17 research outputs found

    From point cloud to BIM: a survey of existing approaches

    Get PDF
    International audienceIn order to handle more efficiently projects of restoration, documentation and maintenance of historical buildings, it is essentialto rely on a 3D enriched model for the building. Today, the concept of Building Information Modelling (BIM) is widely adoptedfor the semantization of digital mockups and few research focused on the value of this concept in the field of cultural heritage.In addition historical buildings are already built, so it is necessary to develop a performing approach, based on a first step ofbuilding survey, to develop a semantically enriched digital model. For these reasons, this paper focuses on this chain startingwith a point cloud and leading to the well-structured final BIM; and proposes an analysis and a survey of existing approacheson the topics of: acquisition, segmentation and BIM creation. It also, presents a critical analysis on the application of this chainin the field of cultural heritag

    Review of the “ as-buit BIM ” approaches

    Get PDF
    International audienceToday, we need 3D models of heritage buildings in order to handle more efficiently projects of restoration, documentation and maintenance. In this context, developing a performing approach, based on a first phase of building survey, is a necessary step in order to build a semantically enriched digital model. For this purpose, the Building Information Modeling is an efficient tool for storing and exchanging knowledge about buildings. In order to create such a model, there are three fundamental steps: acquisition, segmentation and modeling. For these reasons, it is essential to understand and analyze this entire chain that leads to a well- structured and enriched 3D digital model. This paper proposes a survey and an analysis of the existing approaches on these topics and tries to define a new approach of semantic structuring taking into account the complexity of this chain

    Fast indoor scene classification using 3D point clouds

    Full text link
    A representation of space that includes both geometric and semantic information enables a robot to perform high-level tasks in complex environments. Identifying and categorizing environments based on onboard sensors are essential in these scenarios. The Kinect™, a 3D low cost sensor is appealing in these scenarios as it can provide rich information. The downside is the presence of large amount of information, which could lead to higher computational complexity. In this paper, we propose a methodology to efficiently classify indoor environments into semantic categories using Kinect™ data. With a fast feature extraction method along with an efficient feature selection algorithm (DEFS) and, support vector machines (SVM) classifier, we could realize a fast scene classification algorithm. Experimental results in an indoor scenario are presented including comparisons with its counterpart of commonly available 2D laser range finder data

    Furniture models learned from the WWW: using web catalogs to locate and categorize unknown furniture pieces in 3D laser scans

    Get PDF
    In this article, we investigate how autonomous robots can exploit the high quality information already available from the WWW concerning 3-D models of office furniture. Apart from the hobbyist effort in Google 3-D Warehouse, many companies providing office furnishings already have the models for considerable portions of the objects found in our workplaces and homes. In particular, we present an approach that allows a robot to learn generic models of typical office furniture using examples found in the Web. These generic models are then used by the robot to locate and categorize unknown furniture in real indoor environments

    Review of the “ as-buit BIM ” approaches

    Get PDF
    Today, we need 3D models of heritage buildings in order to handle more efficiently projects of restoration, documentation and maintenance. In this context, developing a performing approach, based on a first phase of building survey, is a necessary step in order to build a semantically enriched digital model. For this purpose, the Building Information Modeling is an efficient tool for storing and exchanging knowledge about buildings. In order to create such a model, there are three fundamental steps: acquisition, segmentation and modeling. For these reasons, it is essential to understand and analyze this entire chain that leads to a well- structured and enriched 3D digital model. This paper proposes a survey and an analysis of the existing approaches on these topics and tries to define a new approach of semantic structuring taking into account the complexity of this chain
    corecore