42 research outputs found

    Worldwide Argus II implantation: recommendations to optimize patient outcomes

    Get PDF
    Abstract Background A position paper based on the collective experiences of Argus II Retinal Prosthesis System investigators to review strategies to optimize outcomes in patients with retinitis pigmentosa undergoing retinal prosthesis implantation. Methods Retinal surgeons, device programmers, and rehabilitation specialists from Europe, Canada, Middle East, and the United States were convened to the first international Argus II Investigator Meeting held in Ann Arbor, MI in March 2015. The recommendations from the collective experiences were collected. Factors associated with successful outcomes were determined. Results Factors leading to successful outcomes begin with appropriate patient selection, expectation counseling, and preoperative retinal assessment. Challenges to surgical implantation include presence of staphyloma and inadequate Tenon’s capsule or conjunctiva. Modified surgical technique may reduce risks of complications such as hypotony and conjunctival erosion. Rehabilitation efforts and correlation with validated outcome measures following implantation are critical. Conclusions Bringing together Argus II investigators allowed the identification of strategies to optimize patient outcomes. Establishing an on-line collaborative network will foster coordinated research efforts to advance outcome assessment and rehabilitation strategies.http://deepblue.lib.umich.edu/bitstream/2027.42/134581/1/12886_2016_Article_225.pd

    Towards clinical trials of a novel Bionic Eye: Building evidence of safety and efficacy

    Get PDF
    In the quest for therapeutic solutions for the visually impaired, electrical stimulation of the retina is, and has been, the focus of intense research. Some of these efforts have led to the development of the Phoenix99 Bionic Eye, a device which combines promising technological features with novel stimulation strategies. For medical devices, considerable challenges must be overcome before they’re allowed to be trialled in their target population. The requirements for a study to be performed include the demonstration of a positive risk-benefit ratio of the research. The present dissertation is an attempt to address how pre-clinical trials in animals can be used to understand and minimise risks. A positive risk-benefit ratio means that the potential benefits of the research outweigh the risks of the intervention. In the case of retinal prostheses, the risks include the surgical intervention, the immune response to the device, the safety of the electrical stimuli, and the effects of device ageing. In this work, successful demonstration of the surgical safety and biocompatibility of passive Phoenix99 devices during long-term implantation in sheep called for the evaluation of the chronic effects of the novel stimulation paradigms it can deliver. As preparation for this study, the techniques used to evaluate the safety and efficacy of the stimuli in animals were refined. A systematic approach to minimise the impact of anaesthesia on the experimental results is presented, as well as a novel in vivo retinal recording technique. To maximise the clinical relevance of all animal trials, a computer model for the prediction of thresholds was developed. Finally, in vitro device ageing was performed to deepen our understanding of the design’s potential for long-term implantation. Protocols for a long-term device safety study in sheep and for an acute human trial are also presented, thus taking concrete and sensible steps towards the first clinical use of the Phoenix99 Bionic Eye

    Egocentric Computer Vision and Machine Learning for Simulated Prosthetic Vision

    Get PDF
    Las prótesis visuales actuales son capaces de proporcionar percepción visual a personas con cierta ceguera. Sin pasar por la parte dañada del camino visual, la estimulación eléctrica en la retina o en el sistema nervioso provoca percepciones puntuales conocidas como “fosfenos”. Debido a limitaciones fisiológicas y tecnológicas, la información que reciben los pacientes tiene una resolución muy baja y un campo de visión y rango dinámico reducido afectando seriamente la capacidad de la persona para reconocer y navegar en entornos desconocidos. En este contexto, la inclusión de nuevas técnicas de visión por computador es un tema clave activo y abierto. En esta tesis nos centramos especialmente en el problema de desarrollar técnicas para potenciar la información visual que recibe el paciente implantado y proponemos diferentes sistemas de visión protésica simulada para la experimentación.Primero, hemos combinado la salida de dos redes neuronales convolucionales para detectar bordes informativos estructurales y siluetas de objetos. Demostramos cómo se pueden reconocer rápidamente diferentes escenas y objetos incluso en las condiciones restringidas de la visión protésica. Nuestro método es muy adecuado para la comprensión de escenas de interiores comparado con los métodos tradicionales de procesamiento de imágenes utilizados en prótesis visuales.Segundo, presentamos un nuevo sistema de realidad virtual para entornos de visión protésica simulada más realistas usando escenas panorámicas, lo que nos permite estudiar sistemáticamente el rendimiento de la búsqueda y reconocimiento de objetos. Las escenas panorámicas permiten que los sujetos se sientan inmersos en la escena al percibir la escena completa (360 grados).En la tercera contribución demostramos cómo un sistema de navegación de realidad aumentada para visión protésica ayuda al rendimiento de la navegación al reducir el tiempo y la distancia para alcanzar los objetivos, incluso reduciendo significativamente el número de colisiones de obstáculos. Mediante el uso de un algoritmo de planificación de ruta, el sistema encamina al sujeto a través de una ruta más corta y sin obstáculos. Este trabajo está actualmente bajo revisión.En la cuarta contribución, evaluamos la agudeza visual midiendo la influencia del campo de visión con respecto a la resolución espacial en prótesis visuales a través de una pantalla montada en la cabeza. Para ello, usamos la visión protésica simulada en un entorno de realidad virtual para simular la experiencia de la vida real al usar una prótesis de retina. Este trabajo está actualmente bajo revisión.Finalmente, proponemos un modelo de Spiking Neural Network (SNN) que se basa en mecanismos biológicamente plausibles y utiliza un esquema de aprendizaje no supervisado para obtener mejores algoritmos computacionales y mejorar el rendimiento de las prótesis visuales actuales. El modelo SNN propuesto puede hacer uso de la señal de muestreo descendente de la unidad de procesamiento de información de las prótesis retinianas sin pasar por el análisis de imágenes retinianas, proporcionando información útil a los ciegos. Esté trabajo está actualmente en preparación.<br /

    Towards Retinal Repair: Bioelectric Assessment of Retinal Pigment Epithelium in vitro and Electrode Materials for Retinal Implants

    Get PDF
    The aim of this thesis was to develop methods for future solutions to prevent eye diseases caused by the dysfunctions of retinal pigment epithelial (RPE) cells and to restore the vision of blind patients. On a cellular level, the degeneration of RPE cells is often the prime cause of eye diseases such as age-related macular degeneration and some forms of retinitis pigmentosa. RPE cell replacement therapy may provide new solutions for the prevention of eye diseases that lead to blindness. RPE cells differentiated from pluripotent stem cells provide a promising source for cell replacement therapy. However, the functionality of the differentiated cells is still not fully proven. One objective of this thesis was to provide solutions for testing the functionality of differentiated RPE cells. If blindness cannot be cured, artificial vision provided by retinal implant may be considered. The second objective of this thesis was to characterize the electrochemical properties of the different electrode materials used in retinal implants. The electrode materials used in retinal implants should be carefully considered in order to increase the resolution of the implant and to provide stable, safe, and biocompatible charge injection. All the methods used and developed in this thesis were based on bioelectrical phenomena. The electrochemical characterization of five different electrode materials used in retinal implants used electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV) measurements. We considered the effect of electrode size and material on charge capacity and impedance. Atomic force microscopy (AFM) was used to study the surface properties of the studied electrodes. The testing of the materials was done using exactly the same measurement conditions and electrode producing methods to provide easily comparable data. In this thesis, the functionality of RPE cells differentiated from human embryonic stem cells (hESC-RPE) was studied with two different methods. EIS was used to compare the electrical properties between two different RPE cell lines (immortalized human RPE cell line (ARPE-19) and hESC-RPE). To our knowledge, EIS measurements of RPE cells have not been published before. EIS was also used to find out how the barrier properties of hESC-RPE cells differ when the cells are in different stages of maturity. In addition, we developed a method that could be used to study the functionality of hESC-RPE cells with in vitro electroretinography (ERG) measurements: Our hypothesis is that RPE cells enhance the ERG response of the mouse retina and enable longer culturing of the functional retina in vitro. Comparing the ERG responses of a mouse retina alone and of a mouse retina cultured together with hESC-RPE cells could reveal the functionality of hESC-RPE cells. The EIS measurements were in accordance with biological analyses. The hESC-RPE cells resembled morphologically mature RPE, and thus created high transepithelial resistance (TER) indicating high integrity and tight junction formation. The EIS measurements revealed that during the maturation the TER of the cell culture increases, peak phase diagram shifts to lower frequencies, and the capacitance of the epithelium increases. Permeability measurements verified that EIS measurements reveal the tight junction failures and integrity decrease caused by calcium chelation. With the developed setup we were able to measure ERG responses from both the co-culture of retina and RPE and the retina cultured alone. However, due to limited sample size and possibly due to short co-culture time in our culture setup as yet we were not able to prove the hypothesis by showing that RPE cells would enhance the ERG response of the retina in vitro. Both the retina cultured alone and the co-culture responded to light stimulus after one day of culturing. CV and EIS measurements of different electrodes showed that iridium-black (Ir-b) and platinum-black (Pt-b) electrodes were superior, i.e. they had higher charge injection capacity and lower impedance when compared to other tested materials (gold (Au), titaniumnitrate (TiN), titanium (Ti)). Based on our findings we can conclude that novel biocompatible electrode materials that have the potential to be used in implantation are available. In the same way as in this thesis, the electrochemical testing of electrode materials should be done using similar testing methods for every material to enable easy comparison of the results between different materials. At the moment, cell replacement therapy and the use of RPE cells is seriously considered as a choice for eye disease treatment. Our results suggest that EIS is useful when evaluating the overall maturity, integrity, and functionality of the RPE cell culture. In forthcoming cell transplantation therapies, EIS could provide a means to test the validity of stem cell-derived RPE non-invasively and aseptically before implantation. Our initial tests show that studies to test the ability of RPE cells to rescue the photoreceptors in a mouse model by testing ERG responses in vitro should be continued. Even though our results did not produce conclusive evidence, the co-culture of the retina and hESC-RPE cells may be a useful in vitro model for investigating the RPE cell replacement therapy and possible drug releasing materials for the retina

    Clamp-assisted retractor advancement for lower eyelid involutional entropion

    Get PDF
    Scientific Poster 144PURPOSE: To describe a novel approach to internal repair of lower lid entropion using the Putterman clamp. METHODS: Retrospective, consecutive case series of patients with entropion who underwent retractor advancement using the clamp. RESULTS: Seven eyes of 6 patients (average age: 80; 4 women and 2 men) were analyzed. Complete resolution was achieved in 5 of the 6 patients (83.3%). The 1 patient with recurrence had 2 previous entropion surgeries on each eye over the past 4 years; there was lid laxity, and horizontal tightening was needed. No severe adverse events occurred in the patients. CONCLUSION: Clamp-assisted lower lid retractor advancement offers a safe and effective, minimally invasive approach to involutional entropion. Further study is needed to assess its role in recurrent entropion.postprin

    Bridging Spinal networks: Novel 3D substrates as neural implantable interfaces

    Get PDF
    In modern neuroscience, significant progress in developing structural scaffolds integrated with the brain is provided by the increasing use of nanomaterials. We show that a multiwalled carbon nanotube self-standing framework, consisting of a three-dimensional (3D) mesh of interconnected, conductive, pure carbon nanotubes, can guide the formation of neural webs in vitro where the spontaneous regrowth of neurite bundles is molded into a dense random net. This morphology of the fiber regrowth shaped by the 3D structure supports the successful reconnection of segregated spinal cord segments.We further observed in vivo the adaptability of these 3D devices in a healthy physiological environment. Our study shows that 3D artificial scaffolds may drive local rewiring in vitro and hold great potential for the development of future in vivo interfaces.Neural implants in past decades have offered themselves as a promising tool in finding answers for spinal cord injury and yet no practical treatment is available. Glial barrier and functional deficits are major challenges needed to overcome. Here, we have used a unique scaffold fabricated from 3D multiwalled carbon nanotube fibers (CNF) as a neural implant. We investigated long term in vivo effects of this material implanted in L1 hemisection lesione. Functional locomotor recovery measured by BBB rating scale and ladder rung test demonstrated improvement starting from 24 h post-injury over a course of 8 weeks. Footprint analysis revealed early onset of plantar placement in CNF-implanted animals. Tissue reaction to the implant quantified as GFAP and Iba 1-positive area was limited and invasion of neural processes within the implanted scaffold suggests use of carbon nanofibers as a safe and neuron-friendly scaffold

    A Wireless, High-Voltage Compliant, and Energy-Efficient Visual Intracortical Microstimulator

    Get PDF
    RÉSUMÉ L’objectif général de ce projet de recherche est la conception, la mise en oeuvre et la validation d’une interface sans fil intracorticale implantable en technologie CMOS avancée pour aider les personnes ayant une déficience visuelle. Les défis majeurs de cette recherche sont de répondre à la conformité à haute tension nécessaire à travers l’interface d’électrode-tissu (IET), augmenter la flexibilité dans la microstimulation et la surveillance multicanale, minimiser le budget de puissance pour un dispositif biomédical implantable, réduire la taille de l’implant et améliorer le taux de transmission sans fil des données. Par conséquent, nous présentons dans cette thèse un système de microstimulation intracorticale multi-puce basée sur une nouvelle architecture pour la transmission des données sans fil et le transfert de l’énergie se servant de couplages inductifs et capacitifs. Une première puce, un générateur de stimuli (SG) éconergétique, et une autre qui est un amplificateur de haute impédance se connectant au réseau de microélectrodes de l’étage de sortie. Les 4 canaux de générateurs de stimuli produisent des impulsions rectangulaires, demi-sinus (DS), plateau-sinus (PS) et autres types d’impulsions de courant à haut rendement énergétique. Le SG comporte un contrôleur de faible puissance, des convertisseurs numérique-analogiques (DAC) opérant en mode courant, générateurs multi-forme d’ondes et miroirs de courants alimentés sous 1.2 et 3.3V se servant pour l’interface entre les deux technologies utilisées. Le courant de stimulation du SG varie entre 2.32 et 220μA pour chaque canal. La deuxième puce (pilote de microélectrodes (MED)), une interface entre le SG et de l’arrangement de microélectrodes (MEA), fournit quatre niveaux différents de courant avec la valeur maximale de 400μA par entrée et 100μA par canal de sortie simultanément pour 8 à 16 sites de stimulation à travers les microélectrodes, connectés soit en configuration bipolaire ou monopolaire. Cette étage de sortie est hautement configurable et capable de délivrer une tension élevée pour satisfaire les conditions de l’interface à travers l’impédance de IET par rapport aux systèmes précédemment rapportés. Les valeurs nominales de plus grandes tensions d’alimentation sont de ±10V. La sortie de tension mesurée est conformément 10V/phase (anodique ou cathodique) pour les tensions d’alimentation spécifiées. L’incrémentation de tensions d’alimentation à ±13V permet de produire un courant de stimulation de 220μA par canal de sortie permettant d’élever la tension de sortie jusqu’au 20V par phase. Cet étage de sortie regroupe un commutateur haute tension pour interfacer une matrice des miroirs de courant (3.3V /20V), un registre à décalage de 32-bits à entrée sérielle, sortie parallèle, et un circuit dédié pour bloquer des états interdits.----------ABSTRACT The general objective of this research project is the design, implementation and validation of an implantable wireless intracortical interface in advanced CMOS technology to aid the visually impaired people. The major challenges in this research are to meet the required highvoltage compliance across electrode-tissue interface (ETI), increase lexibility in multichannel microstimulation and monitoring, minimize power budget for an implantable biomedical device, reduce the implant size, and enhance the data rate in wireless transmission. Therefore, we present in this thesis a multi-chip intracortical microstimulation system based on a novel architecture for wireless data and power transmission comprising inductive and capacitive couplings. The first chip is an energy-efficient stimuli generator (SG) and the second one is a highimpedance microelectrode array driver output-stage. The 4-channel stimuli-generator produces rectangular, half-sine (HS), plateau-sine (PS), and other types of energy-efficient current pulse. The SG is featured with low-power controller, current mode source- and sinkdigital- to-analog converters (DACs), multi-waveform generators, and 1.2V/3.3V interface current mirrors. The stimulation current per channel of the SG ranges from 2.32 to 220μA per channel. The second chip (microelectrode driver (MED)), an interface between the SG and the microelectrode array (MEA), supplies four different current levels with the maximum value of 400μA per input and 100μA per output channel. These currents can be delivered simultaneously to 8 to 16 stimulation sites through microelectrodes, connected either in bipolar or monopolar configuration. This output stage is highly-configurable and able to deliver higher compliance voltage across ETI impedance compared to previously reported designs. The nominal values of largest supply voltages are ±10V. The measured output compliance voltage is 10V/phase (anodic or cathodic) for the specified supply voltages. Increment of supply voltages to ±13V allows 220μA stimulation current per output channel enhancing the output compliance voltage up to 20V per phase. This output-stage is featured with a high-voltage switch-matrix, 3.3V/20V current mirrors, an on-chip 32-bit serial-in parallel-out shift register, and the forbidden state logic building blocks. The SG and MED chips have been designed and fabricated in IBM 0.13μm CMOS and Teledyne DALSA 0.8μm 5V/20V CMOS/DMOS technologies with silicon areas occupied by them 1.75 x 1.75mm2 and 4 x 4mm2 respectively. The measured DC power budgets consumed by low-and mid-voltage microchips are 2.56 and 2.1mW consecutively
    corecore