106,945 research outputs found

    A Survey on Software Testing Techniques using Genetic Algorithm

    Full text link
    The overall aim of the software industry is to ensure delivery of high quality software to the end user. To ensure high quality software, it is required to test software. Testing ensures that software meets user specifications and requirements. However, the field of software testing has a number of underlying issues like effective generation of test cases, prioritisation of test cases etc which need to be tackled. These issues demand on effort, time and cost of the testing. Different techniques and methodologies have been proposed for taking care of these issues. Use of evolutionary algorithms for automatic test generation has been an area of interest for many researchers. Genetic Algorithm (GA) is one such form of evolutionary algorithms. In this research paper, we present a survey of GA approach for addressing the various issues encountered during software testing.Comment: 13 Page

    Model-Based Security Testing

    Full text link
    Security testing aims at validating software system requirements related to security properties like confidentiality, integrity, authentication, authorization, availability, and non-repudiation. Although security testing techniques are available for many years, there has been little approaches that allow for specification of test cases at a higher level of abstraction, for enabling guidance on test identification and specification as well as for automated test generation. Model-based security testing (MBST) is a relatively new field and especially dedicated to the systematic and efficient specification and documentation of security test objectives, security test cases and test suites, as well as to their automated or semi-automated generation. In particular, the combination of security modelling and test generation approaches is still a challenge in research and of high interest for industrial applications. MBST includes e.g. security functional testing, model-based fuzzing, risk- and threat-oriented testing, and the usage of security test patterns. This paper provides a survey on MBST techniques and the related models as well as samples of new methods and tools that are under development in the European ITEA2-project DIAMONDS.Comment: In Proceedings MBT 2012, arXiv:1202.582

    Optimizing compilation with preservation of structural code coverage metrics to support software testing

    Get PDF
    Code-coverage-based testing is a widely-used testing strategy with the aim of providing a meaningful decision criterion for the adequacy of a test suite. Code-coverage-based testing is also mandated for the development of safety-critical applications; for example, the DO178b document requires the application of the modified condition/decision coverage. One critical issue of code-coverage testing is that structural code coverage criteria are typically applied to source code whereas the generated machine code may result in a different code structure because of code optimizations performed by a compiler. In this work, we present the automatic calculation of coverage profiles describing which structural code-coverage criteria are preserved by which code optimization, independently of the concrete test suite. These coverage profiles allow to easily extend compilers with the feature of preserving any given code-coverage criteria by enabling only those code optimizations that preserve it. Furthermore, we describe the integration of these coverage profile into the compiler GCC. With these coverage profiles, we answer the question of how much code optimization is possible without compromising the error-detection likelihood of a given test suite. Experimental results conclude that the performance cost to achieve preservation of structural code coverage in GCC is rather low.Peer reviewedSubmitted Versio

    Goal sketching with activity diagrams

    Get PDF
    Goal orientation is acknowledged as an important paradigm in requirements engineering. The structure of a goal-responsibility model provides opportunities for appraising the intention of a development. Creating a suitable model under agile constraints (time, incompleteness and catching up after an initial burst of creativity) can be challenging. Here we propose a marriage of UML activity diagrams with goal sketching in order to facilitate the production of goal responsibility models under these constraints

    CTGEN - a Unit Test Generator for C

    Full text link
    We present a new unit test generator for C code, CTGEN. It generates test data for C1 structural coverage and functional coverage based on pre-/post-condition specifications or internal assertions. The generator supports automated stub generation, and data to be returned by the stub to the unit under test (UUT) may be specified by means of constraints. The typical application field for CTGEN is embedded systems testing; therefore the tool can cope with the typical aliasing problems present in low-level C, including pointer arithmetics, structures and unions. CTGEN creates complete test procedures which are ready to be compiled and run against the UUT. In this paper we describe the main features of CTGEN, their technical realisation, and we elaborate on its performance in comparison to a list of competing test generation tools. Since 2011, CTGEN is used in industrial scale test campaigns for embedded systems code in the automotive domain.Comment: In Proceedings SSV 2012, arXiv:1211.587

    FORTEST: Formal methods and testing

    Get PDF
    Formal methods have traditionally been used for specification and development of software. However there are potential benefits for the testing stage as well. The panel session associated with this paper explores the usefulness or otherwise of formal methods in various contexts for improving software testing. A number of different possibilities for the use of formal methods are explored and questions raised. The contributors are all members of the UK FORTEST Network on formal methods and testing. Although the authors generally believe that formal methods are useful in aiding the testing process, this paper is intended to provoke discussion. Dissenters are encouraged to put their views to the panel or individually to the authors
    • ā€¦
    corecore