4 research outputs found

    Invisible Deployment of Integration Processes

    Get PDF
    Abstract. Due to the changing scope of data management towards the management of heterogeneous and distributed systems and applications, integration processes gain in importance. This is particularly true for those processes used as abstractions of workflow-based integration tasks; these are widely applied in practice. In such scenarios, a typical IT infrastructure comprises multiple integration systems with overlapping functionalities. The major problems in this area are high development effort, low portability and inefficiency. Therefore, in this paper, we introduce the vision of invisible deployment that addresses the virtualization of multiple, heterogeneous, physical integration systems into a single logical integration system. This vision comprises several challenging issues in the fields of deployment aspects as well as runtime aspects. Here, we describe those challenges, discuss possible solutions and present a detailed system architecture for that approach. As a result, the development effort can be reduced and the portability as well as the performance can be improved significantly

    Cost-Based Optimization of Integration Flows

    Get PDF
    Integration flows are increasingly used to specify and execute data-intensive integration tasks between heterogeneous systems and applications. There are many different application areas such as real-time ETL and data synchronization between operational systems. For the reasons of an increasing amount of data, highly distributed IT infrastructures, and high requirements for data consistency and up-to-dateness of query results, many instances of integration flows are executed over time. Due to this high load and blocking synchronous source systems, the performance of the central integration platform is crucial for an IT infrastructure. To tackle these high performance requirements, we introduce the concept of cost-based optimization of imperative integration flows that relies on incremental statistics maintenance and inter-instance plan re-optimization. As a foundation, we introduce the concept of periodical re-optimization including novel cost-based optimization techniques that are tailor-made for integration flows. Furthermore, we refine the periodical re-optimization to on-demand re-optimization in order to overcome the problems of many unnecessary re-optimization steps and adaptation delays, where we miss optimization opportunities. This approach ensures low optimization overhead and fast workload adaptation
    corecore