1,173 research outputs found

    Performance analysis with network-enhanced complexities: On fading measurements, event-triggered mechanisms, and cyber attacks

    Get PDF
    Copyright © 2014 Derui Ding et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Nowadays, the real-world systems are usually subject to various complexities such as parameter uncertainties, time-delays, and nonlinear disturbances. For networked systems, especially large-scale systems such as multiagent systems and systems over sensor networks, the complexities are inevitably enhanced in terms of their degrees or intensities because of the usage of the communication networks. Therefore, it would be interesting to (1) examine how this kind of network-enhanced complexities affects the control or filtering performance; and (2) develop some suitable approaches for controller/filter design problems. In this paper, we aim to survey some recent advances on the performance analysis and synthesis with three sorts of fashionable network-enhanced complexities, namely, fading measurements, event-triggered mechanisms, and attack behaviors of adversaries. First, these three kinds of complexities are introduced in detail according to their engineering backgrounds, dynamical characteristic, and modelling techniques. Then, the developments of the performance analysis and synthesis issues for various networked systems are systematically reviewed. Furthermore, some challenges are illustrated by using a thorough literature review and some possible future research directions are highlighted.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 61203139, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Dynamics analysis and integrated design of real-time control systems

    Get PDF
    Real-time control systems are widely deployed in many applications. Theory and practice for the design and deployment of real-time control systems have evolved significantly. From the design perspective, control strategy development has been the focus of the research in the control community. In order to develop good control strategies, process modelling and analysis have been investigated for decades, and stability analysis and model-based control have been heavily studied in the literature. From the implementation perspective, real-time control systems require timeliness and predictable timing behaviour in addition to logical correctness, and a real-time control system may behave very differently with different software implementations of the control strategies on a digital controller, which typically has limited computing resources. Most current research activities on software implementations concentrate on various scheduling methodologies to ensure the schedulability of multiple control tasks in constrained environments. Recently, more and more real-time control systems are implemented over data networks, leading to increasing interest worldwide in the design and implementation of networked control systems (NCS). Major research activities in NCS include control-oriented and scheduling-oriented investigations. In spite of significant progress in the research and development of real-time control systems, major difficulties exist in the state of the art. A key issue is the lack of integrated design for control development and its software implementation. For control design, the model-based control technique, the current focus of control research, does not work when a good process model is not available or is too complicated for control design. For control implementation on digital controllers running multiple tasks, the system schedulability is essential but is not enough; the ultimate objective of satisfactory quality-of-control (QoC) performance has not been addressed directly. For networked control, the majority of the control-oriented investigations are based on two unrealistic assumptions about the network induced delay. The scheduling-oriented research focuses on schedulability and does not directly link to the overall QoC of the system. General solutions with direct QoC consideration from the network perspective to the challenging problems of network delay and packet dropout in NCS have not been found in the literature. This thesis addresses the design and implementation of real-time control systems with regard to dynamics analysis and integrated design. Three related areas have been investigated, namely control development for controllers, control implementation and scheduling on controllers, and real-time control in networked environments. Seven research problems are identified from these areas for investigation in this thesis, and accordingly seven major contributions have been claimed. Timing behaviour, quality of control, and integrated design for real-time control systems are highlighted throughout this thesis. In control design, a model-free control technique, pattern predictive control, is developed for complex reactive distillation processes. Alleviating the requirement of accurate process models, the developed control technique integrates pattern recognition, fuzzy logic, non-linear transformation, and predictive control into a unified framework to solve complex problems. Characterising the QoC indirectly with control latency and jitter, scheduling strategies for multiple control tasks are proposed to minimise the latency and/or jitter. Also, a hierarchical, QoC driven, and event-triggering feedback scheduling architecture is developed with plug-ins of either the earliest-deadline-first or fixed priority scheduling. Linking to the QoC directly, the architecture minimises the use of computing resources without sacrifice of the system QoC. It considers the control requirements, but does not rely on the control design. For real-time NCS, the dynamics of the network delay are analysed first, and the nonuniform distribution and multi-fractal nature of the delay are revealed. These results do not support two fundamental assumptions used in existing NCS literature. Then, considering the control requirements, solutions are provided to the challenging NCS problems from the network perspective. To compensate for the network delay, a real-time queuing protocol is developed to smooth out the time-varying delay and thus to achieve more predictable behaviour of packet transmissions. For control packet dropout, simple yet effective compensators are proposed. Finally, combining the queuing protocol, the packet loss compensation, the configuration of the worst-case communication delay, and the control design, an integrated design framework is developed for real-time NCS. With this framework, the network delay is limited to within a single control period, leading to simplified system analysis and improved QoC

    Stability analysis of event-triggered anytime control with multiple control laws

    Full text link
    To deal with time-varying processor availability and lossy communication channels in embedded and networked control systems, one can employ an event-triggered sequence-based anytime control (E-SAC) algorithm. The main idea of E-SAC is, when computing resources and measurements are available, to compute a sequence of tentative control inputs and store them in a buffer for potential future use. State-dependent Random-time Drift (SRD) approach is often used to analyse and establish stability properties of such E-SAC algorithms. However, using SRD, the analysis quickly becomes combinatoric and hence difficult to extend to more sophisticated E-SAC. In this technical note, we develop a general model and a new stability analysis for E-SAC based on Markov jump systems. Using the new stability analysis, stochastic stability conditions of existing E-SAC are also recovered. In addition, the proposed technique systematically extends to a more sophisticated E-SAC scheme for which, until now, no analytical expression had been obtained.Comment: Accepted for publication in IEEE Transactions on Automatic Contro

    Delay-independent dual-rate PID controller for a packet-based networked control system

    Full text link
    [EN] In this paper, a novel delay-independent control structure for a networked control system (NCS) is proposed, where packet-based control strategies with predictor-based and dual-rate control techniques are integrated. The control solution is able to cope with some networked communication problems such as time-varying delays, packet dropouts and packet disorder. In addition, the proposed approach enables to reduce network load, and usage of connected devices, while maintaining a satisfactory control performance. As a delay-independent control solution, no network-induced delay measurement is needed for controller implementation. In addition, the control scheme is applicable to open-loop unstable plants. Control system stability is ensured in terms of linear matrix inequalities (LMIs). Simulation results show the main benefits of the control approach, which are experimentally validated by means of a Cartesian-robot-based test-bed platform. (C) 2019 Elsevier Inc. All rights reserved.This work is funded by European Commission as part of Project H2020-SEC-2016-2017, Topic: SEC-20-BES-2016 Id: 740736 C2 Advanced Multi-domain Environment and Live Observation Technologies (CAMELOT). Part WP5 supported by Tekever ASDS, Thales Research & Technology, Viasat Antenna Systems, Universitat Politècnica de València, Fundação da Faculdade de Ciências da Universidade de Lisboa, Ministério da Defesa Nacional Marinha Portuguesa, Ministério da Administração Interna Guarda Nacional Republicana.Alcaina-Acosta, JJ.; Cuenca, Á.; Salt Llobregat, JJ.; Casanova Calvo, V.; Pizá, R. (2019). Delay-independent dual-rate PID controller for a packet-based networked control system. Information Sciences. 484:27-43. https://doi.org/10.1016/j.ins.2019.01.059S274348

    New results on stabilization of networked control systems with packet disordering

    Get PDF
    postprin

    Resource-efficient path-following control for a self-driving car in a networked control system

    Full text link
    [EN] In recent years, in-vehicle networks are increasingly being incorporated to self-driving cars in order to interconnect spatially distributed devices such as sensors, actuators, and controllers, leading to networked control systems (NCS). The main aim of this work is to reduce the use of resources in a NCS (bandwidth, device batteries) while maintaining an accurate path following for a self-driving car. Some typical network-induced drawbacks such as time-varying delays, packet dropouts and packet disorder will also be coped with. In order to reach the goals, a systematic integration of periodic event-triggered sampling techniques, packet-based control strategies, and state estimation methods is proposed. A novel non-uniform dual-rate extended Kalman filter (NUDREKF) is formulated to estimate the system state at fast, control rate from scarce slow-rate measurements. Due to its mathematical simplicity and low computational cost, the dynamic control law is designed from an inverse kinematic bicycle model and a proportional feedforward controller. Interestingly, optimal parameters for the event-triggered conditions are reached, leading to a satisfactory trade-off between resource savings and control performance. Simulation results for a real trajectory considering actual limitations for the actuators reveal the benefits of the control proposal compared to a conventional control approach.Alite, G.; Cuenca, Á.; Salt Llobregat, JJ.; Tomizuka, M. (2023). Resource-efficient path-following control for a self-driving car in a networked control system. IEEE Access. 11:108011-108023. https://doi.org/10.1109/ACCESS.2023.33212691080111080231

    Design and implementation of event-based multi-rate controllers for networked control systems

    Full text link
    Tesis por compendio[ES] Con esta tesis se pretende dar solución a algunos de los problemas más habituales que aparecen en los Sistemas de control basados en red (NCS) como son los retardos variables en el tiempo, las pérdidas y el desorden de paquetes, y la restricción de ancho de banda y de recursos computacionales y energéticos de los dispositivos que forman parte del sistema de control. Para ello se ha planteado la integración de técnicas de control multifrecuencial, de control basado en paquetes, de control basado en predictor y de control basado en eventos. Los diseños de control realizados se han simulado utilizando Matlab-Simulink y Truetime, se ha analizado su estabilidad mediante LMIs y QFT, y se han validado experimentalmente en un péndulo invertido, un robot cartesiano 3D y en robots móviles de bajo coste. El artículo 1 aborda el control basado en eventos, el cual minimiza el ancho de banda consumido en el NCS mediante un control basado en eventos periódicos y presenta un método para obtener sus parámetros óptimos para el sistema específico en que se utilice. Los artículos 2, 4 y 6 añaden el control basado en paquetes, así como el control multifrecuencia, que aborda problemas de falta de datos por bajo uso del sensor y los retardos, pérdidas y desórdenes de paquetes en la red. También afrontan, mediante tecnicas de predicción basadas en un filtro de Kalman multifrecuencia variable en el tiempo, los problemas de ruido y perturbaciones, así como la observación de los estados completos del sistema. El artículo 7 hace frente a un modelo no lineal que utiliza las anteriores soluciones junto con un filtro de Kalman extendido para presentar otro tipo de estructura para un vehículo autónomo que, gracias a la información futura obtenida mediante estas técnicas, puede realizar de forma remota tareas de alto nivel como es la toma de decisiones y la monitorización de variables. Los artículos 3 y 5, presentan una forma de obtener y analizar la respuesta en frecuencia de sistemas SISO multifrecuencia y estudian su comportamiento ante ciertas incertidumbres o problemas en la red haciendo uso de procedimientos QFT.[CA] Amb aquesta tesi es pretén donar solució a alguns dels problemes més habituals que apareixen als Sistemes de Control Basats en xarxa (NCS) com son els retards d'accés i transferència variables en el temps, les pèrdues y desordenament de paquets, i la restricció d'ampli de banda així com de recursos computacionals i energètics dels dispositius que foment part del sistema de control. Per tal de resoldre'ls s'ha plantejat la integració de tècniques de control multifreqüencial, de control basat en paquets, de control basat en predictor i de control basat en events. Els dissenys de control realitzats s'han simulat fent ús de Matlab-Simulink i de TrueTime, s'ha analitzat la seua estabilitat mitjançant LMIs i QFT, i s'han validat experimentalment en un pèndul invertit, un robot cartesià 3D i en robots mòbils de baix cost. L'article 1 aborda el control basat en events, el qual minimitza l'ampli de banda consumit a l'NCS mitjançant un control basat en events periòdics i presenta un mètode per a obtindré els seus paràmetres òptims per al sistema específic en el qual s'utilitza. Els articles 2, 4 i 6 afegeixen el control basat en paquets, així com el control multifreqüència, que aborda problemes de falta de dades per el baix us del sensor i els retards, pèrdues i desordre de paquets en la xarxa. També afronten, mitjançant tècniques de predicció basades en un filtre de Kalman multifreqüència variable en el temps. Els problemes de soroll i pertorbacions, així com la observació dels estats complets del sistema. L'article 7 fa referència a un model no lineal que utilitza les anteriors solucions junt a un filtre de Kalman estès per a presentar altre tipus d'estructura per a un vehicle autònom que, gracies a la informació futura obtinguda mitjançant aquestes tècniques, pot realitzar de manera remota tasques d'alt nivell com son la presa de decisions i la monitorització de variables. Els articles 3 y 5 presenten la manera d'obtindre i analitzar la resposta en frequencia de sistemes SISO multifreqüència i estudien el seu comportament front a certes incerteses o problemes en la xarxa fent us de procediments QFT.[EN] This thesis attempts to solve some of the most frequent issues that appear in Networked Control Systems (NCS), such as time-varying delays, packet losses and packet disorders and the bandwidth limitation. Other frequent problems are scarce computational and energy resources of the local system devices. Thus, it is proposed to integrate multirate control, packet-based control, predictor-based control and event-based control techniques. The control designs have been simulated using Matlab-Simulink and Truetime, the stability has been analysed by LMIs and QFT, and the experimental validation has been done on an inverted pendulum, a 3D cartesian robot and in low-cost mobile robots. Paper 1 addresses event-based control, which minimizes the bandwidth consumed in NCS through a periodic event-triggered control and presents a method to obtain the optimal parameters for the specific system used. Papers 2, 4 and 6 include packet-based control and multirate control, addressing problems such as network delays, packet dropouts and packet disorders, and the scarce data due to low sensor usage in order to save battery in sensing tasks and transmissions of the sensed data. Also addressed, is how despite the existence of measurement noise and disturbances, time-varying dual-rate Kalman filter based prediction techniques observe the complete state of the system. Paper 7 tackles a non-linear model that uses all the previous solutions together with an extended Kalman filter to present another type of structure for an autonomous vehicle that, due to future information obtained through these techniques, can remotely carry out high level tasks, such as decision making and monitoring of variables. Papers 3 and 5, present a method for obtaining and analyzing the SISO dual-rate frequency response and using QFT procedures to study its behavior when faced with specific uncertainties or network problems.This work was supported by the Spanish Ministerio de Economía y Competitividad under Grant referenced TEC2012-31506.Alcaina Acosta, JJ. (2020). Design and implementation of event-based multi-rate controllers for networked control systems [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/159884TESISCompendi
    corecore