2,666 research outputs found

    Practical Model-Based Diagnosis with Qualitative Possibilistic Uncertainty

    Full text link
    An approach to fault isolation that exploits vastly incomplete models is presented. It relies on separate descriptions of each component behavior, together with the links between them, which enables focusing of the reasoning to the relevant part of the system. As normal observations do not need explanation, the behavior of the components is limited to anomaly propagation. Diagnostic solutions are disorders (fault modes or abnormal signatures) that are consistent with the observations, as well as abductive explanations. An ordinal representation of uncertainty based on possibility theory provides a simple exception-tolerant description of the component behaviors. We can for instance distinguish between effects that are more or less certainly present (or absent) and effects that are more or less certainly present (or absent) when a given anomaly is present. A realistic example illustrates the benefits of this approach.Comment: Appears in Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (UAI1995

    Distributed Model-Based Diagnosis using Object-Relational Constraint Databases

    Get PDF
    This work presents a proposal to diagnose distributed systems utilizing model-based diagnosis using distributed databases. In order to improve aspects as versatility, persistence, easy composition and efficiency in the diagnosis process we use an Object Relational Constraint Database (ORCDB). Thereby we define a distributed architecture to store the behaviour of components as constraints in a relational database to diagnose a distributed system. This work proposes an algorithm to detect which components fail when their information is distributed in several databases, and all the information is not available in a global way. It is also offered a proposal to define, in execution time, the allocation of the sensors in a distributed system.Ministerio de Ciencia y Tecnología DPI2003-07146-C02-0

    MOBAD Model-Based Diagnosis

    Get PDF
    Troubleshooting measurement equipment can be complex and time consuming task. We developed a system that incorporates model-based diagnosis to troubleshoot measurement instrumentation systems. It consists of a knowledge representation scheme for modeling the structure and behavior of measurement systems and the ability to reason from first principles about these models. It accepts observed values from the user and returns a list of components that are suspected of failing. The current system was developed using the object oriented approach and was designed to be reusable for a variety of measurement systems. We discuss our expansion of Randy Davis\u27 approach to model-based diagnosis to include instrumentation systems

    Efficient Model Based Diagnosis

    Full text link
    In this paper an efficient model based diagnostic process is described for systems whose components possess a causal relation between their inputs and their outputs. In this diagnostic process, firstly, a set of focuses on likely broken components is determined. Secondly, for each focus the most informative probing point within the focus can be determined. Both these steps of the diagnostic process have a worst case time complexity of O(n2){\cal O}(n^2) where nn is the number of components. If the connectivity of the components is low, however, the diagnostic process shows a linear time complexity. It is also shown how the diagnostic process described can be applied in dynamic systems and systems containing loops. When diagnosing dynamic systems it is possible to choose between detecting intermitting faults or to improve the diagnostic precision by assuming non-intermittency
    corecore