21,637 research outputs found

    Trajectory recognition as the basis for object individuation: A functional model of object file instantiation and object token encoding

    Get PDF
    The perception of persisting visual objects is mediated by transient intermediate representations, object files, that are instantiated in response to some, but not all, visual trajectories. The standard object file concept does not, however, provide a mechanism sufficient to account for all experimental data on visual object persistence, object tracking, and the ability to perceive spatially-disconnected stimuli as coherent objects. Based on relevant anatomical, functional, and developmental data, a functional model is developed that bases object individuation on the specific recognition of visual trajectories. This model is shown to account for a wide range of data, and to generate a variety of testable predictions. Individual variations of the model parameters are expected to generate distinct trajectory and object recognition abilities. Over-encoding of trajectory information in stored object tokens in early infancy, in particular, is expected to disrupt the ability to re-identify individuals across perceptual episodes, and lead to developmental outcomes with characteristics of autism spectrum disorders

    Event Prediction and Object Motion Estimation in the Development of Visual Attention

    Get PDF
    A model of gaze control is describes that includes mechanisms for predictive control using a forward model and event driven expectations of target behavior. The model roughly undergoes stages similar to those of human infants if the influence of the predictive systems is gradually increased

    MOVIT: MONOCULAR VISION-BASED TRACKING

    Get PDF
    Cerebral Palsy (CP) is a physical disability that affects approximately 17 million individuals globally. CP can severely impact the development of motor, cognitive, and social skills. Recent research efforts in this domain have led to the development of a series of assistive robot systems designed for crawling-age infants (aged 4-11 months) who are at risk for CP and related motor disorders. These robot systems provide early intervention to mitigate the effects of the above motor disorders. The robot systems capture and interpret infant limb motion in 3D and physically move an infant in response to meaningful crawling-like limb motion. Inertial measurement units (IMUs) are used for the motion capture (mocap) process. IMUs are highly sensitive to electromagnetic fields. Consequently, the presence of electromagnetic interference (EMI) sources in the surroundings causes the assistive robots to malfunction. Thus the research problem is posed as follows. There is a need for the development of a new mocap approach to replace or augment the existing mocap system for infants. The key requirements are that crawling motions of infants should be captured and the approach must not be sensitive to EMI. The research scope is limited to tracking motion in 3D and does not include methods for automatic gesture recognition or classification. There are two research questions: 1)~What are the requirements for capturing crawling motions of infants? 2)~To what extent does a mocap system not subject to EMI, meet the above requirements? The contributions of this research are as follows. Quantitative data on infant crawling motion from past works have been collected and presented in a form useful for the design of mocap systems. A novel approach for mocap based on planar pattern vision markers has been developed. The effects of changing various design parameters on the tracking accuracy has been documented on the basis of physical tests. A performance model has been developed to predict tracking accuracy based on the various design parameters and to allow for comparison with other systems based on tracking planar pattern vision markers. Key conclusions of this research are as follows. The magnitude of the smallest meaningful crawling motion that an infant can make is 74.6~mm. The worst-case tracking error for the developed system is 19.9~mm. Further evaluation needs to be done to determine whether this is practical for existing gesture recognition and filtering methods

    Domain general learning: Infants use social and non-social cues when learning object statistics.

    Get PDF
    Previous research has shown that infants can learn from social cues. But is a social cue more effective at directing learning than a non-social cue? This study investigated whether 9-month-old infants (N = 55) could learn a visual statistical regularity in the presence of a distracting visual sequence when attention was directed by either a social cue (a person) or a non-social cue (a rectangle). The results show that both social and non-social cues can guide infants' attention to a visual shape sequence (and away from a distracting sequence). The social cue more effectively directed attention than the non-social cue during the familiarization phase, but the social cue did not result in significantly stronger learning than the non-social cue. The findings suggest that domain general attention mechanisms allow for the comparable learning seen in both conditions

    The Whole World in Your Hand: Active and Interactive Segmentation

    Get PDF
    Object segmentation is a fundamental problem in computer vision and a powerful resource for development. This paper presents three embodied approaches to the visual segmentation of objects. Each approach to segmentation is aided by the presence of a hand or arm in the proximity of the object to be segmented. The first approach is suitable for a robotic system, where the robot can use its arm to evoke object motion. The second method operates on a wearable system, viewing the world from a human's perspective, with instrumentation to help detect and segment objects that are held in the wearer's hand. The third method operates when observing a human teacher, locating periodic motion (finger/arm/object waving or tapping) and using it as a seed for segmentation. We show that object segmentation can serve as a key resource for development by demonstrating methods that exploit high-quality object segmentations to develop both low-level vision capabilities (specialized feature detectors) and high-level vision capabilities (object recognition and localization)

    Inertial-Magnetic Sensors for Assessing Spatial Cognition in Infants

    Get PDF
    This paper describes a novel approach to the assessment of spatial cognition in children. In particular we present a wireless instrumented toy embedding magneto-inertial sensors for orientation tracking, specifically developed to assess the ability to insert objects into holes. To be used in naturalistic environments (e.g. daycares), we also describe an in-field calibration procedure based on a sequence of manual rotations, not relying on accurate motions or sophisticated equipment. The final accuracy of the proposed system, after the mentioned calibration procedure, is derived by direct comparison with a gold-standard motion tracking device. In particular, both systems are subjected to a sequence of ten single-axis rotations (approximately 90 deg, back and forth), about three different axes. The root-mean-square of the angular error between the two measurements (gold-standard vs. proposed systems) was evaluated for each trial. In particular, the average rms error is under 2 deg. This study indicates that a technological approach to ecological assessment of spatial cognition in infants is indeed feasible. As a consequence, prevention through screening of large number of infants is at reach

    Ongoing Emergence: A Core Concept in Epigenetic Robotics

    Get PDF
    We propose ongoing emergence as a core concept in epigenetic robotics. Ongoing emergence refers to the continuous development and integration of new skills and is exhibited when six criteria are satisfied: (1) continuous skill acquisition, (2) incorporation of new skills with existing skills, (3) autonomous development of values and goals, (4) bootstrapping of initial skills, (5) stability of skills, and (6) reproducibility. In this paper we: (a) provide a conceptual synthesis of ongoing emergence based on previous theorizing, (b) review current research in epigenetic robotics in light of ongoing emergence, (c) provide prototypical examples of ongoing emergence from infant development, and (d) outline computational issues relevant to creating robots exhibiting ongoing emergence

    The very same thing: Extending the object token concept to incorporate causal constraints on individual identity

    Get PDF
    The contributions of feature recognition, object categorization, and recollection of episodic memories to the re-identification of a perceived object as the very same thing encountered in a previous perceptual episode are well understood in terms of both cognitive-behavioral phenomenology and neurofunctional implementation. Human beings do not, however, rely solely on features and context to re-identify individuals; in the presence of featural change and similarly-featured distractors, people routinely employ causal constraints to establish object identities. Based on available cognitive and neurofunctional data, the standard object-token based model of individual re-identification is extended to incorporate the construction of unobserved and hence fictive causal histories (FCHs) of observed objects by the pre-motor action planning system. Cognitive-behavioral and implementation-level predictions of this extended model and methods for testing them are outlined. It is suggested that functional deficits in the construction of FCHs are associated with clinical outcomes in both Autism Spectrum Disorders and later-stage stage Alzheimer's disease.\u
    • …
    corecore