6,229 research outputs found

    A dynamic tactile sensor on photoelastic effect

    No full text
    Certain photoelastic materials exhibit birefringent characteristics at a very low level of strain. This property of material may be suitable for dynamic or wave propagation studies, which can be exploited for designing tactile sensors. This paper presents the design, construction and testing of a novel dynamic sensor based on photoelastic effect, which is capable of detecting object slip as well as providing normal force information. The paper investigates the mechanics of object slip, and develops an approximate model of the sensor. This allows visualization of various parameters involved in the sensor design. The model also explains design improvements necessary to obtain continuous signal during object slip. The developed sensor has been compared with other existing sensors and experimental results from the sensor have been discussed. The sensor is calibrated for normal force which is in addition to the dynamic signal that it provides from the same contact location. The sensor has a simple design and is of a small size allowing it to be incorporated into robotic fingers, and it provides output signals which are largely unaffected by external disturbances

    Hierarchical Salient Object Detection for Assisted Grasping

    Full text link
    Visual scene decomposition into semantic entities is one of the major challenges when creating a reliable object grasping system. Recently, we introduced a bottom-up hierarchical clustering approach which is able to segment objects and parts in a scene. In this paper, we introduce a transform from such a segmentation into a corresponding, hierarchical saliency function. In comprehensive experiments we demonstrate its ability to detect salient objects in a scene. Furthermore, this hierarchical saliency defines a most salient corresponding region (scale) for every point in an image. Based on this, an easy-to-use pick and place manipulation system was developed and tested exemplarily.Comment: Accepted for ICRA 201

    Sensors for Robotic Hands: A Survey of State of the Art

    Get PDF
    Recent decades have seen significant progress in the field of artificial hands. Most of the surveys, which try to capture the latest developments in this field, focused on actuation and control systems of these devices. In this paper, our goal is to provide a comprehensive survey of the sensors for artificial hands. In order to present the evolution of the field, we cover five year periods starting at the turn of the millennium. At each period, we present the robot hands with a focus on their sensor systems dividing them into categories, such as prosthetics, research devices, and industrial end-effectors.We also cover the sensors developed for robot hand usage in each era. Finally, the period between 2010 and 2015 introduces the reader to the state of the art and also hints to the future directions in the sensor development for artificial hands

    A hyper-redundant manipulator

    Get PDF
    “Hyper-redundant” manipulators have a very large number of actuatable degrees of freedom. The benefits of hyper-redundant robots include the ability to avoid obstacles, increased robustness with respect to mechanical failure, and the ability to perform new forms of robot locomotion and grasping. The authors examine hyper-redundant manipulator design criteria and the physical implementation of one particular design: a variable geometry truss

    Tactile Sensing with Accelerometers in Prehensile Grippers for Robots

    Full text link
    This is the author’s version of a work that was accepted for publication in Mechatronics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Mechatronics, Vol. 33, (2016)] DOI 10.1016/j.mechatronics.2015.11.007.Several pneumatic grippers with accelerometers attached to their fingers have been developed and tested. The first gripper is able to classify the hardness of different cylinders, estimate the pneumatic pressure, monitor the position and speed of the gripper fingers, and study the phases of the action of grasping and the influence of the relative position between the gripper and the cylinders. The other grippers manipulate and assess the firmness of eggplants and mangoes. To achieve a gentle manipulation, the grippers employ fingers with several degrees of freedom in different configurations and have a membrane filled with a fluid that allows their hardness to be controlled by means of the jamming transition of the granular fluid inside it. To assess the firmness of eggplants and mangoes and avoid the influence of the relative position between product and gripper, the firmness is estimated while the products are being held by the fingers. Better performance of the accelerometers is achieved when the finger employs the granular fluid. The article presents methods for designing grippers capable of assessing the firmness of irregular products with accelerometers. At the same time, it also studies the possibilities that accelerometers, attached to different pneumatic robot gripper fingers, offer as tactile sensors. (C) 2015 Elsevier Ltd. All rights reserved.This research is supported by the MANI-DACSA project (Grant number RTA2012-00062-C04-02), which is partially funded by the Spanish Government (Ministerio de Economia y Competitividad.).Blanes Campos, C.; Mellado Arteche, M.; Beltrán Beltrán, P. (2016). Tactile Sensing with Accelerometers in Prehensile Grippers for Robots. Mechatronics. 33:1-12. https://doi.org/10.1016/j.mechatronics.2015.11.007S1123

    On Neuromechanical Approaches for the Study of Biological Grasp and Manipulation

    Full text link
    Biological and robotic grasp and manipulation are undeniably similar at the level of mechanical task performance. However, their underlying fundamental biological vs. engineering mechanisms are, by definition, dramatically different and can even be antithetical. Even our approach to each is diametrically opposite: inductive science for the study of biological systems vs. engineering synthesis for the design and construction of robotic systems. The past 20 years have seen several conceptual advances in both fields and the quest to unify them. Chief among them is the reluctant recognition that their underlying fundamental mechanisms may actually share limited common ground, while exhibiting many fundamental differences. This recognition is particularly liberating because it allows us to resolve and move beyond multiple paradoxes and contradictions that arose from the initial reasonable assumption of a large common ground. Here, we begin by introducing the perspective of neuromechanics, which emphasizes that real-world behavior emerges from the intimate interactions among the physical structure of the system, the mechanical requirements of a task, the feasible neural control actions to produce it, and the ability of the neuromuscular system to adapt through interactions with the environment. This allows us to articulate a succinct overview of a few salient conceptual paradoxes and contradictions regarding under-determined vs. over-determined mechanics, under- vs. over-actuated control, prescribed vs. emergent function, learning vs. implementation vs. adaptation, prescriptive vs. descriptive synergies, and optimal vs. habitual performance. We conclude by presenting open questions and suggesting directions for future research. We hope this frank assessment of the state-of-the-art will encourage and guide these communities to continue to interact and make progress in these important areas

    Tactile manipulation with a TacThumb integrated on the Open-Hand M2 gripper

    Get PDF

    Soft manipulators and grippers: A review

    Get PDF
    Soft robotics is a growing area of research which utilizes the compliance and adaptability of soft structures to develop highly adaptive robotics for soft interactions. One area in which soft robotics has the ability to make significant impact is in the development of soft grippers and manipulators. With an increased requirement for automation, robotics systems are required to perform task in unstructured and not well defined environments; conditions which conventional rigid robotics are not best suited. This requires a paradigm shift in the methods and materials used to develop robots such that they can adapt to and work safely in human environments. One solution to this is soft robotics, which enables soft interactions with the surroundings while maintaining the ability to apply significant force. This review paper assesses the current materials and methods, actuation methods and sensors which are used in the development of soft manipulators. The achievements and shortcomings of recent technology in these key areas are evaluated, and this paper concludes with a discussion on the potential impacts of soft manipulators on industry and society
    corecore