41,041 research outputs found

    Quantum Markov chains: Description of hybrid systems, decidability of equivalence, and model checking linear-time properties

    Full text link
    © 2015 Elsevier Inc. In this paper, we study a model of quantum Markov chains that is a quantum analogue of Markov chains and is obtained by replacing probabilities in transition matrices with quantum operations. We show that this model is very suited to describe hybrid systems that consist of a quantum component and a classical one. Indeed, hybrid systems are often encountered in quantum information processing. Thus, we further propose a model called hybrid quantum automata (HQA) that can be used to describe the hybrid systems receiving inputs (actions) from the outer world. We show the language equivalence problem of HQA is decidable in polynomial time. Furthermore, we apply this result to the trace equivalence problem of quantum Markov chains, and thus it is also decidable in polynomial time. Finally, we discuss model checking linear-time properties of quantum Markov chains, and show the quantitative analysis of regular safety properties can be addressed successfully

    Model Checking Quantum Continuous-Time Markov Chains

    Get PDF
    Verifying quantum systems has attracted a lot of interests in the last decades. In this paper, we initialise the model checking of quantum continuous-time Markov chain (QCTMC). As a real-time system, we specify the temporal properties on QCTMC by signal temporal logic (STL). To effectively check the atomic propositions in STL, we develop a state-of-the-art real root isolation algorithm under Schanuel's conjecture; further, we check the general STL formula by interval operations with a bottom-up fashion, whose query complexity turns out to be linear in the size of the input formula by calling the real root isolation algorithm. A running example of an open quantum walk is provided to demonstrate our method

    Model checking quantum Markov chains

    Full text link
    Although the security of quantum cryptography is provable based on the principles of quantum mechanics, it can be compromised by the flaws in the design of quantum protocols and the noise in their physical implementations. So, it is indispensable to develop techniques of verifying and debugging quantum cryptographic systems. Model-checking has proved to be effective in the verification of classical cryptographic protocols, but an essential difficulty arises when it is applied to quantum systems: the state space of a quantum system is always a continuum even when its dimension is finite. To overcome this difficulty, we introduce a novel notion of quantum Markov chain, specially suited to model quantum cryptographic protocols, in which quantum effects are entirely encoded into super-operators labelling transitions, leaving the location information (nodes) being classical. Then we define a quantum extension of probabilistic computation tree logic (PCTL) and develop a model-checking algorithm for quantum Markov chains.Comment: Journal versio

    Exponential Quantum Speed-ups are Generic

    Get PDF
    A central problem in quantum computation is to understand which quantum circuits are useful for exponential speed-ups over classical computation. We address this question in the setting of query complexity and show that for almost any sufficiently long quantum circuit one can construct a black-box problem which is solved by the circuit with a constant number of quantum queries, but which requires exponentially many classical queries, even if the classical machine has the ability to postselect. We prove the result in two steps. In the first, we show that almost any element of an approximate unitary 3-design is useful to solve a certain black-box problem efficiently. The problem is based on a recent oracle construction of Aaronson and gives an exponential separation between quantum and classical bounded-error with postselection query complexities. In the second step, which may be of independent interest, we prove that linear-sized random quantum circuits give an approximate unitary 3-design. The key ingredient in the proof is a technique from quantum many-body theory to lower bound the spectral gap of local quantum Hamiltonians.Comment: 24 pages. v2 minor correction

    Automated Verification of Quantum Protocols using MCMAS

    Full text link
    We present a methodology for the automated verification of quantum protocols using MCMAS, a symbolic model checker for multi-agent systems The method is based on the logical framework developed by D'Hondt and Panangaden for investigating epistemic and temporal properties, built on the model for Distributed Measurement-based Quantum Computation (DMC), an extension of the Measurement Calculus to distributed quantum systems. We describe the translation map from DMC to interpreted systems, the typical formalism for reasoning about time and knowledge in multi-agent systems. Then, we introduce dmc2ispl, a compiler into the input language of the MCMAS model checker. We demonstrate the technique by verifying the Quantum Teleportation Protocol, and discuss the performance of the tool.Comment: In Proceedings QAPL 2012, arXiv:1207.055
    • …
    corecore