonomen Einsatz mobiler Roboter. Im Gegensatz zu klassischen Industrierobotern, die in der Regel in abgetrennten, kontrollierten Bereichen betrieben werden, ist es in der mobilen Robotik unerlässlich, Änderungen in der Umgebung und die Unsicherheit bei der Aktionsausführung zu berücksichtigen. Im Rahmen dieser Dissertation werden Verfahren zur Planung und Hindernisvermeidung für eine Reihe unterschiedlicher Boden- und Flugroboter entwickelt und vorgestellt. Den meisten beschriebenen Ansätzen ist gemein, dass die Struktur der zu lösenden Probleme ausgenutzt wird, um Planungsprozesse zu beschleunigen. Häufig ist es möglich, mit abnehmender Genauigkeit zu planen desto weiter eine Aktion in der Zeit oder im Ort entfernt ist. Dieser Ansatz wird lokale Multiresolution genannt. In anderen Fällen ist eine Zerlegung des Problems in Schichten unterschiedlicher Genauigkeit möglich. Die damit zu erreichende Beschleunigung der Planung ermöglicht ein häufiges Neuplanen und somit die Reaktion auf Änderungen in der Umgebung und Abweichungen bei den ausgeführten Aktionen. Zur Evaluation der vorgestellten Ansätze werden Experimente sowohl in der Simulation als auch mit Robotern durchgeführt. Der erste Teil dieser Dissertation behandelt Planungsmethoden für mobile Bodenroboter. Um Objekte mit einem mobilen Roboter aus einer Transportkiste zu greifen und zur Weiterverarbeitung zu einem Arbeitsplatz zu liefern, wurde ein System zur Planung möglicher Greifposen und hindernisfreier Endeffektorbahnen entwickelt. In einem mehrstufigen Prozess werden mögliche Griffe an bekannten Objekten erst in mehreren Vorverarbeitungsschritten (offline) und anschließend, passend zu den erfassten Objekten, online identifiziert. Zu den verbleibenden möglichen Griffen werden Endeffektorbahnen geplant und, bei Erfolg, ausgeführt. Die Greif- und Bahnplanung wird durch eine objektzentrische lokale Multiresolutionskarte beschleunigt. Die Einzelkomponenten werden in einem prototypischen Gesamtsystem evaluiert. Eine weitere Anwendung für die lokale Multiresolutionsplanung ist die Pfadplanung für humanoide Fußballroboter. Zum Einsatz kommen Nao-Roboter, die nur über eine sehr eingeschränkte Rechenleistung verfügen. Durch die Reduktion der Planungskomplexität mit Hilfe der lokalen Multiresolution, wurde die Entwicklung eines Planers ermöglicht, der zusätzlich zur aktuellen Hindernisfreiheit die Bewegung der Gegenspieler auf dem Feld berücksichtigt. Hierbei liegt der Fokus auf einem wichtigen Teilproblem, dem Erreichen einer guten Schussposition hinter dem Ball. Die Tatsache, dass die Gegenspieler vergleichbare Ziele verfolgen, ermöglicht es, Annahmen über mögliche Laufwege zu treffen. Dadurch ist die Planung von Pfaden möglich, die das Risiko, durch einen Gegenspieler passiv geblockt zu werden, reduzieren, so dass die Schussposition schneller erreicht wird. Dieser Teil der Arbeit wird in einer physikalischen Fußballsimulation evaluiert. Im zweiten Teil dieser Dissertation werden Methoden zur Planung und Hindernisvermeidung von Multikoptern behandelt. Um die Planungskomplexität zu reduzieren, wird das zu lösenden Planungsproblem hierarchisch zerlegt und durch verschiedene Planungsebenen verarbeitet. Dabei haben höhere Planungsebenen eine abstraktere Weltsicht und werden mit niedriger Frequenz ausgeführt, zum Beispiel die Missionsplanung. Niedrigere Ebenen haben eine Weltsicht, die mehr den Sensordaten entspricht und werden mit höherer Frequenz ausgeführt. Die Granularität der resultierenden Pläne verfeinert sich hierbei auf niedrigeren Ebenen. Im Rahmen dieser Dissertation wurde eine komplette Planungshierarchie für Multikopter entwickelt, von Missionsplanern für verschiedene Anwendungsgebiete bis zu schneller Hindernisvermeidung. Pfade zur Ausführung geplanter Missionen werden durch zwei gekoppelte Planungsebenen erstellt, erst allozentrisch, und dann egozentrisch verfeinert. Hierbei werden ebenfalls globale und lokale Multiresolutionsrepräsentationen zur Beschleunigung der Planung eingesetzt. Zusätzlich zur Hindernisfreiheit und Länge der Pfade können auf diesen Planungsebenen weitere Zielfunktionen berücksichtigt werden, wie zum Beispiel die Berücksichtigung von Sensorcharakteristika. Ergänzt werden die Planungsebenen durch die Optimierung von Flugbahnen. Diese Flugbahnen berücksichtigen eine angenäherte Flugdynamik und erlauben damit ein schnelleres Verfolgen der optimierten Pfade. Um eine schnelle Konvergenz des Optimierungsproblems zu erreichen, wurde in dieser Arbeit ein Verfahren zur Initialisierung entwickelt. Des Weiteren kommen Methoden zur schnellen Verfeinerung des Optimierungsergebnisses bei Änderungen im Weltzustand zum Einsatz, diese ermöglichen die Reaktion auf neue Hindernisse oder Abweichungen von der Flugbahn, ohne eine komplette Flugbahn neu zu planen und zu optimieren. Die Sicherheit des durch die Planungs- und Optimierungsebenen erstellten Pfades wird durch eine schnelle, reaktive Hindernisvermeidung gewährleistet. Das Hindernisvermeidungsmodul basiert auf der Methode der künstlichen Potentialfelder. Durch die Verwendung dieser schnellen Methode kombiniert mit der Verwendung von nicht oder nur über kurze Zeiträume aggregierte Sensordaten, ermöglicht die Reaktion auf unbekannte Hindernisse, kurz nachdem diese von den Sensoren wahrgenommen wurden. Dabei kann der Multikopter abgebremst oder gestoppt werden, und sich von nähernden Hindernissen entfernen. Die Komponenten der Planungs- und Hindernisvermeidungshierarchie werden sowohl in der Simulation evaluiert, als auch in integrierten Gesamtsystemen mit verschiedenen Multikoptern in realen Anwendungen. Dies sind insbesondere die Kartierung von Innen- und Außenbereichen, die Inspektion von Gebäuden und Schornsteinen sowie die automatisierte Inventur von Lägern

    Multi-scale metrology for automated non-destructive testing systems

    Get PDF
    This thesis was previously held under moratorium from 5/05/2020 to 5/05/2022The use of lightweight composite structures in the aerospace industry is now commonplace. Unlike conventional materials, these parts can be moulded into complex aerodynamic shapes, which are diffcult to inspect rapidly using conventional Non-Destructive Testing (NDT) techniques. Industrial robots provide a means of automating the inspection process due to their high dexterity and improved path planning methods. This thesis concerns using industrial robots as a method for assessing the quality of components with complex geometries. The focus of the investigations in this thesis is on improving the overall system performance through the use of concepts from the field of metrology, specifically calibration and traceability. The use of computer vision is investigated as a way to increase automation levels by identifying a component's type and approximate position through comparison with CAD models. The challenges identified through this research include developing novel calibration techniques for optimising sensor integration, verifying system performance using laser trackers, and improving automation levels through optical sensing. The developed calibration techniques are evaluated experimentally using standard reference samples. A 70% increase in absolute accuracy was achieved in comparison to manual calibration techniques. Inspections were improved as verified by a 30% improvement in ultrasonic signal response. A new approach to automatically identify and estimate the pose of a component was developed specifically for automated NDT applications. The method uses 2D and 3D camera measurements along with CAD models to extract and match shape information. It was found that optical large volume measurements could provide suffciently high accuracy measurements to allow ultrasonic alignment methods to work, establishing a multi-scale metrology approach to increasing automation levels. A classification framework based on shape outlines extracted from images was shown to provide over 88% accuracy on a limited number of samples.The use of lightweight composite structures in the aerospace industry is now commonplace. Unlike conventional materials, these parts can be moulded into complex aerodynamic shapes, which are diffcult to inspect rapidly using conventional Non-Destructive Testing (NDT) techniques. Industrial robots provide a means of automating the inspection process due to their high dexterity and improved path planning methods. This thesis concerns using industrial robots as a method for assessing the quality of components with complex geometries. The focus of the investigations in this thesis is on improving the overall system performance through the use of concepts from the field of metrology, specifically calibration and traceability. The use of computer vision is investigated as a way to increase automation levels by identifying a component's type and approximate position through comparison with CAD models. The challenges identified through this research include developing novel calibration techniques for optimising sensor integration, verifying system performance using laser trackers, and improving automation levels through optical sensing. The developed calibration techniques are evaluated experimentally using standard reference samples. A 70% increase in absolute accuracy was achieved in comparison to manual calibration techniques. Inspections were improved as verified by a 30% improvement in ultrasonic signal response. A new approach to automatically identify and estimate the pose of a component was developed specifically for automated NDT applications. The method uses 2D and 3D camera measurements along with CAD models to extract and match shape information. It was found that optical large volume measurements could provide suffciently high accuracy measurements to allow ultrasonic alignment methods to work, establishing a multi-scale metrology approach to increasing automation levels. A classification framework based on shape outlines extracted from images was shown to provide over 88% accuracy on a limited number of samples

    Calibration and 3D Mapping for Multi-sensor Inspection Tasks with Industrial Robots

    Get PDF
    Le ispezioni di qualità sono una parte essenziale per garantire che il processo di produzione si svolga senza intoppi e che il prodotto finale soddisfi standard elevati. I robot industriali sono diventati uno strumento fondamentale per condurre le ispezioni di qualità, consentendo precisione e coerenza nel processo di ispezione. Utilizzando tecnologie di ispezione avanzate, i robot industriali possono rilevare difetti e anomalie nei prodotti a una velocità superiore a quella degli ispettori umani, migliorando l'efficienza della produzione. Grazie alla capacità di automatizzare le attività di ispezione ripetitive e noiose, i robot industriali possono anche ridurre il rischio di errore umano e aumentare la qualità dei prodotti. Con il continuo progresso tecnologico, l'uso dei robot industriali per le ispezioni di qualità si sta diffondendo in tutti i settori industriali, da quello automobilistico e manifatturiero a quello aerospaziale. Lo svantaggio di una tale varietà di compiti di ispezione è che di solito le ispezioni industriali richiedono configurazioni robotiche specifiche e sensori appropriati, rendendo ogni ispezione molto specifica e personalizzata. Per questo motivo, la presente tesi fornisce una panoramica di un framework di ispezione generale che risolve il problema della creazione di celle di lavoro di ispezione personalizzate, proponendo moduli software generali che possono essere facilmente configurati per affrontare ogni specifico scenario di ispezione. In particolare, questa tesi si concentra sui problemi della calibrazione occhio-mano, ovvero il problema di calcolare con precisione la posizione del sensore nella cella di lavoro rispetto all'inquadratura del robot, e del Data Mapping, utilizzato per mappare i dati del sensore nella rappresentazione del modello 3D dell'oggetto ispezionato. Per la calibrazione occhio-mano proponiamo due tecniche che risolvono con precisione la posizione del sensore in più configurazioni robotiche. Entrambe considerano la configurazione robot-sensore eye-on-base e eye-in-hand, vale a dire il modo in cui discriminiamo se il sensore è montato in un punto fisso della cella di lavoro o nel braccio terminale del manipolatore robotico, rispettivamente. Inoltre, uno dei principali contributi di questa tesi è un approccio generale alla calibrazione occhio-mano che è anche in grado di gestire, grazie a una formulazione unificata di ottimizzazione del grafo di posa, configurazioni di ispezione in cui sono coinvolti più sensori (ad esempio, reti multi-camera). In definitiva, questa tesi propone un metodo generale che sfrutta un risultato preciso e accurato della calibrazione occhio-mano per affrontare il problema del Data Mapping per i robot di ispezione multiuso. Questo approccio è stato applicato in diverse configurazioni di ispezione, dall'industria automobilistica a quella aerospaziale e manifatturiera. La maggior parte dei contributi presentati in questa tesi sono disponibili come pacchetti software open-source. Riteniamo che ciò favorisca la collaborazione, consenta una precisa ripetibilità dei nostri esperimenti e faciliti la ricerca futura sulla calibrazione di complesse configurazioni robotiche industriali.Quality inspections are an essential part of ensuring the manufacturing process runs smoothly and that the final product meets high standards. Industrial robots have emerged as a key tool in conducting quality inspections, allowing for precision and consistency in the inspection process. By utilizing advanced inspection technologies, industrial robots can detect defects and anomalies in products at a faster pace than human inspectors, improving production efficiency. With the ability to automate repetitive and tedious inspection tasks, industrial robots can also reduce the risk of human error and increase product quality. As technology continues to advance, the use of industrial robots for quality inspections is becoming more widespread across industrial sectors, ranging from automotive and manufactury to aerospace industries. The drawback of such a large variety of inspection tasks is that usually industrial inspections require specific robotic setups and appropriate sensors, making every inspection very specific and custom buildt. For this reason, this thesis gives an overview of a general inspection framework that solves the problem of creating customized inspection workcells by proposing general software modules that can be easily configured to address each specific inspection scenario. In particular, this thesis is focusing on the problems of Hand-eye Calibration, that is the problem of accurately computing the position of the sensor in the workcell with respect to the robot frame, and Data Mapping that is used to map sensor data to the 3D model representation of the inspected object. For the Hand-eye Calibration we propose two techniques that accurately solve the position of the sensor in multiple robotic setups. They both consider eye-on-base and eye-in-hand robot-sensor configuration, namely, this is the way in which we discriminate if the sensor is mounted in a fixed place in the workcell or in the end-effector of the robot manipulator, respectively. Moreover, one of the main contributions of this thesis is a general hand-eye calibration approach that is also capable of handling, thanks to a unified pose-graph optimization formulation, inspection setups where multiple sensors are involved (e.g., multi-camera networks). In the end, this thesis is proposing a general method that takes advantage of a precise and accurate hand-eye calibration result to address the problem of Data Mapping for multi-purpose inspection robots. This approach has been applied in multiple inspection setups, ranging from automotive to aerospace and manufactury industry. Most of the contributions presented in this thesis are available as open-source software packages. We believe that this will foster collaboration, enable precise repeatability of our experiments, and facilitate future research on the calibration of complex industrial robotic setups

    Geometry-Aware Coverage Path Planning for Depowdering on Complex 3D Surfaces

    Full text link
    This paper presents a new approach to obtaining nearly complete coverage paths (CP) with low overlapping on 3D general surfaces using mesh models. The CP is obtained by segmenting the mesh model into a given number of clusters using constrained centroidal Voronoi tessellation (CCVT) and finding the shortest path from cluster centroids using the geodesic metric efficiently. We introduce a new cost function to harmoniously achieve uniform areas of the obtained clusters and a restriction on the variation of triangle normals during the construction of CCVTs. Here, we utilize the planned VPs as cleaning configurations to perform residual powder removal in additive manufacturing using manipulator robots. The self-occlusion of VPs and ensuring collision-free robot configurations are addressed by integrating a proposed optimization-based strategy to find a set of candidate rays for each VP into the motion planning phase. CP planning benchmarks and physical experiments are conducted to demonstrate the effectiveness of the proposed approach. We show that our approach can compute the CPs and VPs of various mesh models with a massive number of triangles within a reasonable time.Comment: 8 pages, 8 figure
    corecore