97 research outputs found

    Modeling and Control of Steerable Ablation Catheters

    Get PDF
    Catheters are long, flexible tubes that are extensively used in vascular and cardiac interventions, e.g., cardiac ablation, coronary angiography and mitral valve annuloplasty. Catheter-based cardiac ablation is a well-accepted treatment for atrial fibrillation, a common type of cardiac arrhythmia. During this procedure, a steerable ablation catheter is guided through the vasculature to the left atrium to correct the signal pathways inside the heart and restore normal heart rhythm. The outcome of the ablation procedure depends mainly on the correct positioning of the catheter tip at the target location inside the heart and also on maintaining a consistent contact between the catheter tip and cardiac tissue. In the presence of cardiac and respiratory motions, achieving these goals during the ablation procedure is very challenging without proper 3D visualization, dexterous control of the flexible catheter and an estimate of the catheter tip/tissue contact force. This research project provides the required basis for developing a robotics-assisted catheter manipulation system with contact force control for use in cardiac ablation procedures. The behavior of the catheter is studied in free space as well in contact with the environment to develop mathematical models of the catheter tip that are well suited for developing control systems. The validity of the proposed modeling approaches and the performance of the suggested control techniques are evaluated experimentally. As the first step, the static force-deflection relationship for ablation catheters is described with a large-deflection beam model and an optimized pseudo-rigid-body 3R model. The proposed static model is then used in developing a control system for controlling the contact force when the catheter tip is interacting with a static environment. Our studies also showed that it is possible to estimate the tip/tissue contact force by analyzing the shape of the catheter without installing a force sensor on the catheter. During cardiac ablation, the catheter tip is in contact with a relatively fast moving environment (cardiac tissue). Robotic manipulation of the catheter has the potential to improve the quality of contact between the catheter tip and cardiac tissue. To this end, the frequency response of the catheter is investigated and a control technique is proposed to compensate for the cardiac motion and to maintain a constant tip/tissue contact force. Our study on developing a motion compensated robotics-assisted catheter manipulation system suggests that redesigning the actuation mechanism of current ablation catheters would provide a major improvement in using these catheters in robotics-assisted cardiac ablation procedures

    Remote Navigation and Contact-Force Control of Radiofrequency Ablation Catheters

    Get PDF
    Atrial fibrillation (AF), the most common and clinically significant heart rhythm disorder, is characterized by rapid and irregular electrical activity in the upper chambers resulting in abnormal contractions. Radiofrequency (RF) cardiac catheter ablation is a minimally invasive curative treatment that aims to electrically correct signal pathways inside the atria to restore normal sinus rhythm. Successful catheter ablation requires the complete and permanent elimination of arrhythmogenic signals by delivering transmural RF ablation lesions contiguously near and around key cardiac structures. These procedures are complex and technically challenging and, even when performed by the most skilled physician, nearly half of patients undergo repeat procedures due to incomplete elimination of the arrhythmogenic pathways. This thesis aims to incorporate innovative design to improve catheter stability and maneuverability through the development of robotic platforms that enable precise placement of reproducibly durable ablation lesions. The first part of this thesis deals with the challenges to lesion delivery imposed by cardiorespiratory motion. One of the main determinants of the delivery of durable and transmural RF lesions is the ability to define and maintain a constant contact force between the catheter tip electrode and cardiac tissue, which is hampered by the presence of cardiorespiratory motion. To address this need, I developed and evaluated a novel catheter contact-force control device. The compact electromechanical add-on tool monitors catheter-tissue contact force in real-time and simultaneously adjusts the position of a force-sensing ablation catheter within a steerable sheath to compensate for the change in contact force. In a series of in vitro and in vivo experiments, the contact-force control device demonstrated an ability to: a) maintain an average force to within 1 gram of a set level; b) reduce contact-force variation to below 5 grams (2-8-fold improvement over manual catheter intervention); c) ensure the catheter tip never lost contact with the tissue and never approached dangerous force levels; and importantly, d) deliver reproducible RF ablation lesions regardless of cardiac tissue motion, which were of the same depth and volume as lesions delivered in the absence of tissue motion. In the second part of the thesis, I describe a novel steerable sheath and catheter robotic navigation system, which incorporates the catheter contact-force controller. The robotic platform enables precise and accurate manipulation of a remote conventional steerable sheath and permits catheter-tissue contact-force control. The robotic navigation system was evaluated in vitro using a phantom that combines stationary and moving targets within an in vitro model representing a beating heart. An electrophysiologist used the robotic system to remotely navigate the sheath and catheter tip to select targets and compared the accuracy of reaching these targets performing the same tasks manually. Robotic intervention resulted in significantly higher accuracy and significantly improved the contact-force profile between the catheter tip and moving tissue-mimicking material. Our studies demonstrate that using available contact-force information within a robotic system can ensure precise and accurate placement of reliably transmural RF ablation lesions. These robotic systems can be valuable tools used to optimize RF lesion delivery techniques and ultimately improve clinical outcomes for AF ablation therapy

    Design and Evaluation of a Catheter Contact-Force Controller for Cardiac Ablation Therapy.

    Get PDF
    GOAL: Maintaining a constant contact force (CF) of an ablation catheter during cardiac catheter ablation therapy is clinically challenging due to inherent myocardial motion, often resulting in poor ablation of arrhythmogenic substrates. To enable a prescribed contact force to be applied during ablation, a catheter contact force controller (CCFC) was developed. METHODS: The system includes a hand-held device attached to a commercial catheter and steerable sheath. A compact linear motor assembly attaches to an ablation catheter and autonomously controls its relative position within the shaft of the steerable sheath. A closed-loop control system is implemented within embedded electronics to enable real-time catheter-tissue contact force control. To evaluate the performance of the CCFC, a linear motion phantom was used to impose a series of physiological CF profiles; lesion CF was controlled at prescribed levels ranging from 15 to 40 g. RESULTS: For a prescribed CF of 25 g, the CCFC was able to regulate the CF with a root mean squared error of 3.7 ± 0.7 g. The ability of the CCFC to retract the catheter upon sudden changes in tissue motion, which may have caused tissue damage, was also demonstrated. Finally, the device was able to regulate the CF for a predetermined amount of time according to a force-time integral model. CONCLUSION: The developed CCFC is capable of regulating catheter-tissue CF in a laboratory setting that mimics clinical ablation therapy. SIGNIFICANCE: Catheter-tissue CF control promises to improve the precision and success of ablation lesion delivery

    Shape Memory Alloy Actuators and Sensors for Applications in Minimally Invasive Interventions

    Get PDF
    Reduced access size in minimally invasive surgery and therapy (MIST) poses several restriction on the design of the dexterous robotic instruments. The instruments should be developed that are slender enough to pass through the small sized incisions and able to effectively operate in a compact workspace. Most existing robotic instruments are operated by big actuators, located outside the patient’s body, that transfer forces to the end effector via cables or magnetically controlled actuation mechanism. These instruments are certainly far from optimal in terms of their cost and the space they require in operating room. The lack of adequate sensing technologies make it very challenging to measure bending of the flexible instruments, and to measure tool-tissue contact forces of the both flexible and rigid instruments during MIST. Therefore, it requires the development of the cost effective miniature actuators and strain/force sensors. Having several unique features such as bio-compatibility, low cost, light weight, large actuation forces and electrical resistivity variations, the shape memory alloys (SMAs) show promising applications both as the actuators and strain sensors in MIST. However, highly nonlinear hysteretic behavior of the SMAs hinders their use as actuators. To overcome this problem, an adaptive artificial neural network (ANN) based Preisach model and a model predictive controller have been developed in this thesis to precisely control the output of the SMA actuators. A novel ultra thin strain sensor is also designed using a superelastic SMA wire, which can be used to measure strain and forces for many surgical and intervention instruments. A da Vinci surgical instrument is sensorized with these sensors in order to validate their force sensing capability

    FROM CONCEPT, TO DESIGN, EVALUATION AND FIRST IN VIVO DEMONSTRATION OF A TELE-OPERATED CATHETER NAVIGATION SYSTEM

    Get PDF
    Percutaneous transluminal catheter (PTC) intervention is a medical technique used to assess and treat vascular and cardiac diseases, including electrophysiological conditions. A Interventional specialists use the vasculature as a passageway to guide the catheter to the site of interest, using fluoroscopic x-ray imaging for image-guidance. Common PTC procedures include: vascular angiography, inflating balloons and stents, depositing coils, and the treatment of cardiac arrhythmia via catheter ablation. Catheter ablation has gained prevalence over the last two decades, as the treatment success rate for atrial fibrillation reaches 100%. The close proximity between the interventionalist and the radiation source combined with the increased number of procedures performed annually has lead to increased lifetime exposure; escalating the interventionalist probability of developing cancer, cataracts or passing genetic defects to offspring. Furthermore, the lead garments that protect the interventionalist can lead to musculoskeletal injury. Both these factors have lead to increased occupational risk. Catheter navigation systems are commercially available to reduce these risks. Lack of intuitive design is a common failing among these systems. iii This thesis presents the design and validation of a remote catheter navigation system (RCNS) that utilizes dexterous skills of the interventionalist during remote navigation, by keeping the catheter in their hands of the interventionalist during remote navigation. For remote catheter manipulation, the interventionalist pushes, pulls, and twists an input catheter, which is placed inside an electromechanical sensor (CS). Position changes of the input catheter are transferred to a second electromechanical (CM) that replicates the sensed motion with a second, remote catheter. Design of this system begins with understanding the dynamic forces applied to the catheter during intravascular navigation. These dynamics were quantified and then used as operating parameters in the mechanical design of the CM. In a laboratory setting, motion sensed and replicated by the RCNS was found to be 1 mm in the axial direction, 1° in the radial direction, with a latency of 180 ms. In a multi-operator, comparative study using a specially constructed multi-path vessel phantom, comparable navigation efficacy was demonstrated between the RCNS and conventional catheter manipulation, with the RCNS requiring only 9s longer to complete the same tasks. Finally, remote navigation was performed in vivo to fully demonstrate the application of this system towards the diagnosis and treatment of cardiac arrhythmia

    Modeling, Sensorization and Control of Concentric-Tube Robots

    Get PDF
    Since the concept of the Concentric-Tube Robot (CTR) was proposed in 2006, CTRs have been a popular research topic in the field of surgical robotics. The unique mechanical design of this robot allows it to navigate through narrow channels in the human anatomy and operate in highly constrained environments. It is therefore likely to become the next generation of surgical robots to overcome the challenges that cannot be addressed by current technologies. In CSTAR, we have had ongoing work over the past several years aimed at developing novel techniques and technologies for CTRs. This thesis describes the contributions made in this context, focusing primarily on topics such as modeling, sensorization, and control of CTRs. Prior to this work, one of the main challenges in CTRs was to develop a kinematic model that achieves a balance between the numerical accuracy and computational efficiency for surgical applications. In this thesis, a fast kinematic model of CTRs is proposed, which can be solved at a comparatively fast rate (0.2 ms) with minimal loss of accuracy (0.1 mm) for a 3-tube CTR. A Jacobian matrix is derived based on this model, leading to the development of a real-time trajectory tracking controller for CTRs. For tissue-robot interactions, a force-rejection controller is proposed for position control of CTRs under time-varying force disturbances. In contrast to rigid-link robots, instability of position control could be caused by non-unique solutions to the forward kinematics of CTRs. This phenomenon is modeled and analyzed, resulting in design criteria that can ensure kinematic stability of a CTR in its entire workspace. Force sensing is another major difficulty for CTRs. To address this issue, commercial force/torque sensors (Nano43, ATI Industrial Automation, United States) are integrated into one of our CTR prototypes. These force/torque sensors are replaced by Fiber-Bragg Grating (FBG) sensors that are helically-wrapped and embedded in CTRs. A strain-force calculation algorithm is proposed, to convert the reflected wavelength of FBGs into force measurements with 0.1 N force resolution at 100 Hz sampling rate. In addition, this thesis reports on our innovations in prototyping drive units for CTRs. Three designs of CTR prototypes are proposed, the latest one being significantly more compact and cost efficient in comparison with most designs in the literature. All of these contributions have brought this technology a few steps closer to being used in operating rooms. Some of the techniques and technologies mentioned above are not merely limited to CTRs, but are also suitable for problems arising in other types of surgical robots, for example, for sensorizing da Vinci surgical instruments for force sensing (see Appendix A)

    Design, Development and Force Control of a Tendon-driven Steerable Catheter with a Learning-based Approach

    Get PDF
    In this research, a learning-based force control schema for tendon-driven steerable catheters with the application in robot-assisted tissue ablation procedures was proposed and validated. To this end, initially a displacement-based model for estimating the contact force between the catheter and tissue was developed. Afterward, a tendon-driven catheter was designed and developed. Next, a software-hardware-integrated robotic system for controlling and monitoring the pose of the catheter was designed and developed. Also, a force control schema was developed based on the developed contact force model as a priori knowledge. Furthermore, the position control of the tip of the catheter was performed using a learning-based inverse kinematic approach. By combining the position control and the contact model, the force control schema was developed and validated. Validation studies were performed on phantom tissue as well as excised porcine tissue. Results of the validation studies showed that the proposed displacement-based model was 91.5% accurate in contact force prediction. Also, the system was capable of following a set of desired trajectories with an average root-mean-square error of less than 5%. Further validation studies revealed that the system could fairly generate desired static and dynamic force profiles on the phantom tissue. In summary, the proposed force control system did not necessitate the utilization of force sensors and could fairly contribute in automatizing the ablation task for robotic tissue ablation procedures

    FROM CONCEPT, TO DESIGN, EVALUATION AND FIRST IN VIVO DEMONSTRATION OF A TELE-OPERATED CATHETER NAVIGATION SYSTEM

    Get PDF
    Percutaneous transluminal catheter (PTC) intervention is a medical technique used to assess and treat vascular and cardiac diseases, including electrophysiological conditions. Interventional specialists use the vasculature as a passageway to guide the catheter to the site of interest, using fluoroscopic x-ray imaging for image-guidance. Common PTC procedures include: vascular angiography, inflating balloons and stents, depositing coils, and the treatment of cardiac arrhythmia via catheter ablation. Catheter ablation has gained prevalence over the last two decades, as the treatment success rate for atrial fibrillation reaches 100%. The close proximity between the interventionalist and the radiation source combined with the increased number of procedures performed annually has lead to increased lifetime exposure; escalating the interventionalist probability of developing cancer, cataracts or passing genetic defects to offspring. Furthermore, the lead garments that protect the interventionalist can lead to musculoskeletal injury. Both these factors have lead to increased occupational risk. Catheter navigation systems are commercially available to reduce these risks. Lack of intuitive design is a common failing among these systems. iii This thesis presents the design and validation of a remote catheter navigation system (RCNS) that utilizes dexterous skills of the interventionalist during remote navigation, by keeping the catheter in their hands of the interventionalist during remote navigation. For remote catheter manipulation, the interventionalist pushes, pulls, and twists an input catheter, which is placed inside an electromechanical sensor (CS). Position changes of the input catheter are transferred to a second electromechanical (CM) that replicates the sensed motion with a second, remote catheter. Design of this system begins with understanding the dynamic forces applied to the catheter during intravascular navigation. These dynamics were quantified and then used as operating parameters in the mechanical design of the CM. In a laboratory setting, motion sensed and replicated by the RCNS was found to be 1 mm in the axial direction, 1° in the radial direction, with a latency of 180 ms. In a multi-operator, comparative study using a specially constructed multi-path vessel phantom, comparable navigation efficacy was demonstrated between the RCNS and conventional catheter manipulation, with the RCNS requiring only 9s longer to complete the same tasks. Finally, remote navigation was performed in vivo to fully demonstrate the application of this system towards the diagnosis and treatment of cardiac arrhythmia

    Image-Based Force Estimation and Haptic Rendering For Robot-Assisted Cardiovascular Intervention

    Get PDF
    Clinical studies have indicated that the loss of haptic perception is the prime limitation of robot-assisted cardiovascular intervention technology, hindering its global adoption. It causes compromised situational awareness for the surgeon during the intervention and may lead to health risks for the patients. This doctoral research was aimed at developing technology for addressing the limitation of the robot-assisted intervention technology in the provision of haptic feedback. The literature review showed that sensor-free force estimation (haptic cue) on endovascular devices, intuitive surgeon interface design, and haptic rendering within the surgeon interface were the major knowledge gaps. For sensor-free force estimation, first, an image-based force estimation methods based on inverse finite-element methods (iFEM) was developed and validated. Next, to address the limitation of the iFEM method in real-time performance, an inverse Cosserat rod model (iCORD) with a computationally efficient solution for endovascular devices was developed and validated. Afterward, the iCORD was adopted for analytical tip force estimation on steerable catheters. The experimental studies confirmed the accuracy and real-time performance of the iCORD for sensor-free force estimation. Afterward, a wearable drift-free rotation measurement device (MiCarp) was developed to facilitate the design of an intuitive surgeon interface by decoupling the rotation measurement from the insertion measurement. The validation studies showed that MiCarp had a superior performance for spatial rotation measurement compared to other modalities. In the end, a novel haptic feedback system based on smart magnetoelastic elastomers was developed, analytically modeled, and experimentally validated. The proposed haptics-enabled surgeon module had an unbounded workspace for interventional tasks and provided an intuitive interface. Experimental validation, at component and system levels, confirmed the usability of the proposed methods for robot-assisted intervention systems

    imaged-based tip force estimation on steerable intracardiac catheters using learning-based methods

    Get PDF
    Minimally invasive surgery has turned into the most commonly used approach to treat cardiovascular diseases during the surgical procedure; it is hypothesized that the absence of haptic (tactile) feedback and force presented to surgeons is a restricting factor. The use of ablation catheters with the integrated sensor at the tip results in high cost and noise complications. In this thesis, two sensor-less methods are proposed to estimate the force at the intracardiac catheter’s tip. Force estimation at the catheter tip is of great importance because insufficient force in ablation treatment may result in incomplete treatment and excessive force leads to damaging the heart chamber. Besides, adding the sensor to intracardiac catheters adds complexity to their structures. This thesis is categorized into two sensor-less approaches: 1- Learning-Based Force Estimation for Intracardiac Ablation Catheters, 2- A Deep-Learning Force Estimator System for Intracardiac Catheters. The first proposed method estimates catheter-tissue contact force by learning the deflected shape of the catheter tip section image. A regression model is developed based on predictor variables of tip curvature coefficients and knob actuation. The learning-based approach achieved force predictions in close agreement with experimental contact force measurements. The second approach proposes a deep learning method to estimate the contact forces directly from the catheter’s image tip. A convolutional neural network extracts the catheter’s deflection through input images and translates them into the corresponding forces. The ResNet graph was implemented as the architecture of the proposed model to perform a regression. The model can estimate catheter-tissue contact force based on the input images without utilizing any feature extraction or pre-processing. Thus, it can estimate the force value regardless of the tip displacement and deflection shape. The evaluation results show that the proposed method can elicit a robust model from the specified data set and approximate the force with appropriate accuracy
    • …
    corecore