6 research outputs found

    A Three-Level Parallelisation Scheme and Application to the Nelder-Mead Algorithm

    Get PDF
    We consider a three-level parallelisation scheme. The second and third levels define a classical two-level parallelisation scheme and some load balancing algorithm is used to distribute tasks among processes. It is well-known that for many applications the efficiency of parallel algorithms of the second and third level starts to drop down after some critical parallelisation degree is reached. This weakness of the two-level template is addressed by introduction of one additional parallelisation level. As an alternative to the basic solver some new or modified algorithms are considered on this level. The idea of the proposed methodology is to increase the parallelisation degree by using less efficient algorithms in comparison with the basic solver. As an example we investigate two modified Nelder-Mead methods. For the selected application, a few partial differential equations are solved numerically on the second level, and on the third level the parallel Wang's algorithm is used to solve systems of linear equations with tridiagonal matrices. A greedy workload balancing heuristic is proposed, which is oriented to the case of a large number of available processors. The complexity estimates of the computational tasks are model-based, i.e. they use empirical computational data

    Optimizing Streaming Parallelism on Heterogeneous Many-Core Architectures

    Get PDF
    As many-core accelerators keep integrating more processing units, it becomes increasingly more difficult for a parallel application to make effective use of all available resources. An effective way for improving hardware utilization is to exploit spatial and temporal sharing of the heterogeneous processing units by multiplexing computation and communication tasks - a strategy known as heterogeneous streaming. Achieving effective heterogeneous streaming requires carefully partitioning hardware among tasks, and matching the granularity of task parallelism to the resource partition. However, finding the right resource partitioning and task granularity is extremely challenging, because there is a large number of possible solutions and the optimal solution varies across programs and datasets. This article presents an automatic approach to quickly derive a good solution for hardware resource partition and task granularity for task-based parallel applications on heterogeneous many-core architectures. Our approach employs a performance model to estimate the resulting performance of the target application under a given resource partition and task granularity configuration. The model is used as a utility to quickly search for a good configuration at runtime. Instead of hand-crafting an analytical model that requires expert insights into low-level hardware details, we employ machine learning techniques to automatically learn it. We achieve this by first learning a predictive model offline using training programs. The learnt model can then be used to predict the performance of any unseen program at runtime. We apply our approach to 39 representative parallel applications and evaluate it on two representative heterogeneous many-core platforms: a CPU-XeonPhi platform and a CPU-GPU platform. Compared to the single-stream version, our approach achieves, on average, a 1.6x and 1.1x speedup on the XeonPhi and the GPU platform, respectively. These results translate to over 93% of the performance delivered by a theoretically perfect predictor

    Automatic Performance Optimization on Heterogeneous Computer Systems using Manycore Coprocessors

    Get PDF
    Emerging computer architectures and advanced computing technologies, such as Intel’s Many Integrated Core (MIC) Architecture and graphics processing units (GPU), provide a promising solution to employ parallelism for achieving high performance, scalability and low power consumption. As a result, accelerators have become a crucial part in developing supercomputers. Accelerators usually equip with different types of cores and memory. It will compel application developers to reach challenging performance goals. The added complexity has led to the development of task-based runtime systems, which allow complex computations to be expressed as task graphs, and rely on scheduling algorithms to perform load balancing between all resources of the platforms. Developing good scheduling algorithms, even on a single node, and analyzing them can thus have a very high impact on the performance of current HPC systems. Load balancing strategies, at different levels, will be critical to obtain an effective usage of the heterogeneous hardware and to reduce the impact of communication on energy and performance. Implementing efficient load balancing algorithms, able to manage heterogeneous hardware, can be a challenging task, especially when a parallel programming model for distributed memory architecture. In this paper, we presents several novel runtime approaches to determine the optimal data and task partition on heterogeneous platforms, targeting the Intel Xeon Phi accelerated heterogeneous systems

    A three-level parallelisation scheme and application to the Nelder-Mead algorithm

    Get PDF
    We consider a three-level parallelisation scheme. The second and third levels define a classical two-level parallelisation scheme and some load balancing algorithm is used to distribute tasks among processes. It is well-known that for many applications the efficiency of parallel algorithms of these two levels starts to drop down after some critical parallelisation degree is reached. This weakness of the twolevel template is addressed by introduction of one additional parallelisation level. As an alternative to the basic solver some new or modified algorithms are considered on this level. The idea of the proposed methodology is to increase the parallelisation degree by using possibly less efficient algorithms in comparison with the basic solver. As an example we investigate two modified Nelder-Mead methods. For the selected application, a Schro¨dinger equation is solved numerically on the second level, and on the third level the parallel Wang’s algorithm is used to solve systems of linear equations with tridiagonal matrices. A greedy workload balancing heuristic is proposed, which is oriented to the case of a large number of available processors. The complexity estimates of the computational tasks are model-based, i.e. they use empirical computational data
    corecore