362,575 research outputs found

    Model-Based Self-Managing Systems Engineering

    Get PDF

    Transfer Learning for Improving Model Predictions in Highly Configurable Software

    Full text link
    Modern software systems are built to be used in dynamic environments using configuration capabilities to adapt to changes and external uncertainties. In a self-adaptation context, we are often interested in reasoning about the performance of the systems under different configurations. Usually, we learn a black-box model based on real measurements to predict the performance of the system given a specific configuration. However, as modern systems become more complex, there are many configuration parameters that may interact and we end up learning an exponentially large configuration space. Naturally, this does not scale when relying on real measurements in the actual changing environment. We propose a different solution: Instead of taking the measurements from the real system, we learn the model using samples from other sources, such as simulators that approximate performance of the real system at low cost. We define a cost model that transform the traditional view of model learning into a multi-objective problem that not only takes into account model accuracy but also measurements effort as well. We evaluate our cost-aware transfer learning solution using real-world configurable software including (i) a robotic system, (ii) 3 different stream processing applications, and (iii) a NoSQL database system. The experimental results demonstrate that our approach can achieve (a) a high prediction accuracy, as well as (b) a high model reliability.Comment: To be published in the proceedings of the 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS'17

    Towards Highly Scalable Runtime Models with History

    Full text link
    Advanced systems such as IoT comprise many heterogeneous, interconnected, and autonomous entities operating in often highly dynamic environments. Due to their large scale and complexity, large volumes of monitoring data are generated and need to be stored, retrieved, and mined in a time- and resource-efficient manner. Architectural self-adaptation automates the control, orchestration, and operation of such systems. This can only be achieved via sophisticated decision-making schemes supported by monitoring data that fully captures the system behavior and its history. Employing model-driven engineering techniques we propose a highly scalable, history-aware approach to store and retrieve monitoring data in form of enriched runtime models. We take advantage of rule-based adaptation where change events in the system trigger adaptation rules. We first present a scheme to incrementally check model queries in the form of temporal logic formulas which represent the conditions of adaptation rules against a runtime model with history. Then we enhance the model to retain only information that is temporally relevant to the queries, therefore reducing the accumulation of information to a required minimum. Finally, we demonstrate the feasibility and scalability of our approach via experiments on a simulated smart healthcare system employing a real-world medical guideline.Comment: 8 pages, 4 figures, 15th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS2020

    mRUBiS: An Exemplar for Model-Based Architectural Self-Healing and Self-Optimization

    Full text link
    Self-adaptive software systems are often structured into an adaptation engine that manages an adaptable software by operating on a runtime model that represents the architecture of the software (model-based architectural self-adaptation). Despite the popularity of such approaches, existing exemplars provide application programming interfaces but no runtime model to develop adaptation engines. Consequently, there does not exist any exemplar that supports developing, evaluating, and comparing model-based self-adaptation off the shelf. Therefore, we present mRUBiS, an extensible exemplar for model-based architectural self-healing and self-optimization. mRUBiS simulates the adaptable software and therefore provides and maintains an architectural runtime model of the software, which can be directly used by adaptation engines to realize and perform self-adaptation. Particularly, mRUBiS supports injecting issues into the model, which should be handled by self-adaptation, and validating the model to assess the self-adaptation. Finally, mRUBiS allows developers to explore variants of adaptation engines (e.g., event-driven self-adaptation) and to evaluate the effectiveness, efficiency, and scalability of the engines

    DATESSO: Self-Adapting Service Composition with Debt-Aware Two Levels Constraint Reasoning

    Full text link
    The rapidly changing workload of service-based systems can easily cause under-/over-utilization on the component services, which can consequently affect the overall Quality of Service (QoS), such as latency. Self-adaptive services composition rectifies this problem, but poses several challenges: (i) the effectiveness of adaptation can deteriorate due to over-optimistic assumptions on the latency and utilization constraints, at both local and global levels; and (ii) the benefits brought by each composition plan is often short term and is not often designed for long-term benefits -- a natural prerequisite for sustaining the system. To tackle these issues, we propose a two levels constraint reasoning framework for sustainable self-adaptive services composition, called DATESSO. In particular, DATESSO consists of a re ned formulation that differentiates the "strictness" for latency/utilization constraints in two levels. To strive for long-term benefits, DATESSO leverages the concept of technical debt and time-series prediction to model the utility contribution of the component services in the composition. The approach embeds a debt-aware two level constraint reasoning algorithm in DATESSO to improve the efficiency, effectiveness and sustainability of self-adaptive service composition. We evaluate DATESSO on a service-based system with real-world WS-DREAM dataset and comparing it with other state-of-the-art approaches. The results demonstrate the superiority of DATESSO over the others on the utilization, latency and running time whilst likely to be more sustainable.Comment: Accepted to the SEAMS '20. Please use the following citation: Satish Kumar, Tao Chen, Rami Bahsoon, and Rajkumar Buyya. DATESSO: Self-Adapting Service Composition with Debt-Aware Two Levels Constraint Reasoning. In IEEE/ACM 15th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, Oct 7-8, 2020, Seoul, Kore

    Taming Uncertainty in the Assurance Process of Self-Adaptive Systems: a Goal-Oriented Approach

    Full text link
    Goals are first-class entities in a self-adaptive system (SAS) as they guide the self-adaptation. A SAS often operates in dynamic and partially unknown environments, which cause uncertainty that the SAS has to address to achieve its goals. Moreover, besides the environment, other classes of uncertainty have been identified. However, these various classes and their sources are not systematically addressed by current approaches throughout the life cycle of the SAS. In general, uncertainty typically makes the assurance provision of SAS goals exclusively at design time not viable. This calls for an assurance process that spans the whole life cycle of the SAS. In this work, we propose a goal-oriented assurance process that supports taming different sources (within different classes) of uncertainty from defining the goals at design time to performing self-adaptation at runtime. Based on a goal model augmented with uncertainty annotations, we automatically generate parametric symbolic formulae with parameterized uncertainties at design time using symbolic model checking. These formulae and the goal model guide the synthesis of adaptation policies by engineers. At runtime, the generated formulae are evaluated to resolve the uncertainty and to steer the self-adaptation using the policies. In this paper, we focus on reliability and cost properties, for which we evaluate our approach on the Body Sensor Network (BSN) implemented in OpenDaVINCI. The results of the validation are promising and show that our approach is able to systematically tame multiple classes of uncertainty, and that it is effective and efficient in providing assurances for the goals of self-adaptive systems
    corecore